Search tips
Search criteria

Results 1-14 (14)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Talin autoinhibition is required for morphogenesis 
Current biology : CB  2013;23(18):10.1016/j.cub.2013.07.054.
The establishment of a multi-cellular body plan requires coordinating changes in cell adhesion and the cytoskeleton to ensure proper cell shape and position within a tissue. Cell adhesion to the extracellular matrix (ECM) via integrins plays diverse, essential roles during animal embryogenesis and therefore must be precisely regulated [1]. Talin, a FERM-domain containing protein, forms a direct link between integrin adhesion receptors and the actin cytoskeleton, and is an important regulator of integrin function [2]. Similar to other FERM proteins, talin makes an intramolecular interaction that could autoinhibit its activity [3–6]. However, the functional consequence of such an interaction has not been previously explored in vivo. Here, we demonstrate that targeted disruption of talin autoinhibition gives rise to morphogenetic defects during fly development and specifically that dorsal closure (DC), a process that resembles wound healing, is delayed. Impairment of autoinhibition leads to reduced talin turnover at and increased talin and integrin recruitment to sites of integrin-ECM attachment. Finally, we present evidence that talin autoinhibition is regulated by Rap1-dependent signaling. Based on our data we propose that talin autoinhibition provides a switch for modulating adhesion turnover and adhesion stability that is essential for morphogenesis.
PMCID: PMC3882074  PMID: 24012314
2.  Rap1 and Canoe/afadin are essential for establishment of apical–basal polarity in the Drosophila embryo 
Molecular Biology of the Cell  2013;24(7):945-963.
The small GTPase Rap1 and the actin-junctional linker protein Canoe/afadin are essential for the initial establishment of polarity in Drosophila, acting upstream of Bazooka/Par3 and the adherens junctions. However, feedback and cross-regulation occur, so polarity establishment is regulated by a network of proteins rather than a linear pathway.
The establishment and maintenance of apical–basal cell polarity is critical for assembling epithelia and maintaining organ architecture. Drosophila embryos provide a superb model. In the current view, apically positioned Bazooka/Par3 is the initial polarity cue as cells form during cellularization. Bazooka then helps to position both adherens junctions and atypical protein kinase C (aPKC). Although a polarized cytoskeleton is critical for Bazooka positioning, proteins mediating this remained unknown. We found that the small GTPase Rap1 and the actin-junctional linker Canoe/afadin are essential for polarity establishment, as both adherens junctions and Bazooka are mispositioned in their absence. Rap1 and Canoe do not simply organize the cytoskeleton, as actin and microtubules become properly polarized in their absence. Canoe can recruit Bazooka when ectopically expressed, but they do not obligatorily colocalize. Rap1 and Canoe play continuing roles in Bazooka localization during gastrulation, but other polarity cues partially restore apical Bazooka in the absence of Rap1 or Canoe. We next tested the current linear model for polarity establishment. Both Bazooka and aPKC regulate Canoe localization despite being “downstream” of Canoe. Further, Rap1, Bazooka, and aPKC, but not Canoe, regulate columnar cell shape. These data reshape our view, suggesting that polarity establishment is regulated by a protein network rather than a linear pathway.
PMCID: PMC3608504  PMID: 23363604
3.  Metastasis suppressor NM23-H1 promotes repair of UV-induced DNA damage and suppresses UV-induced melanomagenesis 
Cancer research  2011;72(1):133-143.
Reduced expression of the metastasis suppressor NM23-H1 is associated with aggressive forms of multiple cancers. Here, we establish that NM23-H1 (termed H1 isoform in human, M1 in mouse) and two of its attendant enzymatic activities, the 3′-5′ exonuclease and nucleoside diphosphate kinase, are novel participants in the cellular response to UV radiation (UVR)-induced DNA damage. NM23-H1 deficiency compromised the kinetics of repair for total DNA polymerase-blocking lesions and nucleotide excision repair of (6-4) photoproducts in vitro. Kinase activity of NM23-H1 was critical for rapid repair of both polychromatic UVB/UVA (290-400 nm)- and UVC (254 nm)-induced DNA damage, while its 3′-5′ exonuclease activity was dominant in the suppression of UVR-induced mutagenesis. Consistent with its role in DNA repair, NM23-H1 rapidly translocated to sites of UVR-induced (6-4) photoproduct DNA damage in the nucleus. In addition, transgenic mice hemizygous-null for nm23-m1 and nm23-m2 exhibited UVR-induced melanoma and follicular infundibular cyst formation, and tumor-associated melanocytes displayed invasion into adjacent dermis, consistent with loss of invasion-suppressing activity of NM23 in vivo. Taken together, our data demonstrate a critical role for NM23 isoforms in limiting mutagenesis and suppressing UVR-induced melanomagenesis.
PMCID: PMC3251703  PMID: 22080566
metastasis suppressor; melanoma; NM23; DNA damage; nucleotide excision repair
4.  NM23 deficiency promotes metastasis in a UV radiation-induced mouse model of human melanoma 
Cutaneous malignant melanoma is the most lethal form of skin cancer, with 5-year survival rates of <5 % for patients presenting with metastatic disease. Mechanisms underlying metastatic spread of UVR-induced melanoma are not well understood, in part due to a paucity of animal models that accurately recapitulate the disease in its advanced forms. We have employed a transgenic mouse strain harboring a tandem deletion of the nm23-m1 and nm23-m2 genes to assess the combined contribution of these genes to suppression of melanoma metastasis. Crossing of the nm23-h1/nm23-h2 knockout in hemizygous-null form ([m1m2]+/−) to a transgenic mouse strain (hepatocyte growth factor/scatter factor-overexpressing, or HGF+ strain) vulnerable to poorly-metastatic, UVR-induced melanomas resulted in UVR-induced melanomas with high metastatic potential. Metastasis to draining lymph nodes was seen in almost all cases of back skin melanomas, while aggressive metastasis to lung, thoracic cavity, liver and bone also occurred. Interestingly, no differences were observed in the invasive characteristics of primary melanomas of HGF+ and HGF+ × [m1m2]+/− strains, with both exhibiting invasion into the dermis and subcutis, indicating factors other than simple invasive activity were responsible for metastasis of HGF+ × [m1m2]+/− melanomas. Stable cell lines were established from the primary and metastatic melanoma lesions from these mice, with HGF+ × [m1m2]+/− lines exhibiting increased single cell migration and genomic instability. These studies demonstrate for the first time in vivo a potent metastasis suppressor activity of NM23 in UVR-induced melanoma, and have provided new tools for identifying molecular mechanisms that underlie melanoma metastasis.
Electronic supplementary material
The online version of this article (doi:10.1007/s10585-012-9495-z) contains supplementary material, which is available to authorized users.
PMCID: PMC3547246  PMID: 22699362
Metastasis suppressor; Melanoma; NM23; Ultraviolet radiation; Mutagenesis; DNA repair; Cell motility; Hepatocyte growth factor; Transgenic mice
5.  A contractile actomyosin network linked to adherens junctions by Canoe/afadin helps drive convergent extension 
Molecular Biology of the Cell  2011;22(14):2491-2508.
Coordination of adhesion and the actin cytoskeleton is critical in morphogenesis. Drosophila germband extension is a model for convergent extension. Canoe/afadin is found to have a novel role in this process. It helps to coordinate a contractile apical actomyosin network with cell shape change and regulates apical polarity protein localization.
Integrating individual cell movements to create tissue-level shape change is essential to building an animal. We explored mechanisms of adherens junction (AJ):cytoskeleton linkage and roles of the linkage regulator Canoe/afadin during Drosophila germband extension (GBE), a convergent-extension process elongating the body axis. We found surprising parallels between GBE and a quite different morphogenetic movement, mesoderm apical constriction. Germband cells have an apical actomyosin network undergoing cyclical contractions. These coincide with a novel cell shape change—cell extension along the anterior–posterior (AP) axis. In Canoe's absence, GBE is disrupted. The apical actomyosin network detaches from AJs at AP cell borders, reducing coordination of actomyosin contractility and cell shape change. Normal GBE requires planar polarization of AJs and the cytoskeleton. Canoe loss subtly enhances AJ planar polarity and dramatically increases planar polarity of the apical polarity proteins Bazooka/Par3 and atypical protein kinase C. Changes in Bazooka localization parallel retraction of the actomyosin network. Globally reducing AJ function does not mimic Canoe loss, but many effects are replicated by global actin disruption. Strong dose-sensitive genetic interactions between canoe and bazooka are consistent with them affecting a common process. We propose a model in which an actomyosin network linked at AP AJs by Canoe and coupled to apical polarity proteins regulates convergent extension.
PMCID: PMC3135475  PMID: 21613546
6.  A biomarker panel for peripheral arterial disease 
Peripheral arterial disease (PAD) is common, but often not diagnosed. A biomarker index would be useful to raise suspicion of PAD, so as to trigger appropriate vascular testing and management.
The study comprised 549 subjects, 197 subjects with both coronary artery disease and peripheral arterial disease (CAD+PAD); 81 subjects with CAD only; and 262 subjects with no hemodynamically significant disease (NHSD) of the coronary or peripheral arteries. Multiple linear regression was performed to generate a biomarker panel score that could predict ABI. Logistic regression was used to investigate the relationship between disease status and the panel score as well as other risk factors (e.g. age, diabetes status, smoking status). ROC analysis was performed to test the prediction power of the biomarker panel score.
Among the plasma markers tested, β2M and cystatin C had the highest correlation with ankle-brachial index, and higher than any of the conventional risk factors of age, smoking status, and diabetes status. A biomarker panel score derived from β2M, cystatin C, hsCRP, and glucose had an increased association with PAD status (OR=12.4, 95% confidence interval 6.6-23.5 for highest vs lowest quartile) which was still significant after adjusting for known risk factors (OR=7.3, 95% confidence interval 3.6-14.9 for highest vs lowest quartile).
After taking into account the traditional risk factors for PAD, a biomarker panel comprising β2M, cystatin C, hsCRP, and glucose adds useful information to assess the risk of disease.
PMCID: PMC3133945  PMID: 18687758
7.  The Drosophila afadin homologue Canoe regulates linkage of the actin cytoskeleton to adherens junctions during apical constriction 
The Journal of Cell Biology  2009;186(1):57-73.
Cadherin-based adherens junctions (AJs) mediate cell adhesion and regulate cell shape change. The nectin–afadin complex also localizes to AJs and links to the cytoskeleton. Mammalian afadin has been suggested to be essential for adhesion and polarity establishment, but its mechanism of action is unclear. In contrast, Drosophila melanogaster’s afadin homologue Canoe (Cno) has suggested roles in signal transduction during morphogenesis. We completely removed Cno from embryos, testing these hypotheses. Surprisingly, Cno is not essential for AJ assembly or for AJ maintenance in many tissues. However, morphogenesis is impaired from the start. Apical constriction of mesodermal cells initiates but is not completed. The actomyosin cytoskeleton disconnects from AJs, uncoupling actomyosin constriction and cell shape change. Cno has multiple direct interactions with AJ proteins, but is not a core part of the cadherin–catenin complex. Instead, Cno localizes to AJs by a Rap1- and actin-dependent mechanism. These data suggest that Cno regulates linkage between AJs and the actin cytoskeleton during morphogenesis.
PMCID: PMC2712996  PMID: 19596848
8.  Differential protein profiling as a potential multi-marker approach for TSE diagnosis 
Transmissible spongiform encephalopathy describes a family of diseases affecting both man and animals. Current tests for the diagnosis of these diseases are based on the detection of an abnormal misfolded form of the host protein PrP which is found within the central nervous and lymphoreticular systems of affected animals. Recently, concern that this marker may not be as reliable as previously thought, coupled with an urgentneed for a pre-clinical live animal test, has led to the search for alternative assays for the detection of TSE disease.
This "proof of concept" study, examines the use of differential protein expression profiling using surface enhanced laser desorption and ionisationtime of flight mass spectrometry (SELDI-TOF) for the diagnosis of TSE disease. Spectral output from all proteins selectively captured from individual murine brain homogenate samples, are compared as "profiles" in groups of infected and non-infected animals. Differential protein expression between groups is thus highlighted and statistically significant protein "peaks" used to construct a panel of disease specific markers.
Studies at both terminal stages of disease and throughout the time course of disease have shown a disease specific protein profile or "disease fingerprint" which could be used to distinguish between groups of TSE infected and uninfected animals at an early time point of disease.
Our results show many differentially expressed proteins in diseased and control animals, some at early stages of disease. Three proteins identified by SELDI-TOF analysis were verified by immunohistochemistry in brain tissue sections. We demonstrate that by combining the most statistically significant changes in expression, a panel of markers can be constructed that can distinguish between TSE diseased and normal animals.
Differential protein expression profiling has the potential to be used for the detection of disease in TSE infected animals. Having established that a "training set" of potential markers can be constructed, more work would be required to further test the specificity and sensitivity of the assay in a "testing set". Based on these promising results, further studies are being performed using blood samples from infected sheep to assess the potential use of SELDI-TOF as a pre-mortem blood based diagnostic.
PMCID: PMC2794872  PMID: 19943924
The cause of preeclampsia remains unknown and the diagnosis can be uncertain. We used proteomic-based analysis of urine to improve disease classification and extend the pathophysiological understanding of preeclampsia.
Study design
Urine samples from 284 women were analyzed by mass spectrometry-based proteomics (SELDI). In the exploratory phase, 59 samples were used to extract the proteomic fingerprint characteristic of severe preeclampsia requiring mandated delivery and develop a diagnostic algorithm. In the challenge phase we sought to prospectively validate the algorithm in 225 women screened for a variety of high and low-risk conditions, including preeclampsia. Of these, 19 women were followed longitudinally throughout pregnancy. Presence of biomarkers was interpreted relative to clinical classification, need for delivery and other urine laboratory measures (ratios of protein-to-creatinine and soluble fms-like tyrosine kinase-1-to-placental growth factor). In the translational phase biomarker identification by tandem mass spectrometry and validation experiments in urine, serum and placenta were employed to identify, quantify and localize the biomarkers or related proteins.
We report that women with preeclampsia appear to present a unique urine proteomic fingerprint which predicts preeclampsia in need for mandated delivery with highest accuracy. This characteristic proteomic profile also has the ability to distinguish preeclampsia from other hypertensive or proteinuric disorders in pregnancy. Pregnant women followed longitudinally who developed preeclampsia displayed abnormal urinary profiles >10 weeks prior to clinical manifestation. Tandem mass spectrometry followed by de-novo sequencing identified the biomarkers as non-random cleavage products of SERPINA-1 and albumin. Of these, the 21-aminoacid C-terminus fragment of SERPINA-1 was highly associated with severe forms of preeclampsia requiring early delivery. In preeclampsia, increased and aberrant SERPINA-1 immunoreactivity was found in urine, serum and placenta where it localized predominantly to placental villi and placental vascular spaces adherent to the endothelium. In addition, significant perivascular deposits of misfolded SERPINA-1 aggregates were exclusively identified in preeclamptic placentas.
Proteomics-based characterization of urine in preeclampsia identified a proteomic fingerprint composed of SERPINA-1 and albumin fragments which can accurately diagnose preeclampsia and shows promise to discriminate it from other hypertensive proteinuric diseases. These findings provide insight into a novel pathophysiological mechanism of preeclampsia related to SERPINA-1 misfolding which may offer new therapeutic opportunities in the future.
PMCID: PMC2679897  PMID: 18984079
proteomics; prematurity; preeclampsia; birth; mandated delivery; proteinuria
10.  Biomarker Discovery for Lupus Nephritis Through Longitudinal Urine Proteomics 
Kidney international  2008;74(6):799-807.
Lupus nephritis is a frequent and serious complication of systemic lupus erythematosus (SLE). Treatment often requires the use of immunosuppression, and may be associated with severe side effects. The ability to predict relapse, relapse severity, and recovery could be used to more effectively implement therapy and reduce toxicity. We postulated that a proteomic analysis of the low-molecular weight urine proteome using serial urine samples obtained before, during, and after SLE nephritis flares would demonstrate potential biomarkers of SLE renal flare. This study was undertaken to test our hypothesis.
Urine from 25 flare cycles of 19 WHO Class III, IV, and V SLE nephritis patients was used. Urine samples included a baseline, and pre-flare, flare, and post-flare specimens. The urines were fractionated to remove proteins larger than 30 kDa, and spotted onto weak cation exchanger (CM10) protein chips for analysis by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS).
SELDI-TOF MS screening showed 176 protein ions between 2-20 kDa of which 27 were found to be differentially-expressed between specific flare intervals. On-chip peptide sequencing by integrated tandem mass spectrometry was used to positively identify selected differentially-expressed protein ions. The identified proteins included the 20 and 25 amino acid isoforms of hepcidin, a fragment of α1-antitrypsin, and an albumin fragment. Hepcidin 20 increased 4 months pre-flare and returned to baseline at renal flare, whereas hepcidin 25 decreased at renal flare and returned to baseline 4 months post-flare.
Using SELDI-TOF urine protein profiling in lupus nephritis, several candidate biomarkers of renal flare were found. To verify these candidates as true biomarkers, further identification and validation are needed in an independent SLE cohort.
PMCID: PMC2614389  PMID: 18596723
lupus nephritis; biomarker; SELDI
11.  Haptoglobin phenotype is not a predictor of recurrence free survival in high-risk primary breast cancer patients 
BMC Cancer  2008;8:389.
Better breast cancer prognostication may improve selection of patients for adjuvant therapy. We conducted a retrospective follow-up study in which we investigated sera of high-risk primary breast cancer patients, to search for proteins predictive of recurrence free survival.
Two sample sets of high-risk primary breast cancer patients participating in a randomised national trial investigating the effectiveness of high-dose chemotherapy were analysed. Sera in set I (n = 63) were analysed by surface enhanced laser desorption ionisation time-of-flight mass spectrometry (SELDI-TOF MS) for biomarker finding. Initial results were validated by analysis of sample set II (n = 371), using one-dimensional gel-electrophoresis.
In sample set I, the expression of a peak at mass-to-charge ratio 9198 (relative intensity ≤ 20 or > 20), identified as haptoglobin (Hp) alpha-1 chain, was strongly associated with recurrence free survival (global Log-rank test; p = 0.0014). Haptoglobin is present in three distinct phenotypes (Hp 1-1, Hp 2-1, and Hp 2-2), of which only individuals with phenotype Hp 1-1 or Hp 2-1 express the haptoglobin alpha-1 chain. As the expression of the haptoglobin alpha-1 chain, determined by SELDI-TOF MS, corresponds to the phenotype, initial results were validated by haptoglobin phenotyping of the independent sample set II by native one-dimensional gel-electrophoresis. With the Hp 1-1 phenotype as the reference category, the univariate hazard ratio for recurrence was 0.87 (95% CI: 0.56 – 1.34, p = 0.5221) and 1.03 (95% CI: 0.65 – 1.64, p = 0.8966) for the Hp 2-1 and Hp 2-2 phenotypes, respectively, in sample set II.
In contrast to our initial results, the haptoglobin phenotype was not identified as a predictor of recurrence free survival in high-risk primary breast cancer in our validation set. Our initial observation in the discovery set was probably the result of a type I error (i.e. false positive). This study illustrates the importance of validation in obtaining the true clinical applicability of a potential biomarker.
PMCID: PMC2627917  PMID: 19108738
12.  Multipotent adult progenitor cells sustain function of ischemic limbs in mice 
Despite progress in cardiovascular research, a cure for peripheral vascular disease has not been found. We compared the vascularization and tissue regeneration potential of murine and human undifferentiated multipotent adult progenitor cells (mMAPC-U and hMAPC-U), murine MAPC-derived vascular progenitors (mMAPC-VP), and unselected murine BM cells (mBMCs) in mice with moderate limb ischemia, reminiscent of intermittent claudication in human patients. mMAPC-U durably restored blood flow and muscle function and stimulated muscle regeneration, by direct and trophic contribution to vascular and skeletal muscle growth. This was in contrast to mBMCs and mMAPC-VP, which did not affect muscle regeneration and provided only limited and transient improvement. Moreover, mBMCs participated in a sustained inflammatory response in the lower limb, associated with progressive deterioration in muscle function. Importantly, mMAPC-U and hMAPC-U also remedied vascular and muscular deficiency in severe limb ischemia, representative of critical limb ischemia in humans. Thus, unlike BMCs or vascular-committed progenitors, undifferentiated multipotent adult progenitor cells offer the potential to durably repair ischemic damage in peripheral vascular disease patients.
PMCID: PMC2157560  PMID: 18172550
13.  Disease Biomarkers in Cerebrospinal Fluid of Patients with First-Onset Psychosis 
PLoS Medicine  2006;3(11):e428.
Psychosis is a severe mental condition that is characterized by a loss of contact with reality and is typically associated with hallucinations and delusional beliefs. There are numerous psychiatric conditions that present with psychotic symptoms, most importantly schizophrenia, bipolar affective disorder, and some forms of severe depression referred to as psychotic depression. The pathological mechanisms resulting in psychotic symptoms are not understood, nor is it understood whether the various psychotic illnesses are the result of similar biochemical disturbances. The identification of biological markers (so-called biomarkers) of psychosis is a fundamental step towards a better understanding of the pathogenesis of psychosis and holds the potential for more objective testing methods.
Methods and Findings
Surface-enhanced laser desorption ionization mass spectrometry was employed to profile proteins and peptides in a total of 179 cerebrospinal fluid samples (58 schizophrenia patients, 16 patients with depression, five patients with obsessive-compulsive disorder, ten patients with Alzheimer disease, and 90 controls). Our results show a highly significant differential distribution of samples from healthy volunteers away from drug-naïve patients with first-onset paranoid schizophrenia. The key alterations were the up-regulation of a 40-amino acid VGF-derived peptide, the down-regulation of transthyretin at ~4 kDa, and a peptide cluster at ~6,800–7,300 Da (which is likely to be influenced by the doubly charged ions of the transthyretin protein cluster). These schizophrenia-specific protein/peptide changes were replicated in an independent sample set. Both experiments achieved a specificity of 95% and a sensitivity of 80% or 88% in the initial study and in a subsequent validation study, respectively.
Our results suggest that the application of modern proteomics techniques, particularly mass spectrometric approaches, holds the potential to advance the understanding of the biochemical basis of psychiatric disorders and may in turn allow for the development of diagnostics and improved therapeutics. Further studies are required to validate the clinical effectiveness and disease specificity of the identified biomarkers.
Protein profiles from 179 cerebrospinal fluid samples yield differences between patients with psychotic disorders and healthy volunteers, suggesting that such biomarkers could assist in the early diagnosis of mental illness.
Editors' Summary
Psychosis is an abnormal mental state characterized by loss of contact with reality, often associated with hallucinations, delusions, personality changes, and disorganized thinking. Psychotic symptoms occur in several psychiatric disorders, including schizophrenia, bipolar disorder, and psychotic depression. It is not clear what the underlying biological abnormalities in the brain are, and whether they are the same for the different psychotic illnesses. The hope is that recent advances in brain imaging and systematic characterization of genetic activity and protein composition in the brain might help to shed light on mental diseases, eventually leading to better diagnosis, treatment, and possibly even prevention.
Why Was This Study Done?
This study was carried out in order to search for biomarkers for psychosis and schizophrenia by comparing the protein composition in the cerebrospinal fluid (the clear body fluid that surrounds the brain and the spinal cord) of patients with different psychotic disorders and normal individuals who served as controls.
What Did the Researchers Do and Find?
The researchers used a technique called surface-enhanced laser desorption ionization mass spectrometry, which allows a comprehensive analysis of the protein composition of a particular sample, on a total of 179 cerebrospinal fluid samples. The samples came from 90 individuals without mental illness who served as controls, 58 people with schizophrenia who were very recently diagnosed and had not yet taken any medication, 16 patients with depression, five patients with obsessive-compulsive disorder, and ten patients with Alzheimer disease. All of the patients gave their informed consent to participate in the study. The researchers found that samples from treatment-naïve schizophrenic patients had a number of characteristic changes compared with samples from control individuals, and that those changes were not found in the patients with other mental illnesses. The researchers then wanted to test whether they would see the same pattern in a separate set of patients with schizophrenia versus controls, which turned out to be the case. Two of the changes in the cerebrospinal fluid that were associated with schizophrenia, namely higher levels of parts of a protein called VGF and lower levels of a protein called transthyretin, were also found in post-mortem brain samples of patients with schizophrenia compared with samples from controls. Lower levels of transthyretin were also found in serum (blood) of first-onset drug naïve schizophrenia patients.
What Do These Findings Mean?
These results suggest that this approach has the potential to find biomarkers for psychosis and, possibly, schizophrenia that might help in the understanding of the molecular basis for these conditions. If shown, in future studies, to be directly involved in causing the disease symptoms, they would be important targets for treatment and prevention efforts, and might also be useful for diagnostic purposes. Overall, there are promising examples, such as this study, suggesting that new molecular techniques can yield fresh insights into psychiatric illnesses such as schizophrenia and other psychotic disorders. Additional studies are needed to confirm the findings presented here and to address many open questions, and would seem well justified given these results.
Additional Information.
Please access these Web sites via the online version of this summary at
MedlinePlus entries on psychosis and schizophrenia
The National Alliance for Research on Schizophrenia and Depression
The National Alliance for the Mentally Ill
The Schizophrenia Society of Canada
Wikipedia entries on psychosis and schizophrenia (note that Wikipedia is an online encyclopedia that anyone can edit)
PMCID: PMC1630717  PMID: 17090210
14.  Identification of serum proteins discriminating colorectal cancer patients and healthy controls using surface-enhanced laser desorption ionisation-time of flight mass spectrometry 
AIM: To detect the new serum biomarkers for colorectal cancer (CRC) by serum protein profiling with surface-enhanced laser desorption ionisation - time of flight mass spectrometry (SELDI-TOF MS).
METHODS: Two independent serum sample sets were analysed separately with the ProteinChip technology (set A: 40 CRC + 49 healthy controls; set B: 37 CRC + 31 healthy controls), using chips with a weak cation exchange moiety and buffer pH 5. Discriminative power of differentially expressed proteins was assessed with a classification tree algorithm. Sensitivities and specificities of the generated classification trees were obtained by blindly applying data from set A to the generated trees from set B and vice versa. CRC serum protein profiles were also compared with those from breast, ovarian, prostate, and non-small cell lung cancer.
RESULTS: Mass-to-charge ratios (m/z) 3.1×103, 3.3×103, 4.5×103, 6.6×103 and 28×103 were used as classifiers in the best-performing classification trees. Tree sensitivities and specificities were between 65% and 90%. Most of these discriminative m/z values were also different in the other tumour types investigated. M/z 3.3×103, main classifier in most trees, was a doubly charged form of the 6.6×103-Da protein. The latter was identified as apolipoprotein C-I. M/z 3.1×103 was identified as an N-terminal fragment of albumin, and m/z 28×103 as apolipoprotein A-I.
CONCLUSION: SELDI-TOF MS followed by classification tree pattern analysis is a suitable technique for finding new serum markers for CRC. Biomarkers can be identified and reproducibly detected in independent sample sets with high sensitivities and specificities. Although not specific for CRC, these biomarkers have a potential role in disease and treatment monitoring.
PMCID: PMC4124285  PMID: 16570345
Proteomics; Colorectal cancer; Biomarker; Sensitivity; Specificity

Results 1-14 (14)