PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Longitudinal In Vivo SPECT/CT Imaging Reveals Morphological Changes and Cardiopulmonary Apoptosis in a Rodent Model of Pulmonary Arterial Hypertension 
PLoS ONE  2012;7(7):e40910.
Pulmonary arterial hypertension (PAH) has a complex pathogenesis involving both heart and lungs. Animal models can reflect aspects of the human pathology and provide insights into the development and underlying mechanisms of disease. Because of the variability of most animal models of PAH, serial in vivo measurements of cardiopulmonary function, morphology, and markers of pathology can enhance the value of such studies. Therefore, quantitative in vivo SPECT/CT imaging was performed to assess cardiac function, morphology and cardiac perfusion utilizing 201Thallium (201Tl) in control and monocrotaline-treated rats. In addition, lung and heart apoptosis was examined with 99mTc-Annexin V (99mTc-Annexin) in these cohorts. Following baseline imaging, rats were injected with saline or monocrotaline (50 mg/kg, i.p.) and imaged weekly for 6 weeks. To assess a therapeutic response in an established pulmonary hypertensive state, a cohort of rats received resveratrol in drinking water (3 mg/kg/day) on days 28–42 post-monocrotaline injection to monitor regression of cardiopulmonary apoptosis. PAH in monocrotaline-treated rats was verified by conventional hemodynamic techniques on day 42 (right ventricular systolic pressure (RSVP) = 66.2 mmHg in monocrotaline vs 28.8 mmHg in controls) and in terms of right ventricular hypertrophy (RV/LVS = 0.70 in monocrotaline vs 0.32 in controls). Resveratrol partially reversed both RVSP (41.4 mmHg) and RV/LVS (0.46), as well as lung edema and RV contractility +dP/dtmax. Serial 99mTc-Annexin V imaging showed clear increases in pulmonary and cardiac apoptosis when compared to baseline, which regressed following resveratrol treatment. Monocrotaline induced modest changes in whole-heart perfusion as assessed by 201TI imaging and cardiac morphological changes consistent with septal deviation and enlarged RV. This study demonstrates the utility of functional in vivo SPECT/CT imaging in rodent models of PAH and further confirms the efficacy of resveratrol in reversing established monocrotaline-induced PAH presumably by attenuation of cardiopulmonary apoptosis.
doi:10.1371/journal.pone.0040910
PMCID: PMC3398888  PMID: 22815866
2.  Influences of tissue absorption and scattering on diffuse correlation spectroscopy blood flow measurements 
Biomedical Optics Express  2011;2(7):1969-1985.
In this study we evaluate the influences of optical property assumptions on near-infrared diffuse correlation spectroscopy (DCS) flow index measurements. The optical properties, absorption coefficient (µa) and reduced scattering coefficient (µs′), are independently varied using liquid phantoms and measured concurrently with the flow index using a hybrid optical system combining a dual-wavelength DCS flow device with a commercial frequency-domain tissue-oximeter. DCS flow indices are calculated at two wavelengths (785 and 830 nm) using measured µa and µs′ or assumed constant µa and µs′. Inaccurate µs′ assumptions resulted in much greater flow index errors than inaccurate µa. Underestimated/overestimated µs′ from −35%/+175% lead to flow index errors of +110%/−80%, whereas underestimated/overestimated µa from −40%/+150% lead to −20%/+40%, regardless of the wavelengths used. Examination of a clinical study involving human head and neck tumors indicates up to +280% flow index errors resulted from inter-patient optical property variations. These findings suggest that studies involving significant µa and µs′ changes should concurrently measure flow index and optical properties for accurate extraction of blood flow information.
doi:10.1364/BOE.2.001969
PMCID: PMC3130582  PMID: 21750773
(170.0170) Medical optics and biotechnology; (170.3660) Light propagation in tissues; (170.3880) Medical and biological imaging; (170.6480) Spectroscopy, speckle

Results 1-2 (2)