Search tips
Search criteria

Results 1-25 (68)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
1.  Monocyte Mayhem: Do Subtypes Modulate Distinct Atherosclerosis Phenotypes? 
PMCID: PMC3670688  PMID: 22337925
editorial; monocytes; cardiovascular outcomes; inflammation
2.  ABO Blood Groups and Cardiovascular Diseases 
ABO blood groups have been associated with various disease phenotypes, particularly cardiovascular diseases. Cardiovascular diseases are the most common causes of death in developed countries and their prevalence rate is rapidly growing in developing countries. There have been substantial historical associations between non-O blood group status and an increase in some cardiovascular disorders. Recent GWASs have identified ABO as a locus for thrombosis, myocardial infarction, and multiple cardiovascular risk biomarkers, refocusing attention on mechanisms and potential for clinical advances. As we highlight in this paper, more recent work is beginning to probe the molecular basis of the disease associations observed in these observational studies. Advances in our understanding of the physiologic importance of various endothelial and platelet-derived circulating glycoproteins are elucidating the mechanisms through which the ABO blood group may determine overall cardiovascular disease risk. The role of blood group antigens in the pathogenesis of various cardiovascular disorders remains a fascinating subject with potential to lead to novel therapeutics and prognostics and to reduce the global burden of cardiovascular diseases.
PMCID: PMC3485501  PMID: 23133757
3.  Adipose Inflammation, Insulin Resistance, and Cardiovascular Disease 
Adiposity-associated inflammation and insulin resistance are strongly implicated in the development of type 2 diabetes and atherosclerotic cardiovascular disease. This article reviews the mechanisms of adipose inflammation, because these may represent therapeutic targets for insulin resistance and for prevention of metabolic and cardiovascular consequences of obesity. The initial insult in adipose inflammation and insulin resistance, mediated by macrophage recruitment and endogenous ligand activation of Toll-like receptors, is perpetuated through chemokine secretion, adipose retention of macrophages, and elaboration of pro-inflammatory adipocytokines. Activation of various kinases modulates adipocyte transcription factors, including peroxisome proliferator-activated receptor-γ and NFκB, attenuating insulin signaling and increasing adipocytokine and free fatty acid secretion. Inflammation retards adipocyte differentiation and further exacerbates adipose dysfunction and inflammation. Paracrine and endocrine adipose inflammatory events induce a local and systemic inflammatory, insulin-resistant state promoting meta-bolic dyslipidemia, type 2 diabetes, and cardiovascular disease. Developing therapeutic strategies that target both adipose inflammation and insulin resistance may help to prevent type 2 diabetes and cardiovascular disease in the emerging epidemic of obesity.
PMCID: PMC3088110  PMID: 18974244
type 2 diabetes; insulin resistance; adiposity-associated inflammation; adipose tissue; insulin; fatty acids
4.  HDL proteomics: pot of gold or Pandora’s box? 
Journal of Clinical Investigation  2007;117(3):595-598.
In this issue of the JCI, Vaisar et al. studied the proteome of HDL (see the related article beginning on page 746). They reveal, quite unexpectedly, that HDL is enriched in several proteins involved in the complement cascade, as well as in a variety of protease inhibitors, supporting the concept that HDL plays a role in innate immunity and in the regulation of proteolytic cascades involved in inflammatory and coagulation processes. The protein makeup of HDL also appears to be altered in patients with coronary artery disease. HDL proteomics is in its infancy, and preliminary findings will need to be confirmed using standardized approaches in larger clinical samples. However, this approach promises to better elucidate the relationship of HDL to atherosclerosis and its complications and could eventually help in the development of biomarkers to predict the outcome of interventions that alter HDL levels and functions.
PMCID: PMC1804357  PMID: 17332889
5.  Overlap Between Common Genetic Polymorphisms Underpinning Kidney Traits and Cardiovascular Disease Phenotypes: The CKDGen Consortium 
Chronic kidney disease is associated with cardiovascular disease. We tested for evidence of a shared genetic basis to these traits.
Study Design
We conducted two targeted analyses. First, we examined whether known single nucleotide polymorphisms (SNPs) underpinning kidney traits were associated with a series of vascular phenotypes. Additionally, we tested whether vascular SNPs were associated with markers of kidney damage. Significance was set to 1.5 × 10-4 (0.05/325 tests).
Setting & Participants
Vascular outcomes were analyzed in participants from the AortaGen (20,634), CARDIoGRAM (86,995), CHARGE Eye (15,358), CHARGE IMT (31,181), ICBP (69,395) and NeuroCHARGE (12,385) consortia. Tests for kidney outcomes were conducted in up to 67,093 participants from the CKDGen consortium.
We used 19 kidney SNPs and 64 vascular SNPs.
Outcomes & Measurements
Vascular outcomes tested were blood pressure, coronary artery disease, carotid intima-media thickness, pulse wave velocity, retinal venular caliber and brain white matter lesions. Kidney outcomes were estimated glomerular filtration rate and albuminuria.
In general, we found that kidney disease variants were not associated with vascular phenotypes (127 of 133 tests were non-significant). The one exception was rs653178 near SH2B3 (SH2B adaptor protein 3), which showed direction-consistent association with systolic (p=9.3E-10) and diastolic (p=1.6E-14) blood pressure and coronary artery disease (p=2.2E-6), all previously reported. Similarly, the 64 SNPs associated with vascular phenotypes were not associated with kidney phenotypes (187 of 192 tests were non-significant), with the exception of 2 high-correlated SNPs at the SH2B3 locus (p=1.06E-07 and p=7.05E-08).
Combined effect size of the SNPs for kidney and vascular outcomes may be too low to detect shared genetic associations.
Overall, although we confirmed one locus (SH2B3) as associated with both kidney and cardiovascular disease, our primary findings suggest that there is little overlap between kidney and cardiovascular disease risk variants in the overall population. The reciprocal risks of kidney and cardiovascular disease may not be genetically mediated, but rather a function of the disease milieu itself.
PMCID: PMC3660426  PMID: 23474010
6.  C-Reactive Protein Modifies the Association of Plasma Leptin With Coronary Calcium in Asymptomatic Overweight Individuals 
Obesity (Silver Spring, Md.)  2011;20(4):856-861.
Evidence suggests putative interactions of leptin and C-reactive protein (CRP) in the pathogenesis of adiposity-related atherosclerotic cardiovascular disease (CVD). Therefore, we investigated whether CRP levels modify the relationship of leptin levels with coronary artery calcium (CAC). We examined 1,460 asymptomatic individuals from two community-based cross-sectional studies coordinated at a single, university-based research center. We focused on subjects who were overweight or obese (BMI ≥25) given greater biologic plausibility in this setting. In multivariable CAC models, we analyzed the interaction of log-transformed plasma leptin levels with higher CRP levels as defined by three cut-points: two clinically based (2 mg/l, 3 mg/l) and one dataset specific (sex-specific upper quartile). The association of plasma leptin with CAC was modified by higher CRP regardless of cut-point (interaction term P values all <0.01 in fully adjusted models). Leptin levels were associated with CAC in those with high, but not low CRP levels (e.g., tobit ratio for a 1 unit increase in ln(leptin) (95% CI): 2.18 (1.29–3.66) if CRP level ≥3 mg/l; N = 461 vs. 0.94 (0.67–1.31) if CRP levels <3 mg/l; N = 999) in fully adjusted models. No interaction with CRP was present in control analyses with adiponectin, BMI and waist circumference. In conclusion, in asymptomatic overweight and obese adults, increased leptin levels were independently associated with increased CAC in the presence of high, but not low CRP levels, supporting a leptin-CRP interface in atherosclerosis risk.
PMCID: PMC4005808  PMID: 21738237
7.  Adipose Modulation of High-Density Lipoprotein Cholesterol 
Circulation  2011;124(15):1602-1605.
PMCID: PMC3928975  PMID: 21986773
Editorials; high-density lipoprotein cholesterol; lipoproteins; obesity; adipose tissue; Reverse Cholesterol Transport
8.  Cardiovascular Risk Factors and Mitral Annular Calcification in Type 2 Diabetes 
Atherosclerosis  2012;226(2):419-424.
Mitral annular calcification (MAC) is a degenerative process of the mitral fibrous annulus associated with cardiac disease and stroke. Although thought to be more prevalent in type 2 diabetes (T2DM), MAC remains poorly characterized in this population, due to confounding by renal and cardiac disease. Our goal was to study the risk factors for MAC in asample of T2DM subjects without renal and cardiac disease.
The Penn Diabetes Heart Study (PDHS) is a cross-sectional study of diabetic individuals without clinical cardiovascular or renal disease. We quantified and analyzed MAC Agatston scores in baseline cardiac CTs from 1753 individuals. Logistic and tobit regression were used to assess MAC’s relationship with risk factors and coronary artery calcification (CAC).
MAC was present in 12.0% of -subjects, with a median Agatston score of 72.3 [Interquartile range (22.2 256.9)]. Older age, diabetes female gender, Caucasian race, and longer duration were independently associated with both the presence and extent MAC even after controlling for the CAC; hypertension, hyperlipidemia, comorbidities however, tobacco use, CRP levels, and other were not associated. CAC was strongly associated with MAC [OR of 4.0, (95% CI 2.4-6.6)] in multivariable models.
Age, AC female gender, Caucasian race, and diabetes duration were associated with the presence and extent of MAC in T2DM subjects, independent of CAC, which was also strongly associated with MAC. These data suggest that additional mechanisms for MAC formation in diabetics may exist which are distinct from those related to generalized atherosclerosis and deserve further investigation.
PMCID: PMC3568504  PMID: 23273961
Diabetes; Mitral Annular Calcification; Coronary Heart Disease; Risk Factors
9.  PennSeq: accurate isoform-specific gene expression quantification in RNA-Seq by modeling non-uniform read distribution 
Nucleic Acids Research  2013;42(3):e20.
Correctly estimating isoform-specific gene expression is important for understanding complicated biological mechanisms and for mapping disease susceptibility genes. However, estimating isoform-specific gene expression is challenging because various biases present in RNA-Seq (RNA sequencing) data complicate the analysis, and if not appropriately corrected, can affect isoform expression estimation and downstream analysis. In this article, we present PennSeq, a statistical method that allows each isoform to have its own non-uniform read distribution. Instead of making parametric assumptions, we give adequate weight to the underlying data by the use of a non-parametric approach. Our rationale is that regardless what factors lead to non-uniformity, whether it is due to hexamer priming bias, local sequence bias, positional bias, RNA degradation, mapping bias or other unknown reasons, the probability that a fragment is sampled from a particular region will be reflected in the aligned data. This empirical approach thus maximally reflects the true underlying non-uniform read distribution. We evaluate the performance of PennSeq using both simulated data with known ground truth, and using two real Illumina RNA-Seq data sets including one with quantitative real time polymerase chain reaction measurements. Our results indicate superior performance of PennSeq over existing methods, particularly for isoforms demonstrating severe non-uniformity. PennSeq is freely available for download at
PMCID: PMC3919567  PMID: 24362841
10.  Fibroblast growth factor 23 is not associated with and does not induce arterial calcification 
Kidney international  2013;83(6):1159-1168.
Elevated fibroblast growth factor 23 (FGF23) is associated with cardiovascular disease in patients with chronic kidney disease. As a potential mediating mechanism, FGF23 induces left ventricular hypertrophy; however, its role in arterial calcification is less clear. In order to study this we quantified coronary artery and thoracic aorta calcium by computed tomography in 1501 patients from the Chronic Renal Insufficiency Cohort (CRIC) study within a median of 376 days (interquartile range 331 to 420 days) of baseline. Baseline plasma FGF23 was not associated with prevalence or severity of coronary artery calcium after multivariable adjustment. In contrast, higher serum phosphate levels were associated with prevalence and severity of coronary artery calcium, even after adjustment for FGF23. Neither FGF23 nor serum phosphate were consistently associated with thoracic aorta calcium. We could not detect mRNA expression of FGF23 or its co-receptor, klotho, in human or mouse vascular smooth muscle cells, or normal or calcified mouse aorta. Whereas elevated phosphate concentrations induced calcification in vitro, FGF23 had no effect on phosphate uptake or phosphate-induced calcification regardless of phosphate concentration or even in the presence of soluble klotho. Thus, in contrast to serum phosphate, FGF23 is not associated with arterial calcification and does not promote calcification experimentally. Hence, phosphate and FGF23 promote cardiovascular disease through distinct mechanisms.
PMCID: PMC3672330  PMID: 23389416
phosphate; fibroblast growth factor 23; vascular calcification; vascular smooth muscle; chronic kidney disease
11.  Abnormal Lipoprotein Particles and Cholesterol Efflux Capacity in Patients with Psoriasis 
Atherosclerosis  2012;224(1):218-221.
Psoriasis is a Th-1/17 mediated inflammatory disease associated with increased risk of cardiovascular disease (CVD). Inflammation may modulate lipoprotein particle number and directly impair HDL functions, in particular reverse cholesterol transport (RCT). We sought to study how chronic in vivo inflammation modulates lipoprotein particle composition using nuclear magnetic resonance spectroscopy (NMR) and HDL efflux in psoriasis.
Methods and Results
We prospectively enrolled a consecutive sample of patients with psoriasis (n=122) and compared lipoprotein and metabolic risk factors to patients without psoriasis (n=134). Fasting lipids, insulin, glucose were measured by standard assays, and lipoprotein concentration and size were measured by NMR. In a random subset (n=100 each group), HDL efflux capacity was quantified using a validated ex vivo system involving the incubation of macrophages with apolipoprotein B-depleted serum from patients. Traditional lipid concentrations were similar in both groups except for HDL concentration which was lower in psoriasis (43 mg/dL (36–58) vs 50 (42–62), p<0.01). However, NMR showed an atherogenic profile in psoriasis similar to that observed in diabetes, with significant increase in LDL particle concentration [1210.5 (1002–1498) vs 1115 (935–1291), p=0.03] with decrease in LDL size [20.6 (20.3–21.1) vs 21.3 (20.6–21.1), p<0.001] beyond CV risk factors and HOMA-IR (p=0.001). Finally, HDL efflux capacity was lower in psoriasis compared to controls in fully adjusted models (beta −0.14, p=0.001).
These data support a more atherogenic lipoprotein profile by NMR and decreased HDL efflux capacity in psoriasis patients compared to controls beyond CVD risk factors. The abnormal lipoprotein particle composition and HDL efflux capacity in psoriasis may provide a link between psoriasis and CVD.
PMCID: PMC3693845  PMID: 22858285
inflammation; atherosclerosis; HDL efflux; cholesterol; lipoprotein particles
12.  Emerging diagnostic and therapeutic molecular imaging applications in vascular disease 
Assessment of vascular disease has evolved from mere indirect and direct measurements of luminal stenosis to sophisticated imaging methods to depict millimeter structural changes of the vasculature. In the near future, the emergence of multimodal molecular imaging strategies may enable robust therapeutic and diagnostic (‘theragnostic’) approaches to vascular diseases that comprehensively consider structural, functional, biological and genomic characteristics of the disease in individualized risk assessment, early diagnosis and delivery of targeted interventions. This review presents a summary of recent preclinical and clinical developments in molecular imaging and theragnostic applications covering diverse atherosclerosis events such as endothelial activation, macrophage infammatory activity, plaque neovascularization and arterial thrombosis. The main focus is on molecular targets designed for imaging platforms commonly used in clinical medicine including magnetic resonance, computed tomography and positron emission tomography. A special emphasis is given to vascular ultrasound applications, considering the important role this imaging platform plays in the clinical and research practice of the vascular medicine specialty.
PMCID: PMC3750985  PMID: 21310769
atherosclerosis plaque; imaging based therapeutic delivery systems; molecular imaging; theragnostics; thrombosis; vascular ultrasound
13.  Inflammation Modulates Human HDL Composition and Function in vivo 
Atherosclerosis  2012;222(2):390-394.
Inflammation may directly impair HDL functions, in particular reverse cholesterol transport (RCT), but limited data support this concept in humans.
Methods and Results
We employed low-dose human endotoxemia to assess the effects of inflammation on HDL and RCT-related parameters in vivo. Endotoxemia induced remodelling of HDL with depletion of pre-β1a HDL particles determined by 2-D gel electrophoresis (-32.2 ± 9.3% at 24h, p<0.05) as well as small (-23.0 ± 5.1%, p<0.01, at 24h) and medium (-57.6 ± 8.0% at 16h, p<0.001) HDL estimated by nuclear magnetic resonance (NMR). This was associated with induction of class II secretory phospholipase A2 (~36 fold increase) and suppression of lecithin:cholesterol acyltransferase activity (-20.8 ± 3.4% at 24h, p<0.01) and cholesterol ester transfer protein mass (-22.2 ± 6.8% at 24h, p<0.001). The HDL fraction, isolated following endotoxemia, had reduced capacity to efflux cholesterol in vitro from SR-BI and ABCA1, but not ABCG1 transporter cell models.
These data support the concept that “atherogenic-HDL dysfunction” and impaired RCT occur in human inflammatory syndromes, largely independent of changes in plasma HDL-C and ApoA-I levels.
PMCID: PMC3361641  PMID: 22456230
inflammation; atherosclerosis; cholesterol; lipoproteins; macrophages
14.  Inflammation induces fibrinogen nitration in experimental human endotoxemia 
Free radical biology & medicine  2009;47(8):1140-1146.
Elevated plasma fibrinogen is a prothrombotic risk factor for cardiovascular disease (CVD). Recent small studies report that fibrinogen oxidative modifications, specifically tyrosine residue nitration, can occur in inflammatory states and may modify fibrinogen function. HDL cholesterol is inversely related to CVD and suggested to reduce the oxidation of LDL cholesterol, but whether these antioxidant functions extend to fibrinogen modifications is unknown. We used a recently validated ELISA to quantify nitrated fibrinogen during experimental human endotoxemia (N=23) and in a cohort of healthy adults (N=361) who were characterized for inflammatory and HDL parameters as well as subclinical atherosclerosis measures, carotid artery intima-medial thickness (IMT) and coronary artery calcification (CAC). Fibrinogen nitration increased following endotoxemia and directly correlated with accelerated ex vivo plasma clotting velocity. In the observational cohort, nitrated fibrinogen was associated with levels of CRP and serum amyloid A. Nitrated fibrinogen levels were not lower with increasing HDL cholesterol and did not associate with IMT and CAC. In humans, fibrinogen nitration was induced during inflammation and was correlated with markers of inflammation and clotting function but not HDL cholesterol or subclinical atherosclerosis in our modest sample. Inflammation-induced fibrinogen nitration may be a risk factor for promoting CVD events.
PMCID: PMC3651370  PMID: 19631267
Fibrinogen; Nitration; Intima-medial thickness; Coronary artery calcification; High-density lipoprotein (HDL)
15.  Genetic Basis of Atherosclerosis: Insights from Mice and Humans 
Circulation Research  2012;110(2):337-355.
Atherosclerosis is a complex and heritable disease involving multiple cell types and the interactions of many different molecular pathways. The genetic and molecular mechanisms of atherosclerosis have in part been elucidated by mouse models; at least 100 different genes have been shown to influence atherosclerosis in mice. Importantly, unbiased genome-wide association studies have recently identified a number of novel loci robustly associated with atherosclerotic coronary artery disease (CAD). Here we review the genetic data elucidated from mouse models of atherosclerosis, as well as significant associations for human CAD. Furthermore, we discuss in greater detail some of these novel human CAD loci. The combination of mouse and human genetics has the potential to identify and validate novel genes that influence atherosclerosis, some of which may be candidates for new therapeutic approaches.
PMCID: PMC3357004  PMID: 22267839
CAD; Lipids; Mice; GWAS; Genome-wide
17.  Relationship of Estimated GFR and Coronary Artery Calcification in the (CRIC) Chronic Renal Insufficiency Cohort Study 
Coronary artery calcification (CAC) is associated with increased mortality risk in the general population. Although individuals with chronic kidney disease (CKD) are at markedly increased mortality risk, the incidence, prevalence, and prognosis of CAC in CKD is not well-understood.
Study Design
Cross-sectional observational study.
Setting and Participants
Analysis of 1,908 participants who underwent coronary calcium scanning as part of the multi-ethnic CRIC (Chronic Renal Insufficiency Cohort) Study.
Estimated glomerular filtration rate (eGFR) computed using the Modification of Diet in Renal Disease (MDRD) Study equation, stratified by race, sex and diabetic status. eGFR was treated as a continous variable and a categorical variable compared to the reference range of >60 ml/min/1.73 m2
CAC detected using CT scans using either an Imatron C-300 electron beam computed tomography scanner or multi-detector CT scanner. CAC was computed using the Agatston score, as a categorical variable. Analyses were performed using ordinal logistic regression.
We found a strong and graded relationship between lower eGFR and increasing CAC. In unadjusted models, ORs increased from 1.68 (95% CI, 1.23–2.31) for eGFR from 50–59 to 2.82 (95% CI, 2.06–3.85) for eGFR of <30. Multivariable adjustment only partially attenuated the results (OR, 1.53; 95% CI, 1.07–2.20) for eGFR<30.
Use of eGFR rather than measured GFR.
We demonstrated a graded relationship between severity of CKD and CAC, independent of traditional risk factors. These findings supports recent guidelines that state that if vascular calcification is present, it should be considered as a complementary component to be included in the decision making required for individualizing treatment of CKD.
PMCID: PMC3183168  PMID: 21783289
18.  Ridge Regression for Longitudinal Biomarker Data 
Technological advances facilitating the acquisition of large arrays of biomarker data have led to new opportunities to understand and characterize disease progression over time. This creates an analytical challenge, however, due to the large numbers of potentially informative markers, the high degrees of correlation among them, and the time-dependent trajectories of association. We propose a mixed ridge estimator, which integrates ridge regression into the mixed effects modeling framework in order to account for both the correlation induced by repeatedly measuring an outcome on each individual over time, as well as the potentially high degree of correlation among possible predictor variables. An expectation-maximization algorithm is described to account for unknown variance and covariance parameters. Model performance is demonstrated through a simulation study and an application of the mixed ridge approach to data arising from a study of cardiometabolic biomarker responses to evoked inflammation induced by experimental low-dose endotoxemia.
PMCID: PMC3202941  PMID: 22049265
biomarkers; cardiovascular disease (CVD); mixed effects; repeated measures; ridge regression
19.  Fractalkine Is a Novel Human Adipochemokine Associated With Type 2 Diabetes 
Diabetes  2011;60(5):1512-1518.
Leukocyte infiltration of adipose is a critical determinant of obesity-related metabolic diseases. Fractalkine (CX3CL1) and its receptor (CX3CR1) comprise a chemokine system involved in leukocyte recruitment and adhesion in atherosclerosis, but its role in adipose inflammation and type 2 diabetes is unknown.
CX3CL1 mRNA and protein were quantified in subcutaneous adipose and blood during experimental human endotoxemia and in lean and obese human adipose. CX3CL1 cellular source was probed in human adipocytes, monocytes, and macrophages, and CX3CL1-blocking antibodies were used to assess its role in monocyte-adipocyte adhesion. The association of genetic variation in CX3CR1 with metabolic traits was determined in a community-based sample. Finally, plasma CX3CL1 levels were measured in a case-control study of type 2 diabetes.
Endotoxemia induced adipose CX3CL1 mRNA (32.7-fold, P < 1 × 10−5) and protein (43-fold, P = 0.006). Obese subjects had higher CX3CL1 levels in subcutaneous adipose compared with lean (0.420 ± 0.387 vs. 0.228 ± 0.187 ng/mL, P = 0.04). CX3CL1 was expressed and secreted by human adipocytes and stromal vascular cells. Inflammatory cytokine induction of CX3CL1 in human adipocytes (27.5-fold mRNA and threefold protein) was completely attenuated by pretreatment with a peroxisome proliferator–activated receptor-γ agonist. A putative functional nonsynonymous single nucleotide polymorphism (rs3732378) in CX3CR1 was associated with adipose and metabolic traits, and plasma CX3CL1 levels were increased in patients with type 2 diabetes vs. nondiabetics (0.506 ± 0.262 vs. 0.422 ± 0.210 ng/mL, P < 0.0001).
CX3CL1-CX3CR1 is a novel inflammatory adipose chemokine system that modulates monocyte adhesion to adipocytes and is associated with obesity, insulin resistance, and type 2 diabetes. These data provide support for CX3CL1 as a diagnostic and therapeutic target in cardiometabolic disease.
PMCID: PMC3292325  PMID: 21525510
20.  Identification of ADAMTS7 as a novel locus for coronary atherosclerosis and association of ABO with myocardial infarction in the presence of coronary atherosclerosis: two genome-wide association studies 
Lancet  2011;377(9763):383-392.
We tested whether genetic factors distinctly contribute to either development of coronary atherosclerosis or, specifically, to myocardial infarction in existing coronary atherosclerosis.
We did two genome-wide association studies (GWAS) with coronary angiographic phenotyping in participants of European ancestry. To identify loci that predispose to angiographic coronary artery disease (CAD), we compared individuals who had this disorder (n=12 393) with those who did not (controls, n=7383). To identify loci that predispose to myocardial infarction, we compared patients who had angiographic CAD and myocardial infarction (n=5783) with those who had angiographic CAD but no myocardial infarction (n=3644).
In the comparison of patients with angiographic CAD versus controls, we identified a novel locus, ADAMTS7 (p=4·98×10−13). In the comparison of patients with angiographic CAD who had myocardial infarction versus those with angiographic CAD but no myocardial infarction, we identified a novel association at the ABO locus (p=7·62×10−9). The ABO association was attributable to the glycotransferase-deficient enzyme that encodes the ABO blood group O phenotype previously proposed to protect against myocardial infarction.
Our findings indicate that specific genetic predispositions promote the development of coronary atherosclerosis whereas others lead to myocardial infarction in the presence of coronary atherosclerosis. The relation to specific CAD phenotypes might modify how novel loci are applied in personalised risk assessment and used in the development of novel therapies for CAD.
The PennCath and MedStar studies were supported by the Cardiovascular Institute of the University of Pennsylvania, by the MedStar Health Research Institute at Washington Hospital Center and by a research grant from GlaxoSmithKline. The funding and support for the other cohorts contributing to the paper are described in the webappendix.
PMCID: PMC3297116  PMID: 21239051
21.  Usefulness of Insulin Resistance Estimation and the Metabolic Syndrome in Predicting Coronary Atherosclerosis in Type 2 Diabetes Mellitus 
The American journal of cardiology  2011;107(3):406-411.
Metabolic syndrome (MS) definitions predict cardiovascular events beyond traditional risk factors in type 2 diabetic (DM) as well as non-diabetics subjects. We and other have shown that apolipoprotein B (apoB) and non-HDL cholesterol (non-HDL-C) are associated with coronary artery calcification (CAC) in DM. However, the relative value of MS, apoB lipoproteins and estimates of insulin resistance is unknown in predicting atherosclerosis in DM. We performed cross sectional analyses of white subjects in 2 community based studies (N= 611 type 2 diabetic subjects, N= 803 non-diabetic subjects) using multivariate analysis of traditional risk factors and then adding MS, apoB and homeostatic model assessment for insulin resistance (HOMA-IR). Incremental value was tested with likelihood ratio testing. Beyond traditional risk, HOMA-IR [Tobit regression ratio 1.86 (p=0.002)], apoB [1.55 (p=0.001)] and MS [2.37 (p=0.007)] were independently associated with CAC. In nested models, HOMA-IR added value to apoB [1.72 (p=0.008)], MS [1.72 (p=0.011)] and both apoB and MS [1.64 (p=0.021)]. ApoB showed a similar pattern when added to HOMA-IR [1.51 (p=0.004)], MS [1.46 (p=0.005)] and both HOMA-IR and MS [1.48 (p=0.006)]. MS added to apoB [1.99 (p=0.032)], but not HOMA-IR [1.54 (p=0.221)] or both apoB and HOMA-IR [1.32 (p=0.434)]. In conclusion, insulin resistance estimates add value to MS and apoB in predicting CAC scores in DM and warrant further evaluation in clinic for identification of DM patients at higher risk for atherosclerotic cardiovascular disease.
PMCID: PMC3040419  PMID: 21257006
insulin resistance; apolipoprotein B; coronary artery calcification; type 2 diabetes
22.  Gender Differences in the Association of C-Reactive Protein with Coronary Artery Calcium in Type-2 Diabetes 
Clinical endocrinology  2011;74(1):44-50.
Plasma C-reactive protein (CRP) is associated with cardiovascular disease (CVD) but effects may vary by gender and degree of CVD risk. Whether CRP has value as a CVD risk marker in type-2 diabetes (T2DM) is unclear. We examined whether CRP has gender differences in the association of coronary artery calcium (CAC) in diabetic and non diabetic samples without clinical CVD.
We performed cross-sectional analyses of gender influence on CRP association with CAC in the Penn Diabetes Heart Study (N = 1299 with T2DM), the Study of Inherited Risk of Coronary Atherosclerosis (N = 860 non diabetic subjects), and a combined sample.
Female gender was associated with higher plasma CRP in diabetic and non-diabetic samples after adjustment for covariates. There was a strong interaction by gender in the association of CRP with CAC (interaction p < 0.001). In diabetic women, CRP was associated with higher CAC even after further adjustment for age, race, medications, metabolic syndrome, Framingham risk score, and body mass index [Tobit ratio 1.60, 95% CI (1.03-2.47)]. Although this relationship was attenuated in non diabetic women, the combined sample maintained this association in fully adjusted models [1.44, 95% CI (1.13-1.83)]. There was no association of CRP with CAC in either diabetic or non diabetic men.
CRP may be a useful marker of cardiovascular risk in women, particularly in diabetic women who otherwise have no known CVD. Prospective studies are needed to better assess gender differences in CRP utility and the use of CRP in T2DM.
PMCID: PMC3005137  PMID: 20874770
Coronary artery calcium; C-reactive protein; Diabetes; Gender
23.  CXCL12: A New Player in Coronary Disease Identified through Human Genetics 
Trends in cardiovascular medicine  2010;20(6):204-209.
Genome-wide association studies (GWAS) in over 100,000 people have revealed novel loci associated with coronary artery disease (CAD) and myocardial infarction (MI) which present exciting opportunities to discover novel disease pathways. One such recently identified locus is on chromosome 10q11, near the gene for the chemokine CXCL12 which has been implicated in cardiovascular disease (CVD) in both mouse and human studies. These GWAS demonstrate that CXCL12 may emerge as a potential therapeutic target for atherosclerosis and thrombosis.
PMCID: PMC3235407  PMID: 22137643
CXCL12; atherosclerosis; GWAS; cardiovascular disease; inflammation
24.  Common Variants at 10 Genomic Loci Influence Hemoglobin A1C Levels via Glycemic and Nonglycemic Pathways 
Diabetes  2010;59(12):3229-3239.
Glycated hemoglobin (HbA1c), used to monitor and diagnose diabetes, is influenced by average glycemia over a 2- to 3-month period. Genetic factors affecting expression, turnover, and abnormal glycation of hemoglobin could also be associated with increased levels of HbA1c. We aimed to identify such genetic factors and investigate the extent to which they influence diabetes classification based on HbA1c levels.
We studied associations with HbA1c in up to 46,368 nondiabetic adults of European descent from 23 genome-wide association studies (GWAS) and 8 cohorts with de novo genotyped single nucleotide polymorphisms (SNPs). We combined studies using inverse-variance meta-analysis and tested mediation by glycemia using conditional analyses. We estimated the global effect of HbA1c loci using a multilocus risk score, and used net reclassification to estimate genetic effects on diabetes screening.
Ten loci reached genome-wide significant association with HbA1c, including six new loci near FN3K (lead SNP/P value, rs1046896/P = 1.6 × 10−26), HFE (rs1800562/P = 2.6 × 10−20), TMPRSS6 (rs855791/P = 2.7 × 10−14), ANK1 (rs4737009/P = 6.1 × 10−12), SPTA1 (rs2779116/P = 2.8 × 10−9) and ATP11A/TUBGCP3 (rs7998202/P = 5.2 × 10−9), and four known HbA1c loci: HK1 (rs16926246/P = 3.1 × 10−54), MTNR1B (rs1387153/P = 4.0 × 10−11), GCK (rs1799884/P = 1.5 × 10−20) and G6PC2/ABCB11 (rs552976/P = 8.2 × 10−18). We show that associations with HbA1c are partly a function of hyperglycemia associated with 3 of the 10 loci (GCK, G6PC2 and MTNR1B). The seven nonglycemic loci accounted for a 0.19 (% HbA1c) difference between the extreme 10% tails of the risk score, and would reclassify ∼2% of a general white population screened for diabetes with HbA1c.
GWAS identified 10 genetic loci reproducibly associated with HbA1c. Six are novel and seven map to loci where rarer variants cause hereditary anemias and iron storage disorders. Common variants at these loci likely influence HbA1c levels via erythrocyte biology, and confer a small but detectable reclassification of diabetes diagnosis by HbA1c.
PMCID: PMC2992787  PMID: 20858683
25.  Lack of association between the Trp719Arg polymorphism in kinesin-like protein 6 and coronary artery disease in 19 case-control studies 
Assimes, Themistocles L | Hólm, Hilma | Kathiresan, Sekar | Reilly, Muredach P | Thorleifsson, Gudmar | Voight, Benjamin F | Erdmann, Jeanette | Willenborg, Christina | Vaidya, Dhananjay | Xie, Changchun | Patterson, Chris C | Morgan, Thomas M | Burnett, Mary Susan | Li, Mingyao | Hlatky, Mark A | Knowles, Joshua W | Thompson, John R | Absher, Devin | Iribarren, Carlos | Go, Alan | Fortmann, Stephen P | Sidney, Stephen | Risch, Neil | Tang, Hua | Myers, Richard M | Berger, Klaus | Stoll, Monika | Shah, Svati H. | Thorgeirsson, Gudmundur | Andersen, Karl | Havulinna, Aki S | Herrera, J. Enrique | Faraday, Nauder | Kim, Yoonhee | Kral, Brian G. | Mathias, Rasika | Ruczinski, Ingo | Suktitipat, Bhoom | Wilson, Alexander F | Yanek, Lisa R. | Becker, Lewis C | Linsel-Nitschke, Patrick | Lieb, Wolfgang | König, Inke R | Hengstenberg, Christian | Fischer, Marcus | Stark, Klaus | Reinhard, Wibke | Winogradow, Janina | Grassl, Martina | Grosshennig, Anika | Preuss, Michael | Eifert, Sandra | Schreiber, Stefan | Wichmann, H-Erich | Meisinger, Christa | Yee, Jean | Friedlander, Yechiel | Do, Ron | Meigs, James B | Williams, Gordon | Nathan, David M | MacRae, Calum A | Qu, Liming | Wilensky, Robert L | Matthai, William H. | Qasim, Atif N | Hakonarson, Hakon | Pichard, Augusto D | Kent, Kenneth M | Satler, Lowell | Lindsay, Joseph M | Waksman, Ron | Knouff, Christopher W | Waterworth, Dawn M | Walker, Max C | Mooser, Vincent | Marrugat, Jaume | Lucas, Gavin | Subirana, Isaac | Sala, Joan | Ramos, Rafael | Martinelli, Nicola | Olivieri, Oliviero | Trabetti, Elisabetta | Malerba, Giovanni | Pignatti, Pier Franco | Guiducci, Candace | Mirel, Daniel | Parkin, Melissa | Hirschhorn, Joel N | Asselta, Rosanna | Duga, Stefano | Musunuru, Kiran | Daly, Mark J | Purcell, Shaun | Braund, Peter S | Wright, Benjamin J | Balmforth, Anthony J | Ball, Stephen G | Ouwehand, Willem H | Deloukas, Panos | Scholz, Michael | Cambien, Francois | Huge, Andreas | Scheffold, Thomas | Salomaa, Veikko | Girelli, Domenico | Granger, Christopher B. | Peltonen, Leena | McKeown, Pascal P | Altshuler, David | Melander, Olle | Devaney, Joseph M | Epstein, Stephen E | Rader, Daniel J | Elosua, Roberto | Engert, James C | Anand, Sonia S | Hall, Alistair S | Ziegler, Andreas | O’Donnell, Christopher J | Spertus, John A | Siscovick, David | Schwartz, Stephen M | Becker, Diane | Thorsteinsdottir, Unnur | Stefansson, Kari | Schunkert, Heribert | Samani, Nilesh J | Quertermous, Thomas
We sought to replicate the association between the kinesin-like protein 6 (KIF6) Trp719Arg polymorphism (rs20455) and clinical coronary artery disease (CAD).
Recent prospective studies suggest that carriers of the 719Arg allele in KIF6 are at increased risk of clinical CAD compared with non-carriers.
The KIF6 Trp719Arg polymorphism (rs20455) was genotyped in nineteen case-control studies of non-fatal CAD either as part of a genome-wide association study or in a formal attempt to replicate the initial positive reports.
Over 17 000 cases and 39 000 controls of European descent as well as a modest number of South Asians, African Americans, Hispanics, East Asians, and admixed cases and controls were successfully genotyped. None of the nineteen studies demonstrated an increased risk of CAD in carriers of the 719Arg allele compared with non-carriers. Regression analyses and fixed effect meta-analyses ruled out with high degree of confidence an increase of ≥2% in the risk of CAD among European 719Arg carriers. We also observed no increase in the risk of CAD among 719Arg carriers in the subset of Europeans with early onset disease (<50 years of age for males and <60 years for females) compared with similarly aged controls as well as all non-European subgroups.
The KIF6 Trp719Arg polymorphism was not associated with the risk of clinical CAD in this large replication study.
PMCID: PMC3084526  PMID: 20933357
kinesin-like protein 6; KIF6; coronary artery disease; myocardial infarction; polymorphism

Results 1-25 (68)