PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (30)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
1.  Identification of Novel Genetic Loci Associated with Thyroid Peroxidase Antibodies and Clinical Thyroid Disease 
Medici, Marco | Porcu, Eleonora | Pistis, Giorgio | Teumer, Alexander | Brown, Suzanne J. | Jensen, Richard A. | Rawal, Rajesh | Roef, Greet L. | Plantinga, Theo S. | Vermeulen, Sita H. | Lahti, Jari | Simmonds, Matthew J. | Husemoen, Lise Lotte N. | Freathy, Rachel M. | Shields, Beverley M. | Pietzner, Diana | Nagy, Rebecca | Broer, Linda | Chaker, Layal | Korevaar, Tim I. M. | Plia, Maria Grazia | Sala, Cinzia | Völker, Uwe | Richards, J. Brent | Sweep, Fred C. | Gieger, Christian | Corre, Tanguy | Kajantie, Eero | Thuesen, Betina | Taes, Youri E. | Visser, W. Edward | Hattersley, Andrew T. | Kratzsch, Jürgen | Hamilton, Alexander | Li, Wei | Homuth, Georg | Lobina, Monia | Mariotti, Stefano | Soranzo, Nicole | Cocca, Massimiliano | Nauck, Matthias | Spielhagen, Christin | Ross, Alec | Arnold, Alice | van de Bunt, Martijn | Liyanarachchi, Sandya | Heier, Margit | Grabe, Hans Jörgen | Masciullo, Corrado | Galesloot, Tessel E. | Lim, Ee M. | Reischl, Eva | Leedman, Peter J. | Lai, Sandra | Delitala, Alessandro | Bremner, Alexandra P. | Philips, David I. W. | Beilby, John P. | Mulas, Antonella | Vocale, Matteo | Abecasis, Goncalo | Forsen, Tom | James, Alan | Widen, Elisabeth | Hui, Jennie | Prokisch, Holger | Rietzschel, Ernst E. | Palotie, Aarno | Feddema, Peter | Fletcher, Stephen J. | Schramm, Katharina | Rotter, Jerome I. | Kluttig, Alexander | Radke, Dörte | Traglia, Michela | Surdulescu, Gabriela L. | He, Huiling | Franklyn, Jayne A. | Tiller, Daniel | Vaidya, Bijay | de Meyer, Tim | Jørgensen, Torben | Eriksson, Johan G. | O'Leary, Peter C. | Wichmann, Eric | Hermus, Ad R. | Psaty, Bruce M. | Ittermann, Till | Hofman, Albert | Bosi, Emanuele | Schlessinger, David | Wallaschofski, Henri | Pirastu, Nicola | Aulchenko, Yurii S. | de la Chapelle, Albert | Netea-Maier, Romana T. | Gough, Stephen C. L. | Meyer zu Schwabedissen, Henriette | Frayling, Timothy M. | Kaufman, Jean-Marc | Linneberg, Allan | Räikkönen, Katri | Smit, Johannes W. A. | Kiemeney, Lambertus A. | Rivadeneira, Fernando | Uitterlinden, André G. | Walsh, John P. | Meisinger, Christa | den Heijer, Martin | Visser, Theo J. | Spector, Timothy D. | Wilson, Scott G. | Völzke, Henry | Cappola, Anne | Toniolo, Daniela | Sanna, Serena | Naitza, Silvia | Peeters, Robin P. | Cotsapas, Chris
PLoS Genetics  2014;10(2):e1004123.
Autoimmune thyroid diseases (AITD) are common, affecting 2-5% of the general population. Individuals with positive thyroid peroxidase antibodies (TPOAbs) have an increased risk of autoimmune hypothyroidism (Hashimoto's thyroiditis), as well as autoimmune hyperthyroidism (Graves' disease). As the possible causative genes of TPOAbs and AITD remain largely unknown, we performed GWAS meta-analyses in 18,297 individuals for TPOAb-positivity (1769 TPOAb-positives and 16,528 TPOAb-negatives) and in 12,353 individuals for TPOAb serum levels, with replication in 8,990 individuals. Significant associations (P<5×10−8) were detected at TPO-rs11675434, ATXN2-rs653178, and BACH2-rs10944479 for TPOAb-positivity, and at TPO-rs11675434, MAGI3-rs1230666, and KALRN-rs2010099 for TPOAb levels. Individual and combined effects (genetic risk scores) of these variants on (subclinical) hypo- and hyperthyroidism, goiter and thyroid cancer were studied. Individuals with a high genetic risk score had, besides an increased risk of TPOAb-positivity (OR: 2.18, 95% CI 1.68–2.81, P = 8.1×10−8), a higher risk of increased thyroid-stimulating hormone levels (OR: 1.51, 95% CI 1.26–1.82, P = 2.9×10−6), as well as a decreased risk of goiter (OR: 0.77, 95% CI 0.66–0.89, P = 6.5×10−4). The MAGI3 and BACH2 variants were associated with an increased risk of hyperthyroidism, which was replicated in an independent cohort of patients with Graves' disease (OR: 1.37, 95% CI 1.22–1.54, P = 1.2×10−7 and OR: 1.25, 95% CI 1.12–1.39, P = 6.2×10−5). The MAGI3 variant was also associated with an increased risk of hypothyroidism (OR: 1.57, 95% CI 1.18–2.10, P = 1.9×10−3). This first GWAS meta-analysis for TPOAbs identified five newly associated loci, three of which were also associated with clinical thyroid disease. With these markers we identified a large subgroup in the general population with a substantially increased risk of TPOAbs. The results provide insight into why individuals with thyroid autoimmunity do or do not eventually develop thyroid disease, and these markers may therefore predict which TPOAb-positives are particularly at risk of developing clinical thyroid dysfunction.
Author Summary
Individuals with thyroid peroxidase antibodies (TPOAbs) have an increased risk of autoimmune thyroid diseases (AITD), which are common in the general population and associated with increased cardiovascular, metabolic and psychiatric morbidity and mortality. As the causative genes of TPOAbs and AITD remain largely unknown, we performed a genome-wide scan for TPOAbs in 18,297 individuals, with replication in 8,990 individuals. Significant associations were detected with variants at TPO, ATXN2, BACH2, MAGI3, and KALRN. Individuals carrying multiple risk variants also had a higher risk of increased thyroid-stimulating hormone levels (including subclinical and overt hypothyroidism), and a decreased risk of goiter. The MAGI3 and BACH2 variants were associated with an increased risk of hyperthyroidism, and the MAGI3 variant was also associated with an increased risk of hypothyroidism. This first genome-wide scan for TPOAbs identified five newly associated loci, three of which were also associated with clinical thyroid disease. With these markers we identified a large subgroup in the general population with a substantially increased risk of TPOAbs. These results provide insight into why individuals with thyroid autoimmunity do or do not eventually develop thyroid disease, and these markers may therefore predict which individuals are particularly at risk of developing clinical thyroid dysfunction.
doi:10.1371/journal.pgen.1004123
PMCID: PMC3937134  PMID: 24586183
2.  The HNF4A R76W mutation causes atypical dominant Fanconi syndrome in addition to a β cell phenotype 
Journal of Medical Genetics  2013;51(3):165-169.
Background
Mutation specific effects in monogenic disorders are rare. We describe atypical Fanconi syndrome caused by a specific heterozygous mutation in HNF4A. Heterozygous HNF4A mutations cause a beta cell phenotype of neonatal hyperinsulinism with macrosomia and young onset diabetes. Autosomal dominant idiopathic Fanconi syndrome (a renal proximal tubulopathy) is described but no genetic cause has been defined.
Methods and Results
We report six patients heterozygous for the p.R76W HNF4A mutation who have Fanconi syndrome and nephrocalcinosis in addition to neonatal hyperinsulinism and macrosomia. All six displayed a novel phenotype of proximal tubulopathy, characterised by generalised aminoaciduria, low molecular weight proteinuria, glycosuria, hyperphosphaturia and hypouricaemia, and additional features not seen in Fanconi syndrome: nephrocalcinosis, renal impairment, hypercalciuria with relative hypocalcaemia, and hypermagnesaemia. This was mutation specific, with the renal phenotype not being seen in patients with other HNF4A mutations. In silico modelling shows the R76 residue is directly involved in DNA binding and the R76W mutation reduces DNA binding affinity. The target(s) selectively affected by altered DNA binding of R76W that results in Fanconi syndrome is not known.
Conclusions
The HNF4A R76W mutation is an unusual example of a mutation specific phenotype, with autosomal dominant atypical Fanconi syndrome in addition to the established beta cell phenotype.
doi:10.1136/jmedgenet-2013-102066
PMCID: PMC3932761  PMID: 24285859
Renal Medicine; Calcium and Bone; Clinical Genetics; Diabetes; Metabolic Disorders
3.  Lessons From the Mixed-Meal Tolerance Test 
Diabetes Care  2013;36(2):195-201.
OBJECTIVE
Mixed-meal tolerance test (MMTT) area under the curve C-peptide (AUC CP) is the gold-standard measure of endogenous insulin secretion in type 1 diabetes but is intensive and invasive to perform. The 90-min MMTT-stimulated CP ≥0.2 nmol/L (90CP) is related to improved clinical outcomes, and CP ≥0.1 nmol/L is the equivalent fasting measure (FCP). We assessed whether 90CP or FCP are alternatives to a full MMTT.
RESEARCH DESIGN AND METHODS
CP was measured during 1,334 MMTTs in 421 type 1 diabetes patients aged <18 years at 3, 9, 18, 48, and 72 months duration. We assessed: 1) correlation between mean AUC CP and 90CP or FCP; 2) sensitivity and specificity of 90CP ≥0.2 nmol/L and FCP ≥ 0.1 nmol/L to detect peak CP ≥0.2 nmol/L and the equivalent AUC CP; and 3) how the time taken to reach the CP peak varied with age of diagnosis and diabetes duration.
RESULTS
AUC CP was highly correlated to 90CP (rs = 0.96; P < 0.0001) and strongly correlated to FCP (rs = 0.84; P < 0.0001). AUC CP ≥23 nmol/L/150 min was the equivalent cutoff for peak CP ≥0.2 nmol/L (98% sensitivity/97% specificity). A 90CP ≥0.2 nmol/L correctly classified 96% patients using AUC or peak CP, whereas FCP ≥0.1 nmol/L classified 83 and 85% patients, respectively. There was only a small difference seen between peak and 90CP (median 0.02 nmol/L). The CP peak occurred earlier in patients with longer diabetes duration (6.1 min each 1-year increase in duration) and younger age (2.5 min each 1-year increase).
CONCLUSIONS
90CP is a highly sensitive and specific measure of AUC and peak CP in children and adolescents with type 1 diabetes and offers a practical alternative to a full MMTT.
doi:10.2337/dc12-0836
PMCID: PMC3554273  PMID: 23111058
5.  Urine C-peptide creatinine ratio can be used to assess insulin resistance and insulin production in people without diabetes: an observational study 
BMJ Open  2013;3(12):e003193.
Objectives
The current assessment of insulin resistance (IR) in epidemiology studies relies on the blood measurement of C-peptide or insulin. A urine C-peptide creatinine ratio (UCPCR) can be posted from home unaided. It is validated against serum measures of the insulin in people with diabetes. We tested whether UCPCR could be a surrogate measure of IR by examining the correlation of UCPCR with serum insulin, C-peptide and HOMA2 (Homeostasis Model Assessment 2)-IR in participants without diabetes and with chronic kidney disease (CKD).
Design
Observational study.
Setting
Single-centre clinical research facility.
Participants
37 healthy volunteers and 30 patients with CKD (glomerular filtration rate 15–60) were recruited.
Primary and secondary endpoints
Serum insulin, C-peptide and glucose at fasting (0), 30, 60, 90 and 120 min were measured during an oral glucose tolerance test (OGTT). Second-void fasting UCPCR and 120 min post-OGTT UCPCR were collected. HOMA2-IR was calculated using fasting insulin and glucose. The associations between UCPCR and serum measures were assessed using Spearman's correlations.
Results
In healthy volunteers, fasting second-void UCPCR strongly correlated with serum insulin (rs=0.69, p<0.0001), C-peptide (rs=0.73, p<0.0001) and HOMA2-IR (rs=−0.69, p<0.0001). 120 min post-OGTT UCPCR correlated strongly with C-peptide and insulin area under the curve. In patients with CKD, UCPCR did not correlate with serum C-peptide, insulin or HOMA2-IR.
Conclusions
In participants with normal renal function, UCPCR may be a simple, practical method for the assessment of IR in epidemiology studies.
doi:10.1136/bmjopen-2013-003193
PMCID: PMC3884748  PMID: 24353253
Diabetes & Endocrinology; Statistics & Research Methods
6.  The majority of patients with long-duration type 1 diabetes are insulin microsecretors and have functioning beta cells 
Diabetologia  2013;57:187-191.
Aims/hypothesis
Classically, type 1 diabetes is thought to proceed to absolute insulin deficiency. Recently developed ultrasensitive assays capable of detecting C-peptide under 5 pmol/l now allow very low levels of C-peptide to be detected in patients with long-standing type 1 diabetes. It is not known whether this low-level endogenous insulin secretion responds to physiological stimuli. We aimed to assess how commonly low-level detectable C-peptide occurs in long-duration type 1 diabetes and whether it responds to a meal stimulus.
Methods
We performed a mixed-meal tolerance test in 74 volunteers with long-duration (>5 years) type 1 diabetes, i.e. with age at diagnosis 16 (9–23) years (median [interquartile range]) and diabetes duration of 30 (19–41) years. We assessed fasting and stimulated serum C-peptide levels using an electrochemiluminescence assay (detection limit 3.3 pmol/l), and also the urinary C-peptide:creatinine ratio (UCPCR).
Results
Post-stimulation serum C-peptide was detectable at very low levels (>3.3 pmol/l) in 54 of 74 (73%) patients. In all patients with detectable serum C-peptide, C-peptide either increased (n = 43, 80%) or stayed the same (n = 11) in response to a meal, with no indication of levels falling (p < 0.0001). With increasing disease duration, absolute C-peptide levels fell although the numbers with detectable C-peptide remained high (68%, i.e. 25 of 37 patients with >30 years duration). Similar results were obtained for UCPCR.
Conclusions/interpretation
Most patients with long-duration type 1 diabetes continue to secrete very low levels of endogenous insulin, which increase after meals. This is consistent with the presence of a small number of still functional beta cells and implies that beta cells are either escaping immune attack or undergoing regeneration.
Electronic supplementary material
The online version of this article (doi:10.1007/s00125-013-3067-x) contains peer-reviewed but unedited supplementary material, which is available to authorised users.
doi:10.1007/s00125-013-3067-x
PMCID: PMC3855529  PMID: 24121625
C-peptide; Insulin; Microsecretor
7.  Cross-sectional and longitudinal studies suggest pharmacological treatment used in patients with glucokinase mutations does not alter glycaemia 
Diabetologia  2013;57:54-56.
Aims/hypothesis
Heterozygous glucokinase (GCK) mutations cause mild, fasting hyperglycaemia from birth. Although patients are usually asymptomatic and have glycaemia within target ranges, some are put on pharmacological treatment. We aimed to investigate how many patients are on pharmacological treatment and the impact of treatment on glycaemic control.
Methods
Treatment details were ascertained for 799 patients with heterozygous GCK mutations. In a separate, longitudinal study, HbA1c was obtained for 16 consecutive patients receiving insulin (n = 10) or oral hypoglycaemic agents (OHAs) (n = 6) whilst on treatment, and again having discontinued treatment following a genetic diagnosis of GCK-MODY. For comparison, HbA1c before and after genetic testing was studied in a control group (n = 18) not receiving pharmacological therapy.
Results
At referral for genetic testing, 168/799 (21%) of patients were on pharmacological treatment (13.5% OHAs, 7.5% insulin). There was no difference in the HbA1c of these patients compared with those receiving no treatment(median [IQR]: 48 [43, 51] vs 46 [43, 50] mmol/mol, respectively; 6.5% [6.1%, 6.8%] vs 6.4% [6.1%, 6.7%]; p = 0.11). Following discontinuation of pharmacological treatment in 16 patients, HbA1c did not change. The mean change in HbA1c was −0.68 mmol/mol (95% CI: −2.97, 1.61) (−0.06% [95% CI: −0.27, 0.15]).
Conclusions/interpretation
Prior to a genetic diagnosis, 21% of patients were on pharmacological treatment. HbA1c was no higher than in untreated patients and did not change when therapy was discontinued, suggesting no impact on glycaemia. The lack of response to pharmacological therapy is likely to reflect the regulated hyperglycaemia seen in these patients owing to their glucose sensing defect and is an example of pharmacogenetics.
Electronic supplementary material
The online version of this article (doi:10.1007/s00125-013-3075-x) contains peer reviewed but unedited supplementary material, which is available to authorised users.
doi:10.1007/s00125-013-3075-x
PMCID: PMC3855531  PMID: 24092492
GCK mutation; Glucokinase; MODY; Pharmacogenetics; Treatment
8.  Multiple type 2 diabetes susceptibility genes following genome-wide association scan in UK samples 
Science (New York, N.Y.)  2007;316(5829):1336-1341.
The molecular mechanisms involved in the development of type 2 diabetes are poorly understood. Starting from genome-wide genotype data for 1,924 diabetic cases and 2,938 population controls generated by the Wellcome Trust Case Control Consortium, we set out to detect replicated diabetes association signals through analysis of 3,757 additional cases and 5,346 controls, and by integration of our findings with equivalent data from other international consortia. We detected diabetes susceptibility loci in and around the genes CDKAL1, CDKN2A/CDKN2B and IGF2BP2 and confirmed the recently described associations at HHEX/IDE and SLC30A8. Our findings provide insights into the genetic architecture of type 2 diabetes, emphasizing the contribution of multiple variants of modest effect. The regions identified underscore the importance of pathways influencing pancreatic beta cell development and function in the etiology of type 2 diabetes.
doi:10.1126/science.1142364
PMCID: PMC3772310  PMID: 17463249
9.  New loci associated with birth weight identify genetic links between intrauterine growth and adult height and metabolism 
Horikoshi, Momoko | Yaghootkar, Hanieh | Mook-Kanamori, Dennis O. | Sovio, Ulla | Taal, H. Rob | Hennig, Branwen J. | Bradfield, Jonathan P. | St. Pourcain, Beate | Evans, David M. | Charoen, Pimphen | Kaakinen, Marika | Cousminer, Diana L. | Lehtimäki, Terho | Kreiner-Møller, Eskil | Warrington, Nicole M. | Bustamante, Mariona | Feenstra, Bjarke | Berry, Diane J. | Thiering, Elisabeth | Pfab, Thiemo | Barton, Sheila J. | Shields, Beverley M. | Kerkhof, Marjan | van Leeuwen, Elisabeth M. | Fulford, Anthony J. | Kutalik, Zoltán | Zhao, Jing Hua | den Hoed, Marcel | Mahajan, Anubha | Lindi, Virpi | Goh, Liang-Kee | Hottenga, Jouke-Jan | Wu, Ying | Raitakari, Olli T. | Harder, Marie N. | Meirhaeghe, Aline | Ntalla, Ioanna | Salem, Rany M. | Jameson, Karen A. | Zhou, Kaixin | Monies, Dorota M. | Lagou, Vasiliki | Kirin, Mirna | Heikkinen, Jani | Adair, Linda S. | Alkuraya, Fowzan S. | Al-Odaib, Ali | Amouyel, Philippe | Andersson, Ehm Astrid | Bennett, Amanda J. | Blakemore, Alexandra I.F. | Buxton, Jessica L. | Dallongeville, Jean | Das, Shikta | de Geus, Eco J. C. | Estivill, Xavier | Flexeder, Claudia | Froguel, Philippe | Geller, Frank | Godfrey, Keith M. | Gottrand, Frédéric | Groves, Christopher J. | Hansen, Torben | Hirschhorn, Joel N. | Hofman, Albert | Hollegaard, Mads V. | Hougaard, David M. | Hyppönen, Elina | Inskip, Hazel M. | Isaacs, Aaron | Jørgensen, Torben | Kanaka-Gantenbein, Christina | Kemp, John P. | Kiess, Wieland | Kilpeläinen, Tuomas O. | Klopp, Norman | Knight, Bridget A. | Kuzawa, Christopher W. | McMahon, George | Newnham, John P. | Niinikoski, Harri | Oostra, Ben A. | Pedersen, Louise | Postma, Dirkje S. | Ring, Susan M. | Rivadeneira, Fernando | Robertson, Neil R. | Sebert, Sylvain | Simell, Olli | Slowinski, Torsten | Tiesler, Carla M.T. | Tönjes, Anke | Vaag, Allan | Viikari, Jorma S. | Vink, Jacqueline M. | Vissing, Nadja Hawwa | Wareham, Nicholas J. | Willemsen, Gonneke | Witte, Daniel R. | Zhang, Haitao | Zhao, Jianhua | Wilson, James F. | Stumvoll, Michael | Prentice, Andrew M. | Meyer, Brian F. | Pearson, Ewan R. | Boreham, Colin A.G. | Cooper, Cyrus | Gillman, Matthew W. | Dedoussis, George V. | Moreno, Luis A | Pedersen, Oluf | Saarinen, Maiju | Mohlke, Karen L. | Boomsma, Dorret I. | Saw, Seang-Mei | Lakka, Timo A. | Körner, Antje | Loos, Ruth J.F. | Ong, Ken K. | Vollenweider, Peter | van Duijn, Cornelia M. | Koppelman, Gerard H. | Hattersley, Andrew T. | Holloway, John W. | Hocher, Berthold | Heinrich, Joachim | Power, Chris | Melbye, Mads | Guxens, Mònica | Pennell, Craig E. | Bønnelykke, Klaus | Bisgaard, Hans | Eriksson, Johan G. | Widén, Elisabeth | Hakonarson, Hakon | Uitterlinden, André G. | Pouta, Anneli | Lawlor, Debbie A. | Smith, George Davey | Frayling, Timothy M. | McCarthy, Mark I. | Grant, Struan F.A. | Jaddoe, Vincent W.V. | Jarvelin, Marjo-Riitta | Timpson, Nicholas J. | Prokopenko, Inga | Freathy, Rachel M.
Nature genetics  2012;45(1):76-82.
Birth weight within the normal range is associated with a variety of adult-onset diseases, but the mechanisms behind these associations are poorly understood1. Previous genome-wide association studies identified a variant in the ADCY5 gene associated both with birth weight and type 2 diabetes, and a second variant, near CCNL1, with no obvious link to adult traits2. In an expanded genome-wide association meta-analysis and follow-up study (up to 69,308 individuals of European descent from 43 studies), we have now extended the number of genome-wide significant loci to seven, accounting for a similar proportion of variance to maternal smoking. Five of the loci are known to be associated with other phenotypes: ADCY5 and CDKAL1 with type 2 diabetes; ADRB1 with adult blood pressure; and HMGA2 and LCORL with adult height. Our findings highlight genetic links between fetal growth and postnatal growth and metabolism.
doi:10.1038/ng.2477
PMCID: PMC3605762  PMID: 23202124
10.  Use of HbA1c in the Identification of Patients with Hyperglycaemia Caused by a Glucokinase Mutation: Observational Case Control Studies 
PLoS ONE  2013;8(6):e65326.
Aims
HaemoglobinA1c (HbA1c) is recommended for diabetes diagnosis but fasting plasma glucose (FPG) has been useful for identifying patients with glucokinase (GCK) mutations which cause lifelong persistent fasting hyperglycaemia. We aimed to derive age-related HbA1c reference ranges for these patients to determine how well HbA1c can discriminate patients with a GCK mutation from unaffected family members and young-onset type 1 (T1D) and type 2 diabetes (T2D) and to investigate the proportion of GCK mutation carriers diagnosed with diabetes using HbA1c and/or FPG diagnostic criteria.
Methods
Individuals with inactivating GCK mutations (n = 129), familial controls (n = 100), T1D (n = 278) and T2D (n = 319) aged ≥18years were recruited. Receiver Operating Characteristic (ROC) analysis determined effectiveness of HbA1c and FPG to discriminate between groups.
Results
HbA1c reference ranges in subjects with GCK mutations were: 38–56 mmol/mol (5.6–7.3%) if aged ≤40years; 41–60 mmol/mol (5.9–7.6%) if >40years. All patients (123/123) with a GCK mutation were above the lower limit of the HbA1c age-appropriate reference ranges. 69% (31/99) of controls were below these lower limits. HbA1c was also effective in discriminating those with a GCK mutation from those with T1D/T2D. Using the upper limit of the age-appropriate reference ranges to discriminate those with a mutation from those with T1D/T2D correctly identified 97% of subjects with a mutation. The majority (438/597 (73%)) with other types of young-onset diabetes had an HbA1c above the upper limit of the age-appropriate GCK reference range. HbA1c ≥48 mmol/mol classified more people with GCK mutations as having diabetes than FPG ≥7 mmol/l (68% vs. 48%, p = 0.0009).
Conclusions
Current HbA1c diagnostic criteria increase diabetes diagnosis in patients with a GCK mutation. We have derived age-related HbA1c reference ranges that can be used for discriminating hyperglycaemia likely to be caused by a GCK mutation and aid identification of probands and family members for genetic testing.
doi:10.1371/journal.pone.0065326
PMCID: PMC3683003  PMID: 23799006
11.  High-Sensitivity CRP Discriminates HNF1A-MODY From Other Subtypes of Diabetes 
Diabetes Care  2011;34(8):1860-1862.
OBJECTIVE
Maturity-onset diabetes of the young (MODY) as a result of mutations in hepatocyte nuclear factor 1-α (HNF1A) is often misdiagnosed as type 1 diabetes or type 2 diabetes. Recent work has shown that high-sensitivity C-reactive protein (hs-CRP) levels are lower in HNF1A-MODY than type 1 diabetes, type 2 diabetes, or glucokinase (GCK)-MODY. We aim to replicate these findings in larger numbers and other MODY subtypes.
RESEARCH DESIGN AND METHODS
hs-CRP levels were assessed in 750 patients (220 HNF1A, 245 GCK, 54 HNF4-α [HNF4A], 21 HNF1-β (HNF1B), 53 type 1 diabetes, and 157 type 2 diabetes).
RESULTS
hs-CRP was lower in HNF1A-MODY (median [IQR] 0.3 [0.1–0.6] mg/L) than type 2 diabetes (1.40 [0.60–3.45] mg/L; P < 0.001) and type 1 diabetes (1.10 [0.50–1.85] mg/L; P < 0.001), HNF4A-MODY (1.45 [0.46–2.88] mg/L; P < 0.001), GCK-MODY (0.60 [0.30–1.80] mg/L; P < 0.001), and HNF1B-MODY (0.60 [0.10–2.8] mg/L; P = 0.07). hs-CRP discriminated HNF1A-MODY from type 2 diabetes with hs-CRP <0.75 mg/L showing 79% sensitivity and 70% specificity (receiver operating characteristic area under the curve = 0.84).
CONCLUSIONS
hs-CRP levels are lower in HNF1A-MODY than other forms of diabetes and may be used as a biomarker to select patients for diagnostic HNF1A genetic testing.
doi:10.2337/dc11-0323
PMCID: PMC3142017  PMID: 21700917
12.  EDTA Improves Stability of Whole Blood C-Peptide and Insulin to Over 24 Hours at Room Temperature 
PLoS ONE  2012;7(7):e42084.
Introduction
C-peptide and insulin measurements in blood provide useful information regarding endogenous insulin secretion. Conflicting evidence on sample stability and handling procedures continue to limit the widespread clinical use of these tests. We assessed the factors that altered the stability of insulin and C-peptide in blood.
Methods
We investigated the impact of preservative type, time to centrifugation, storage conditions and duration of storage on the stability of C-peptide and insulin on three different analytical platforms.
Results
C-peptide was stable for at least 24 hours at room temperature in both centrifuged and whole blood collected in K+-EDTA and serum gel tubes, with the exception of whole blood serum gel, which decreased to 78% of baseline at 24 hours, (p = 0.008). Insulin was stable at room temperature for 24 hours in both centrifuged and whole blood collected in K+-EDTA tubes. In contrast insulin levels decreased in serum gel tubes both centrifuged and whole blood (66% of baseline, p = 0.01 and 76% of baseline p = 0.01, by 24 hours respectively). C-peptide and insulin remained stable after 6 freeze-thaw cycles.
Conclusions
The stability of C-peptide and insulin in whole blood K+-EDTA tubes negates the need to conform to strict sample handling procedures for these assays, greatly increasing their clinical utility.
doi:10.1371/journal.pone.0042084
PMCID: PMC3408407  PMID: 22860060
13.  Urine C-Peptide Creatinine Ratio Is a Noninvasive Alternative to the Mixed-Meal Tolerance Test in Children and Adults With Type 1 Diabetes 
Diabetes Care  2011;34(3):607-609.
OBJECTIVE
Stimulated serum C-peptide (sCP) during a mixed-meal tolerance test (MMTT) is the gold standard measure of endogenous insulin secretion, but practical issues limit its use. We assessed urine C-peptide creatinine ratio (UCPCR) as an alternative.
RESEARCH DESIGN AND METHODS
Seventy-two type 1 diabetic patients (age of diagnosis median 14 years [interquartile range 10–22]; diabetes duration 6.5 [2.3–32.7]) had an MMTT. sCP was collected at 90 min. Urine for UCPCR was collected at 120 min and following a home evening meal.
RESULTS
MMTT 120-min UCPCR was highly correlated to 90-min sCP (r = 0.97; P < 0.0001). UCPCR ≥0.53 nmol/mmol had 94% sensitivity/100% specificity for significant endogenous insulin secretion (90-min sCP ≥0.2 nmol/L). The 120-min postprandial evening meal UCPCR was highly correlated to 90-min sCP (r = 0.91; P < 0.0001). UCPCR ≥0.37 nmol/mmol had 84% sensitivity/97% specificity for sCP ≥0.2 nmol/L.
CONCLUSIONS
UCPCR testing is a sensitive and specific method for detecting insulin secretion. UCPCR may be a practical alternative to serum C-peptide testing, avoiding the need for inpatient investigation.
doi:10.2337/dc10-2114
PMCID: PMC3041191  PMID: 21285386
14.  Mendelian Randomization Studies Do Not Support a Role for Raised Circulating Triglyceride Levels Influencing Type 2 Diabetes, Glucose Levels, or Insulin Resistance 
Diabetes  2011;60(3):1008-1018.
OBJECTIVE
The causal nature of associations between circulating triglycerides, insulin resistance, and type 2 diabetes is unclear. We aimed to use Mendelian randomization to test the hypothesis that raised circulating triglyceride levels causally influence the risk of type 2 diabetes and raise normal fasting glucose levels and hepatic insulin resistance.
RESEARCH DESIGN AND METHODS
We tested 10 common genetic variants robustly associated with circulating triglyceride levels against the type 2 diabetes status in 5,637 case and 6,860 control subjects and four continuous outcomes (reflecting glycemia and hepatic insulin resistance) in 8,271 nondiabetic individuals from four studies.
RESULTS
Individuals carrying greater numbers of triglyceride-raising alleles had increased circulating triglyceride levels (SD 0.59 [95% CI 0.52–0.65] difference between the 20% of individuals with the most alleles and the 20% with the fewest alleles). There was no evidence that the carriers of greater numbers of triglyceride-raising alleles were at increased risk of type 2 diabetes (per weighted allele odds ratio [OR] 0.99 [95% CI 0.97–1.01]; P = 0.26). In nondiabetic individuals, there was no evidence that carriers of greater numbers of triglyceride-raising alleles had increased fasting insulin levels (SD 0.00 per weighted allele [95% CI −0.01 to 0.02]; P = 0.72) or increased fasting glucose levels (0.00 [−0.01 to 0.01]; P = 0.88). Instrumental variable analyses confirmed that genetically raised circulating triglyceride levels were not associated with increased diabetes risk, fasting glucose, or fasting insulin and, for diabetes, showed a trend toward a protective association (OR per 1-SD increase in log10 triglycerides: 0.61 [95% CI 0.45–0.83]; P = 0.002).
CONCLUSIONS
Genetically raised circulating triglyceride levels do not increase the risk of type 2 diabetes or raise fasting glucose or fasting insulin levels in nondiabetic individuals. One explanation for our results is that raised circulating triglycerides are predominantly secondary to the diabetes disease process rather than causal.
doi:10.2337/db10-1317
PMCID: PMC3046819  PMID: 21282362
15.  Urinary C-Peptide Creatinine Ratio Is a Practical Outpatient Tool for Identifying Hepatocyte Nuclear Factor 1-α/Hepatocyte Nuclear Factor 4-α Maturity-Onset Diabetes of the Young From Long-Duration Type 1 Diabetes 
Diabetes Care  2011;34(2):286-291.
OBJECTIVE
Hepatocyte nuclear factor 1-α (HNF1A)/hepatocyte nuclear factor 4-α (HNF4A) maturity-onset diabetes of the young (MODY) is frequently misdiagnosed as type 1 diabetes, and patients are inappropriately treated with insulin. Blood C-peptide can aid in the diagnosis of MODY, but practical reasons limit its widespread use. Urinary C-peptide creatinine ratio (UCPCR), a stable measure of endogenous insulin secretion, is a noninvasive alternative. We aimed to compare stimulated UCPCR in adults with HNF1A/4A MODY, type 1 diabetes, and type 2 diabetes.
RESEARCH DESIGN AND METHODS
Adults with diabetes for ≥5years, without renal impairment, were studied (HNF1A MODY [n = 54], HNF4A MODY [n = 23], glucokinase MODY [n = 20], type 1 diabetes [n = 69], and type 2 diabetes [n = 54]). The UCPCR was collected in boric acid 120 min after the largest meal of the day and mailed for analysis. Receiver operating characteristic (ROC) curves were used to identify optimal UCPCR cutoffs to differentiate HNF1A/4A MODY from type 1 and type 2 diabetes.
RESULTS
UCPCR was lower in type 1 diabetes than HNF1A/4A MODY (median [interquartile range]) (<0.02 nmol/mmol [<0.02 to <0.02] vs. 1.72 nmol/mmol [0.98–2.90]; P < 0.0001). ROC curves showed excellent discrimination (area under curve [AUC] 0.98) and identified a cutoff UCPCR of ≥0.2 nmol/mmol for differentiating HNF1A/4A MODY from type 1 diabetes (97% sensitivity, 96% specificity). UCPCR was lower in HNF1A/4A MODY than in type 2 diabetes (1.72 nmol/mmol [0.98–2.90] vs. 2.47 nmol/mmol [1.4–4.13]); P = 0.007). ROC curves showed a weak distinction between HNF1A/4A MODY and type 2 diabetes (AUC 0.64).
CONCLUSIONS
UCPCR is a noninvasive outpatient tool that can be used to discriminate HNF1A and HNF4A MODY from long-duration type 1 diabetes. To differentiate MODY from type 1 diabetes of >5 years’ duration, UCPCR could be used to determine whether genetic testing is indicated.
doi:10.2337/dc10-1293
PMCID: PMC3024335  PMID: 21270186
16.  Mendelian Randomization Studies do not Support a Role for Raised Circulating Triglyceride Levels influencing Type 2 Diabetes, Glucose Levels, or Insulin Resistance 
Diabetes  2011;60(3):1008-1018.
Objective
The causal nature of associations between circulating triglycerides, insulin resistance and type 2 diabetes is unclear. We aimed to use Mendelian randomization to test the hypothesis that raised circulating triglyceride levels causally influence the risk of type 2 diabetes, raised normal fasting glucose levels, and hepatic insulin resistance.
Research design and methods
We tested 10 common genetic variants robustly associated with circulating triglyceride levels against type 2 diabetes status in 5637 cases, 6860 controls, and four continuous outcomes (reflecting glycemia and hepatic insulin resistance) in 8271 non-diabetic individuals from four studies.
Results
Individuals carrying greater numbers of triglyceride-raising alleles had increased circulating triglyceride levels (0.59 SD [95% CI: 0.52, 0.65] difference between the 20% of individuals with the most alleles and the 20% with the fewest alleles). There was no evidence that carriers of greater numbers of triglyceride-raising alleles were at increased risk of type 2 diabetes (per weighted allele odds ratio (OR) 0.99 [95% CI: 0.97, 1.01]; P = 0.26). In non-diabetic individuals, there was no evidence that carriers of greater numbers of triglyceride-raising alleles had increased fasting insulin levels (0.00 SD per weighted allele [95% CI: −0.01, 0.02]; P = 0.72) or increased fasting glucose levels (0.00 SD per weighted allele [95% CI: −0.01, 0.01]; P = 0.88). Instrumental variable analyses confirmed that genetically raised circulating triglyceride levels were not associated with increased diabetes risk, fasting glucose or fasting insulin, and, for diabetes, showed a trend towards a protective association (OR per 1 SD increase in log10-triglycerides: 0.61 [95% CI: 0.45, 0.83]; P = 0.002).
Conclusion
Genetically raised circulating triglyceride levels do not increase the risk of type 2 diabetes, or raise fasting glucose or fasting insulin levels in non-diabetic individuals. One explanation for our results is that raised circulating triglycerides are predominantly secondary to the diabetes disease process rather than causal.
doi:10.2337/db10-1317
PMCID: PMC3046819  PMID: 21282362
17.  A common variant of HMGA2 is associated with adult and childhood height in the general population 
Nature genetics  2007;39(10):1245-1250.
Human height is a classic, highly heritable quantitative trait. To begin to identify genetic variants influencing height, we examined genome-wide association data from 4,921 individuals. Common variants in the HMGA2 oncogene, exemplified by rs1042725, were associated with height (P = 4 × 10−8). HMGA2 is also a strong biological candidate for height, as rare, severe mutations in this gene alter body size in mice and humans, so we tested rs1042725 in additional samples. We confirmed the association in 19,064 adults from four further studies (P = 3 × 10−11, overall P = 4 × 10−16, including the genome-wide association data). We also observed the association in children (P = 1 × 10−6, N = 6,827) and a tall/short case-control study (P = 4 × 10−6, N = 3,207). We estimate that rs1042725 explains ~0.3% of population variation in height (~0.4 cm increased adult height per C allele). There are few examples of common genetic variants reproducibly associated with human quantitative traits; these results represent, to our knowledge, the first consistently replicated association with adult and childhood height.
doi:10.1038/ng2121
PMCID: PMC3086278  PMID: 17767157
18.  A meta-analysis of the associations between common variation in the PDE8B gene and thyroid hormone parameters, including assessment of longitudinal stability of associations over time and effect of thyroid hormone replacement 
European Journal of Endocrinology  2011;164(5):773-780.
Objective
Common variants in PDE8B are associated with TSH but apparently without any effect on thyroid hormone levels that is difficult to explain. Furthermore, the stability of the association has not been examined in longitudinal studies or in patients on levothyroxine (l-T4).
Design
Totally, four cohorts were used (n=2557): the Busselton Health Study (thyroid function measured on two occasions), DEPTH, EFSOCH (selective cohorts), and WATTS (individuals on l-T4).
Methods
Meta-analysis to clarify associations between the rs4704397 single nucleotide polymorphism in PDE8B on TSH, tri-iodothyronine (T3), and T4 levels.
Results
Meta-analysis confirmed that genetic variation in PDE8B was associated with TSH (P=1.64×10−10 0.20 s.d./allele, 95% confidence interval (CI) 0.142, 0.267) and identified a possible new association with free T4 (P=0.023, −0.07 s.d./allele, 95% CI −0.137, −0.01), no association was seen with free T3 (P=0.218). The association between PDE8B and TSH was similar in 1981 (0.14 s.d./allele, 95% CI 0.04, 0.238) and 1994 (0.20 s.d./allele, 95% CI 0.102, 0.300) and even more consistent between PDE8B and free T4 in 1981 (−0.068 s.d./allele, 95% CI −0.167, 0.031) and 1994 (−0.07 s.d./allele, 95% CI −0.170, 0.030). No associations were seen between PDE8B and thyroid hormone parameters in individuals on l-T4.
Conclusion
Common genetic variation in PDE8B is associated with reciprocal changes in TSH and free T4 levels that are consistent over time and lost in individuals on l-T4. These findings identify a possible genetic marker reflecting variation in thyroid hormone output that will be of value in epidemiological studies and provides additional evidence that PDE8B is involved in TSH signaling in the thyroid.
doi:10.1530/EJE-10-0938
PMCID: PMC3080745  PMID: 21317282
19.  Common Variation in the FTO Gene Alters Diabetes-Related Metabolic Traits to the Extent Expected Given Its Effect on BMI 
Diabetes  2008;57(5):1419-1426.
OBJECTIVE
Common variation in the FTO gene is associated with BMI and type 2 diabetes. Increased BMI is associated with diabetes risk factors, including raised insulin, glucose, and triglycerides. We aimed to test whether FTO genotype is associated with variation in these metabolic traits.
RESEARCH DESIGN AND METHODS
We tested the association between FTO genotype and 10 metabolic traits using data from 17,037 white European individuals. We compared the observed effect of FTO genotype on each trait to that expected given the FTO-BMI and BMI-trait associations.
RESULTS
Each copy of the FTO rs9939609 A allele was associated with higher fasting insulin (0.039 SD [95% CI 0.013–0.064]; P = 0.003), glucose (0.024 [0.001– 0.048]; P = 0.044), and triglycerides (0.028 [0.003– 0.052]; P = 0.025) and lower HDL cholesterol (0.032 [0.008 – 0.057]; P = 0.009). There was no evidence of these associations when adjusting for BMI. Associations with fasting alanine aminotransferase, γ-glutamyl-transferase, LDL cholesterol, A1C, and systolic and diastolic blood pressure were in the expected direction but did not reach P < 0.05. For all metabolic traits, effect sizes were consistent with those expected for the per allele change in BMI. FTO genotype was associated with a higher odds of metabolic syndrome (odds ratio 1.17 [95% CI 1.10 –1.25]; P = 3 × 10−6).
CONCLUSIONS
FTO genotype is associated with metabolic traits to an extent entirely consistent with its effect on BMI. Sample sizes of >12,000 individuals were needed to detect associations at P < 0.05. Our findings highlight the importance of using appropriately powered studies to assess the effects of a known diabetes or obesity variant on secondary traits correlated with these conditions.
doi:10.2337/db07-1466
PMCID: PMC3073395  PMID: 18346983
20.  Polygenic Risk Variants for Type 2 Diabetes Susceptibility Modify Age at Diagnosis in Monogenic HNF1A Diabetes 
Diabetes  2009;59(1):266-271.
OBJECTIVE
Mutations in the HNF1A gene are the most common cause of maturity-onset diabetes of the young (MODY). There is a substantial variation in the age at diabetes diagnosis, even within families where diabetes is caused by the same mutation. We investigated the hypothesis that common polygenic variants that predispose to type 2 diabetes might account for the difference in age at diagnosis.
RESEARCH DESIGN AND METHODS
Fifteen robustly associated type 2 diabetes variants were successfully genotyped in 410 individuals from 203 HNF1A-MODY families, from two study centers in the U.K. and Norway. We assessed their effect on the age at diagnosis both individually and in a combined genetic score by summing the number of type 2 diabetes risk alleles carried by each patient.
RESULTS
We confirmed the effects of environmental and genetic factors known to modify the age at HNF1A-MODY diagnosis, namely intrauterine hyperglycemia (−5.1 years if present, P = 1.6 × 10−10) and HNF1A mutation position (−5.2 years if at least two isoforms affected, P = 1.8 × 10−2). Additionally, our data showed strong effects of sex (females diagnosed 3.0 years earlier, P = 6.0 × 10−4) and age at study (0.3 years later diagnosis per year increase in age, P = 4.7 × 10−38). There were no strong individual single nucleotide polymorphism effects; however, in the combined genetic score model, each additional risk allele was associated with 0.35 years earlier diabetes diagnosis (P = 5.1 × 10−3).
CONCLUSIONS
We show that type 2 diabetes risk variants of modest effect sizes reduce the age at diagnosis in HNF1A-MODY. This is one of the first studies to demonstrate that clinical characteristics of a monogenic disease can be modified by common polygenic variants.
doi:10.2337/db09-0555
PMCID: PMC2797932  PMID: 19794065
21.  Type 2 Diabetes Risk Alleles Are Associated With Reduced Size at Birth 
Diabetes  2009;58(6):1428-1433.
OBJECTIVE
Low birth weight is associated with an increased risk of type 2 diabetes. The mechanisms underlying this association are unknown and may represent intrauterine programming or two phenotypes of one genotype. The fetal insulin hypothesis proposes that common genetic variants that reduce insulin secretion or action may predispose to type 2 diabetes and also reduce birth weight, since insulin is a key fetal growth factor. We tested whether common genetic variants that predispose to type 2 diabetes also reduce birth weight.
RESEARCH DESIGN AND METHODS
We genotyped single-nucleotide polymorphisms (SNPs) at five recently identified type 2 diabetes loci (CDKAL1, CDKN2A/B, HHEX-IDE, IGF2BP2, and SLC30A8) in 7,986 mothers and 19,200 offspring from four studies of white Europeans. We tested the association between maternal or fetal genotype at each locus and birth weight of the offspring.
RESULTS
We found that type 2 diabetes risk alleles at the CDKAL1 and HHEX-IDE loci were associated with reduced birth weight when inherited by the fetus (21 g [95% CI 11–31], P = 2 × 10−5, and 14 g [4–23], P = 0.004, lower birth weight per risk allele, respectively). The 4% of offspring carrying four risk alleles at these two loci were 80 g (95% CI 39–120) lighter at birth than the 8% carrying none (Ptrend = 5 × 10−7). There were no associations between birth weight and fetal genotypes at the three other loci or maternal genotypes at any locus.
CONCLUSIONS
Our results are in keeping with the fetal insulin hypothesis and provide robust evidence that common disease-associated variants can alter size at birth directly through the fetal genotype.
doi:10.2337/db08-1739
PMCID: PMC2682672  PMID: 19228808
22.  Type 2 Diabetes Risk Alleles are Associated with Reduced Size at Birth 
Diabetes  2009;58(6):1428-1433.
Objective
Low birth weight is associated with an increased risk of type 2 diabetes. The mechanisms underlying this association are unknown and may represent intrauterine programming or two phenotypes of one genotype. The fetal insulin hypothesis proposes that common genetic variants that reduce insulin secretion or action may predispose to type 2 diabetes and also reduce birth weight, since insulin is a key fetal growth factor. We tested whether common genetic variants that predispose to type 2 diabetes also reduce birth weight.
Research design and methods
We genotyped single nucleotide polymorphisms (SNPs) at five recently identified type 2 diabetes loci (CDKAL1, CDKN2A/B, HHEX-IDE, IGF2BP2 and SLC30A8) in 7986 mothers and 19200 offspring from four studies of white Europeans. We tested the association between maternal or fetal genotype at each locus and birth weight of the offspring.
Results
We found that type 2 diabetes risk alleles at the CDKAL1 and HHEX-IDE loci were associated with reduced birth weight when inherited by the fetus: 21g [95%CI:11-31g], P=2×10-5 and 14g [4-23g], P=0.004 lower birth weight per risk allele, respectively. The 4% of offspring carrying four risk alleles at these two loci were 80g [39-120g] lighter at birth than the 8% carrying none (Ptrend =5×10-7). There were no associations between birth weight and fetal genotypes at the three other loci, or maternal genotypes at any locus.
Conclusions
Our results are in keeping with the fetal insulin hypothesis and provide robust evidence that common disease-associated variants can alter size at birth directly through the fetal genotype.
doi:10.2337/db08-1739
PMCID: PMC2682672  PMID: 19228808
23.  Genetic evidence that raised sex hormone binding globulin (SHBG) levels reduce the risk of type 2 diabetes 
Human Molecular Genetics  2009;19(3):535-544.
Epidemiological studies consistently show that circulating sex hormone binding globulin (SHBG) levels are lower in type 2 diabetes patients than non-diabetic individuals, but the causal nature of this association is controversial. Genetic studies can help dissect causal directions of epidemiological associations because genotypes are much less likely to be confounded, biased or influenced by disease processes. Using this Mendelian randomization principle, we selected a common single nucleotide polymorphism (SNP) near the SHBG gene, rs1799941, that is strongly associated with SHBG levels. We used data from this SNP, or closely correlated SNPs, in 27 657 type 2 diabetes patients and 58 481 controls from 15 studies. We then used data from additional studies to estimate the difference in SHBG levels between type 2 diabetes patients and controls. The SHBG SNP rs1799941 was associated with type 2 diabetes [odds ratio (OR) 0.94, 95% CI: 0.91, 0.97; P = 2 × 10−5], with the SHBG raising allele associated with reduced risk of type 2 diabetes. This effect was very similar to that expected (OR 0.92, 95% CI: 0.88, 0.96), given the SHBG-SNP versus SHBG levels association (SHBG levels are 0.2 standard deviations higher per copy of the A allele) and the SHBG levels versus type 2 diabetes association (SHBG levels are 0.23 standard deviations lower in type 2 diabetic patients compared to controls). Results were very similar in men and women. There was no evidence that this variant is associated with diabetes-related intermediate traits, including several measures of insulin secretion and resistance. Our results, together with those from another recent genetic study, strengthen evidence that SHBG and sex hormones are involved in the aetiology of type 2 diabetes.
doi:10.1093/hmg/ddp522
PMCID: PMC2798726  PMID: 19933169
24.  A common genetic variant in the 15q24 nicotinic acetylcholine receptor gene cluster (CHRNA5–CHRNA3–CHRNB4) is associated with a reduced ability of women to quit smoking in pregnancy 
Human Molecular Genetics  2009;18(15):2922-2927.
Maternal smoking during pregnancy is associated with low birth weight and adverse pregnancy outcomes. Women are more likely to quit smoking during pregnancy than at any other time in their lives, but some pregnant women continue to smoke. A recent genome-wide association study demonstrated an association between a common polymorphism (rs1051730) in the nicotinic acetylcholine receptor gene cluster (CHRNA5–CHRNA3–CHRNB4) and both smoking quantity and nicotine dependence. We aimed to test whether the same polymorphism that predisposes to greater cigarette consumption would also reduce the likelihood of smoking cessation in pregnancy. We studied 7845 pregnant women of European descent from the South-West of England. Using 2474 women who smoked regularly immediately pre-pregnancy, we analysed the association between the rs1051730 risk allele and both smoking cessation during pregnancy and smoking quantity. Each additional copy of the risk allele was associated with a 1.27-fold higher odds (95% CI 1.11–1.45) of continued smoking during pregnancy (P = 0.0006). Adjustment for pre-pregnancy smoking quantity weakened, but did not remove this association [odds ratio (OR) 1.20 (95% CI 1.03–1.39); P = 0.018]. The same risk allele was also associated with heavier smoking before pregnancy and in the first, but not the last, trimester [OR for smoking 10+ cigarettes/day versus 1–9/day in first trimester = 1.30 (95% CI 1.13–1.50); P = 0.0003]. To conclude, we have found strong evidence of association between the rs1051730 variant and an increased likelihood of continued smoking in pregnancy and have confirmed the previously observed association with smoking quantity. Our data support the role of genetic factors in influencing smoking cessation during pregnancy.
doi:10.1093/hmg/ddp216
PMCID: PMC2706684  PMID: 19429911
25.  A Common Variant in the FTO Gene Is Associated with Body Mass Index and Predisposes to Childhood and Adult Obesity 
Science (New York, N.Y.)  2007;316(5826):889-894.
Obesity is a serious international health problem that increases the risk of several common diseases. The genetic factors predisposing to obesity are poorly understood. A genome-wide search for type 2 diabetes–susceptibility genes identified a common variant in the FTO (fat mass and obesity associated) gene that predisposes to diabetes through an effect on body mass index (BMI). An additive association of the variant with BMI was replicated in 13 cohorts with 38,759 participants. The 16% of adults who are homozygous for the risk allele weighed about 3 kilograms more and had 1.67-fold increased odds of obesity when compared with those not inheriting a risk allele. This association was observed from age 7 years upward and reflects a specific increase in fat mass.
doi:10.1126/science.1141634
PMCID: PMC2646098  PMID: 17434869

Results 1-25 (30)