PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-11 (11)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
author:("Choe, regione")
1.  Towards non-invasive characterization of breast cancer and cancer metabolism with diffuse optics 
PET clinics  2013;8(3):10.1016/j.cpet.2013.04.004.
We review recent developments in diffuse optical imaging and monitoring of breast cancer, i.e. optical mammography. Optical mammography permits non-invasive, safe and frequent measurement of tissue hemodynamics oxygen metabolism and components (lipids, water, etc.), the development of new compound indices indicative of the risk and malignancy, and holds potential for frequent non-invasive longitudinal monitoring of therapy progression.
doi:10.1016/j.cpet.2013.04.004
PMCID: PMC3826963  PMID: 24244206
Diffuse Optical Tomography; Diffuse Optical Spectroscopy; Metabolic Imaging; Blood Flow; Breast Cancer; Neo-adjuvant chemotherapy
2.  Optically Measured Microvascular Blood Flow Contrast of Malignant Breast Tumors 
PLoS ONE  2014;9(6):e99683.
Microvascular blood flow contrast is an important hemodynamic and metabolic parameter with potential to enhance in vivo breast cancer detection and therapy monitoring. Here we report on non-invasive line-scan measurements of malignant breast tumors with a hand-held optical probe in the remission geometry. The probe employs diffuse correlation spectroscopy (DCS), a near-infrared optical method that quantifies deep tissue microvascular blood flow. Tumor-to-normal perfusion ratios are derived from thirty-two human subjects. Mean (95% confidence interval) tumor-to-normal ratio using surrounding normal tissue was 2.25 (1.92–2.63); tumor-to-normal ratio using normal tissues at the corresponding tumor location in the contralateral breast was 2.27 (1.94–2.66), and using normal tissue in the contralateral breast was 2.27 (1.90–2.70). Thus, the mean tumor-to-normal ratios were significantly different from unity irrespective of the normal tissue chosen, implying that tumors have significantly higher blood flow than normal tissues. Therefore, the study demonstrates existence of breast cancer contrast in blood flow measured by DCS. The new, optically accessible cancer contrast holds potential for cancer detection and therapy monitoring applications, and it is likely to be especially useful when combined with diffuse optical spectroscopy/tomography.
doi:10.1371/journal.pone.0099683
PMCID: PMC4072684  PMID: 24967878
3.  Diffuse Optical Monitoring of the Neoadjuvant Breast Cancer Therapy 
Recent advances in the use of diffuse optical techniques for monitoring the hemodynamic, metabolic and physiological signatures of the neoadjuvant breast cancer therapy effectiveness is critically reviewed. An extensive discussion of the state-of-theart diffuse optical mammography is presented alongside a discussion of the current approaches to breast cancer therapies. Overall, the diffuse optics field is growing rapidly with a great deal of promise to fill an important niche in the current approaches to monitor, predict and personalize neoadjuvant breast cancer therapies.
doi:10.1109/JSTQE.2011.2177963
PMCID: PMC3521564  PMID: 23243386
Diffuse optical tomography; diffuse optical spectroscopy; diffuse correlation spectroscopy; diffuse correlation tomography; neoadjuvant therapy; breast cancer; cancer therapy; therapy monitoring; therapy prediction
4.  Optical malignancy parameters for monitoring progression of breast cancer neoadjuvant chemotherapy 
Biomedical Optics Express  2012;4(1):105-121.
We introduce and demonstrate use of a novel, diffuse optical tomography (DOT) based breast cancer signature for monitoring progression of neoadjuvant chemotherapy. This signature, called probability of malignancy, is obtained by statistical image analysis of total hemoglobin concentration, blood oxygen saturation, and scattering coefficient distributions in the breast tomograms of a training-set population with biopsy-confirmed breast cancers. A pilot clinical investigation adapts this statistical image analysis approach for chemotherapy monitoring of three patients. Though preliminary, the study shows how to use the malignancy parameter for separating responders from partial-responders and demonstrates the potential utility of the methodology compared to traditional DOT quantification schemes.
doi:10.1364/BOE.4.000105
PMCID: PMC3539198  PMID: 23304651
(170.3830) Mammography; (170.3880) Medical and biological imaging; (170.1610) Clinical applications; (170.6510) Spectroscopy, tissue diagnostics
5.  Direct measurement of tissue blood flow and metabolism with diffuse optics 
Diffuse optics has proven useful for quantitative assessment of tissue oxy- and deoxyhaemoglobin concentrations and, more recently, for measurement of microvascular blood flow. In this paper, we focus on the flow monitoring technique: diffuse correlation spectroscopy (DCS). Representative clinical and pre-clinical studies from our laboratory illustrate the potential of DCS. Validation of DCS blood flow indices in human brain and muscle is presented. Comparison of DCS with arterial spin-labelled MRI, xenon-CT and Doppler ultrasound shows good agreement (0.50
doi:10.1098/rsta.2011.0232
PMCID: PMC3263785  PMID: 22006897
diffuse correlation spectroscopy; blood flow; cerebral blood flow; oxygen metabolism; brain; cancer
Neurocritical care  2010;12(2):173-180.
Background
This study assesses the utility of a hybrid optical instrument for noninvasive transcranial monitoring in the neurointensive care unit. The instrument is based on diffuse correlation spectroscopy (DCS) for measurement of cerebral blood flow (CBF), and near-infrared spectroscopy (NIRS) for measurement of oxy- and deoxy-hemoglobin concentration. DCS/NIRS measurements of CBF and oxygenation from frontal lobes are compared with concurrent xenon-enhanced computed tomography (XeCT) in patients during induced blood pressure changes and carbon dioxide arterial partial pressure variation.
Methods
Seven neurocritical care patients were included in the study. Relative CBF measured by DCS (rCBFDCS), and changes in oxy-hemoglobin (ΔHbO2), deoxy-hemoglobin (ΔHb), and total hemoglobin concentration (ΔTHC), measured by NIRS, were continuously monitored throughout XeCT during a baseline scan and a scan after intervention. CBF from XeCT regions-of-interest (ROIs) under the optical probes were used to calculate relative XeCT CBF (rCBFXeCT) and were then compared to rCBFDCS. Spearman’s rank coefficients were employed to test for associations between rCBFDCS and rCBFXeCT, as well as between rCBF from both modalities and NIRS parameters.
Results
rCBFDCS and rCBFXeCT showed good correlation (rs = 0.73, P = 0.010) across the patient cohort. Moderate correlations between rCBFDCS and ΔHbO2/ΔTHC were also observed. Both NIRS and DCS distinguished the effects of xenon inhalation on CBF, which varied among the patients.
Conclusions
DCS measurements of CBF and NIRS measurements of tissue blood oxygenation were successfully obtained in neurocritical care patients. The potential for DCS to provide continuous, noninvasive bedside monitoring for the purpose of CBF management and individualized care is demonstrated.
doi:10.1007/s12028-009-9305-x
PMCID: PMC2844468  PMID: 19908166
Near-infrared spectroscopy; Diffuse correlation spectroscopy; Cerebral blood flow; Xenon CT; Neurocritical care
Journal of biomedical optics  2009;14(2):024020.
We have developed a novel parallel-plate diffuse optical tomography (DOT) system for three-dimensional in vivo imaging of human breast tumor based on large optical data sets. Images of oxy-, deoxy-, total-hemoglobin concentration, blood oxygen saturation, and tissue scattering were reconstructed. Tumor margins were derived using the optical data with guidance from radiology reports and Magnetic Resonance Imaging. Tumor-to-normal ratios of these endogenous physiological parameters and an optical index were computed for 51 biopsy-proven lesions from 47 subjects. Malignant cancers (N=41) showed statistically significant higher total hemoglobin, oxy-hemoglobin concentration, and scattering compared to normal tissue. Furthermore, malignant lesions exhibited a two-fold average increase in optical index. The influence of core biopsy on DOT results was also explored; the difference between the malignant group measured before core biopsy and the group measured more than one week after core biopsy was not significant. Benign tumors (N=10) did not exhibit statistical significance in the tumor-to-normal ratios of any parameter. Optical index and tumor-to-normal ratios of total hemoglobin, oxy-hemoglobin concentration, and scattering exhibited high area under the receiver operating characteristic curve values from 0.90 to 0.99, suggesting good discriminatory power. The data demonstrate that benign and malignant lesions can be distinguished by quantitative three-dimensional DOT.
doi:10.1117/1.3103325
PMCID: PMC2782703  PMID: 19405750
Breast Cancer; Diffuse Optical Tomography; Near Infrared Light; Photon Migration; Optical Mammography
Optics express  2009;17(5):3884-3902.
“Diffuse correlation spectroscopy” (DCS) is a technology for non-invasive transcranial measurement of cerebral blood flow (CBF) that can be hybridized with “near-infrared spectroscopy” (NIRS). Taken together these methods hold potential for monitoring hemodynamics in stroke patients. We explore the utility of DCS and NIRS to measure effects of head-of-bed (HOB) positioning at 30°, 15°, 0°, −5° and 0° angles in patients with acute ischemic stroke affecting frontal cortex and in controls. HOB positioning significantly altered CBF, oxy-hemoglobin (HbO2) and total-hemoglobin (THC) concentrations. Moreover, the presence of an ipsilateral infarct was a significant effect for all parameters. Results are consistent with the notion of impaired CBF autoregulation in the infarcted hemisphere.
PMCID: PMC2724658  PMID: 19259230
Optics express  2009;17(15):12571-12581.
Four very low birth weight, very premature infants were monitored during a 12° postural elevation using diffuse correlation spectroscopy (DCS) to measure microvascular cerebral blood flow (CBF) and transcranial Doppler ultrasound (TCD) to measure macrovascular blood flow velocity in the middle cerebral artery. DCS data correlated significantly with peak systolic, end diastolic, and mean velocities measured by TCD (pA =0.036, 0.036, 0.047). Moreover, population averaged TCD and DCS data yielded no significant hemodynamic response to this postural change (p>0.05). We thus demonstrate feasibility of DCS in this population, we show correlation between absolute measures of blood flow from DCS and blood flow velocity from TCD, and we do not detect significant changes in CBF associated with a small postural change (12°) in these patients.
PMCID: PMC2723781  PMID: 19654660
PLoS ONE  2009;4(8):e6539.
Background
Epidermal growth factor receptor (EGFR) inhibitors have shown only modest clinical activity when used as single agents to treat cancers. They decrease tumor cell expression of hypoxia-inducible factor 1-α (HIF-1α) and vascular endothelial growth factor (VEGF). Hypothesizing that this might normalize tumor vasculature, we examined the effects of the EGFR inhibitor erlotinib on tumor vascular function, tumor microenvironment (TME) and chemotherapy and radiotherapy sensitivity.
Methodology/Principal Findings
Erlotinib treatment of human tumor cells in vitro and mice bearing xenografts in vivo led to decreased HIF-1α and VEGF expression. Treatment altered xenograft vessel morphology assessed by confocal microscopy (following tomato lectin injection) and decreased vessel permeability (measured by Evan's blue extravasation), suggesting vascular normalization. Erlotinib increased tumor blood flow measured by Power Doppler ultrasound and decreased hypoxia measured by EF5 immunohistochemistry and tumor O2 saturation measured by optical spectroscopy. Predicting that these changes would improve drug delivery and increase response to chemotherapy and radiation, we performed tumor regrowth studies in nude mice with xenografts treated with erlotinib and either radiotherapy or the chemotherapeutic agent cisplatin. Erlotinib therapy followed by cisplatin led to synergistic inhibition of tumor growth compared with either treatment by itself (p<0.001). Treatment with erlotinib before cisplatin led to greater tumor growth inhibition than did treatment with cisplatin before erlotinib (p = 0.006). Erlotinib followed by radiation inhibited tumor regrowth to a greater degree than did radiation alone, although the interaction between erlotinib and radiation was not synergistic.
Conclusions/Significance
EGFR inhibitors have shown clinical benefit when used in combination with conventional cytotoxic therapy. Our studies show that targeting tumor cells with EGFR inhibitors may modulate the TME via vascular normalization to increase response to chemotherapy and radiotherapy. These studies suggest ways to assess the response of tumors to EGFR inhibition using non-invasive imaging of the TME.
doi:10.1371/journal.pone.0006539
PMCID: PMC2716529  PMID: 19657384
Medical physics  2008;35(2):446-455.
We acquire and compare three-dimensional tomographic breast images of three females with suspicious masses using diffuse optical tomography (DOT) and positron emission tomography (PET). Co-registration of DOT and PET images was facilitated by a mutual information maximization algorithm. We also compared DOT and whole-body PET images of 14 patients with breast abnormalities. Positive correlations were found between total hemoglobin concentration and tissue scattering measured by DOT, and fluorodeoxyglucose (18F-FDG) uptake. In light of these observations, we suggest potential benefits of combining both PET and DOT for characterization of breast lesions.
doi:10.1118/1.2826560
PMCID: PMC2471877  PMID: 18383664
diffuse optical tomography; positron emission tomography; breast cancer; near-infrared imaging; breast imaging; tumor metabolism; 18F fluorodeoxyglucose; hypoxia

Results 1-11 (11)