PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Finite Element Model Predictions of Intracranial Hemorrhage from Non-Impact, Rapid Head Rotations in the Piglet 
Clinicians are charged with the significant task of distinguishing between accidental and inflicted head trauma. Oftentimes this distinction is straightforward, but many times probabilities of injuries from accidental scenarios are unknown making the differential diagnosis difficult. For example, it is unknown whether intracranial hemorrhage (IH) can occur at a location other than a focal contact site following a low height fall. To create a foundation for predicting regional IH in infants, we sought to identify the biomechanical response and injury threshold best able to predict IH in 3–5 day old piglets. First, finite element (FE) model simulations of in situ animal studies were performed to ascertain the optimal representation of the pia-arachnoid complex, cerebrospinal fluid and cortical vasculature (PCC) for predicting brain strain and brain/skull displacement. Second, rapid head rotations resulting in various degrees of IH were simulated (n=24) to determine the biomechanical predictor and injury threshold most closely correlated with IH. FE models representing the PCC with either spring connectors or solid elements between the brain and skull resulted in peak brain strain and brain/skull displacement similar to measured values in situ. However, when predicting IH, the spring connector representation of the PCC had the best predictive capability for IH with a sensitivity of 80% and a specificity of 85% when ≥ 1% of all spring connectors had at least a peak strain of 0.31 mm/mm. These findings and reported methodology will be used in the development of a human infant FE model to simulate real-world falls and identify injury thresholds for predicting IH in infants.
doi:10.1016/j.ijdevneu.2011.12.009
PMCID: PMC3322291  PMID: 22239917
subdural hemorrhage; traumatic brain injury; falls; brain-skull displacement; pediatric; finite element
2.  Neurocritical Care Monitoring Correlates with Neuropathology in a Swine Model of Pediatric Traumatic Brain Injury 
Neurosurgery  2011;69(5):1139-1147.
BACKGROUND
Small animal models have been used in traumatic brain injury (TBI) research to investigate the basic mechanisms and pathology of TBI. Unfortunately, successful TBI investigations in small animal models have not resulted in marked improvements in clinical outcomes of TBI patients.
OBJECTIVE
To develop a clinically relevant immature large animal model of pediatric neurocritical care following TBI.
METHODS
Eleven 4 week old piglets were randomized to either rapid axial head rotation without impact (N=6) or instrumented sham (N=5). All animals had an intracranial pressure monitor, brain tissue oxygen (PbtO2) probe, and cerebral microdialysis probe placed in the frontal lobe and data collected for 6 h following injury.
RESULTS
Injured animals had sustained elevations in intracranial pressure and lactate-pyruvate ratio (LPR), and decreased PbtO2 compared to sham. PbtO2 and LPR from separate frontal lobes had strong linear correlation in both sham and injured animals. Neuropathologic examination demonstrated significant axonal injury and infarct volumes in injured animals compared to sham at 6 hours post-injury. Averaged over time, PbtO2 in both injured and sham animals had a strong inverse correlation with total injury volume. Average LPR had a strong correlation with total injury volume.
CONCLUSION
LPR and PbtO2 can be utilized as serial non-terminal secondary markers in our injury model for neuropathology, and as evaluation metrics for novel interventions and therapeutics in the acute post-injury period. This translational model bridges a vital gap in knowledge between TBI studies in small animal models and clinical trials in the pediatric TBI population.
doi:10.1227/NEU.0b013e3182284aa1
PMCID: PMC3188667  PMID: 21670716
neurocritical care monitoring; pediatric head injury; swine; TBI model
3.  Physiological and histopathological responses following closed rotational head injury depend on direction of head motion 
Experimental neurology  2010;227(1):79-88.
Rotational inertial forces are thought to be the underlying mechanism for most severe brain injuries. However, little is known about the effect of head rotation direction on injury outcomes, particularly in the pediatric population. Neonatal piglets were subjected to a single non-impact head rotation in the horizontal, coronal, or sagittal direction, and physiological and histopathological responses were observed. Sagittal rotation produced the longest duration of unconsciousness, highest incidence of apnea, and largest intracranial pressure increase, while coronal rotation produced little change, and horizontal rotation produced intermediate and variable derangements. Significant cerebral blood flow reductions were observed following sagittal but not coronal or horizontal injury compared to sham. Subarachnoid hemorrhage, ischemia, and brainstem pathology were observed in the sagittal and horizontal groups but not in a single coronal animal. Significant axonal injury occurred following both horizontal and sagittal rotations. For both groups, the distribution of injury was greater in the frontal and parietotemporal lobes than in the occipital lobes, frequently occurred in the absence of ischemia, and did not correlate with regional cerebral blood flow reductions. We postulate that these direction-dependent differences in injury outcomes are due to differences in tissue mechanical loading produced during head rotation.
doi:10.1016/j.expneurol.2010.09.015
PMCID: PMC3021173  PMID: 20875409
animal models; brain ischemia; brain trauma; cerebral blood flow; neuropathology; subarachnoid hemorrhage
4.  Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury 
Journal of biomedical optics  2009;14(3):034015.
We used a nonimpact inertial rotational model of a closed head injury in neonatal piglets to simulate the conditions following traumatic brain injury in infants. Diffuse optical techniques, including diffuse reflectance spectroscopy and diffuse correlation spectroscopy (DCS), were used to measure cerebral blood oxygenation and blood flow continuously and noninvasively before injury and up to 6 h after the injury. The DCS measurements of relative cerebral blood flow were validated against the fluorescent microsphere method. A strong linear correlation was observed between the two techniques (R = 0.89, p < 0.00001). Injury-induced cerebral hemodynamic changes were quantified, and significant changes were found in oxy- and deoxy-hemoglobin concentrations, total hemoglobin concentration, blood oxygen saturation, and cerebral blood flow after the injury. The diffuse optical measurements were robust and also correlated well with recordings of vital physiological parameters over the 6-h monitoring period, such as mean arterial blood pressure, arterial oxygen saturation, and heart rate. Finally, the diffuse optical techniques demonstrated sensitivity to dynamic physiological events, such as apnea, cardiac arrest, and hypertonic saline infusion. In total, the investigation corraborates potential of the optical methods for bedside monitoring of pediatric and adult human patients in the neurointensive care unit.
doi:10.1117/1.3146814
PMCID: PMC3169814  PMID: 19566308
diffuse correlation spectroscopy (DCS); diffuse reflectance spectroscopy (DRS); cerebral hemodynamics; cerebral blood flow; traumatic brain injury; near—infrared spectroscopy (NIRS)
5.  Development of a fluorescent microsphere technique for rapid histological determination of cerebral blood flow 
Brain research  2010;1326:128-134.
The purpose of this study was to develop a more efficient fluorescent microsphere method to facilitate the rapid use of the histological technique and to enable its use in large tissue regions. Using fluorescent plate/slide imaging technology and automated detection and analysis software, we were able to rapidly image, detect, and count 3 separate microsphere colors in 200 μm-thick tissue sections from piglet brain. In resting newborn piglets (n = 6) on isoflurane anesthesia, we measured a median total cerebral blood flow (CBF) of 105 ml/min/100g (range 27–206 ml/min/100g). Compared with other FM analysis methods, our method reduces the time required to determine blood flow, improves accuracy in lipid-rich tissues and large tissue regions and, unlike the radiolabeled microsphere method, can be combined with histological analysis.
doi:10.1016/j.brainres.2010.02.059
PMCID: PMC2855885  PMID: 20193669
cerebral blood flow; fluorescent microspheres; pig

Results 1-5 (5)