Search tips
Search criteria

Results 1-25 (151)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
1.  Sortilin And Lipoprotein Metabolism: Making Sense Out Of Complexity 
Current opinion in lipidology  2014;25(5):350-357.
Purpose of review
Genome wide associations studies (GWAS) have been used as an unbiased tool to identify novel genes that contribute to variations in LDL-C levels in the hopes of uncovering new biology and new therapeutic targets for the treatment of atherosclerotic cardiovascular disease (ASCVD). The locus identified by GWAS with the strongest association with LDL-C and ASCVD is the 1p13 SORT1 locus. Here we review the identification and characterization of this locus, the initial physiological studies describing the role of SORT1 in lipoprotein metabolism, and recent work that has begun to sort out the complexity of this role.
Recent findings
Studies by several groups support an important role for sortilin in lipoprotein metabolism; however, the directionality of the effect of sortilin on plasma cholesterol and its role in the secretion of hepatic lipoproteins remains controversial. Studies by several groups support a role for sortilin in inhibiting lipoprotein export whereas other studies suggest that sortilin facilitates lipoprotein export.
Understanding the mechanism by which sortilin affects LDL-C will increase our understanding of the regulation of lipoprotein metabolism and hepatic lipoprotein export and may also allow us to harness the power of the 1p13 SORT1 locus for the treatment of ASCVD.
PMCID: PMC4565516  PMID: 25101658
Sort1; genome wide association study; atherosclerotic cardiovascular disease; low-density lipoprotein cholesterol; lipid metabolism
2.  Permanent Alteration of PCSK9 With In Vivo CRISPR-Cas9 Genome Editing 
Circulation research  2014;115(5):488-492.
Individuals with naturally occurring loss-of-function PCSK9 mutations experience reduced blood low-density lipoprotein cholesterol (LDL-C) levels and protection against cardiovascular disease.
The goal of this study was to assess whether genome editing using a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) system can efficiently introduce loss-of-function mutations into the endogenous PCSK9 gene in vivo.
Methods and Results
We used adenovirus to express Cas9 and a CRISPR guide RNA targeting Pcsk9 in mouse liver, where the gene is specifically expressed. We found that within three to four days of administration of the virus, the mutagenesis rate of Pcsk9 in the liver was as high as >50%. This resulted in decreased plasma PCSK9 levels, increased hepatic LDL receptor levels, and decreased plasma cholesterol levels (by 35%–40%) in the blood. No off-target mutagenesis was detected in 10 selected sites.
Genome editing with the CRISPR-Cas9 system disrupts the Pcsk9 gene in vivo with high efficiency and reduces blood cholesterol levels in mice. This approach may have therapeutic potential for the prevention of cardiovascular disease in humans.
PMCID: PMC4134749  PMID: 24916110
Coronary disease; gene therapy; lipoprotein; molecular biology; prevention
3.  High-Density Lipoprotein 
Circulation research  2013;113(12):1275-1277.
PMCID: PMC4111252  PMID: 24311613
4.  Inhibition of endothelial lipase activity by sphingomyelin in the lipoproteins 
Lipids  2014;49(10):987-996.
Endothelial lipase (EL) is a major determinant of plasma HDL concentration, its activity being inversely proportional to HDL levels. Although it is known that it preferentially acts on HDL, compared to LDL and VLDL, the basis for this specificity is not known. Here we tested the hypothesis that sphingomyelin, a major phospholipid in lipoproteins is a physiological inhibitor of EL, and that the preference of the enzyme for HDL may be due to low sphingomyelin/ phosphatidylcholine (PtdCho) ratio in HDL, compared to other lipoproteins. Using recombinant human EL, we showed that sphingomyelin inhibits the hydrolysis of PtdCho in the liposomes in a concentration-dependent manner. While the enzyme showed lower hydrolysis of LDL PtdCho, compared to HDL PtdCho, this difference disappeared after the degradation of lipoprotein sphingomyelin by bacterial sphingomyelinase. Analysis of molecular species of PtdCho hydrolyzed by EL in the lipoproteins showed that the enzyme preferentially hydrolyzed PtdCho containing polyunsaturated fatty acids (PUFA) such as 22:6, 20:5, 20:4 at sn-2 position, generating the corresponding PUFA-lyso PtdCho. This specificity for PUFA-PtdCho species was not observed after depletion of sphingomyelin by sphingomyelinase. These results show that sphingomyelin not only plays a role in regulating EL activity, but also influences its specificity towards PtdCho species.
PMCID: PMC4175046  PMID: 25167836
sphingomyelin/phosphatidyl choline ratio; lysophsphatidylcholine; substrate specificity; molecular species of phosphatidylcholine; sphingomyelinase; LC/MS; enzyme regulation
5.  AAV Vectors Expressing LDLR Gain-of-Function Variants Demonstrate Increased Efficacy in Mouse Models of Familial Hypercholesterolemia 
Circulation research  2014;115(6):591-599.
Familial hypercholesterolemia (FH) is a genetic disorder that arises due to loss-of-function mutations in the low-density lipoprotein receptor (LDLR) and homozygous FH (hoFH) is a candidate for gene therapy using adeno-associated viral (AAV) vectors. Proprotein convertase subtilisin/kexin type 9 (PCSK9) and inducible degrader of LDLR (IDOL) negatively regulate LDLR protein and could dampen AAV encoded LDLR expression.
We sought to create vectors expressing gain-of-function human LDLR variants that are resistant to degradation by human PCSK9 and IDOL and thereby enhance hepatic LDLR protein abundance and plasma LDL cholesterol reduction.
Methods and Results
Amino acid substitutions were introduced into the coding sequence of human LDLR cDNA to reduce interaction with hPCSK9 and hIDOL. A panel of mutant hLDLRs was initially screened in vitro for escape from PCSK9. The variant hLDLR-L318D was further evaluated using a mouse model of hoFH lacking endogenous LDLR and apolipoprotein B mRNA editing enzyme, APOBEC-1 (DKO). Administration of wild type hLDLR to DKO mice, expressing hPCSK9, led to diminished LDLR activity. However, LDLR-L318D was resistant to hPCSK9 mediated degradation and effectively reduced cholesterol levels. Similarly, the LDLR-K809R\C818A construct avoided hIDOL regulation and achieved stable reductions in serum cholesterol. An AAV8.LDLR-L318D\K809R\C818A vector that carried all three amino acid substitutions conferred partial resistance to both hPCSK9 and hIDOL mediated degradation.
Amino acid substitutions in the human LDLR confer partial resistance to PCSK9 and IDOL regulatory pathways with improved reduction in cholesterol levels and improve upon a potential gene therapeutic approach to treat homozygous FH subjects.
PMCID: PMC4165546  PMID: 25023731
AAV; gene therapy; LDLR; PCSK9; IDOL; familial hypercholesterolemia
6.  Higher plasma CXCL12 levels predict incident myocardial infarction and death in chronic kidney disease: findings from the Chronic Renal Insufficiency Cohort study 
European Heart Journal  2013;35(31):2115-2122.
Genome-wide association studies revealed an association between a locus at 10q11, downstream from CXCL12, and myocardial infarction (MI). However, the relationship among plasma CXCL12, cardiovascular disease (CVD) risk factors, incident MI, and death is unknown.
Methods and results
We analysed study-entry plasma CXCL12 levels in 3687 participants of the Chronic Renal Insufficiency Cohort (CRIC) Study, a prospective study of cardiovascular and kidney outcomes in chronic kidney disease (CKD) patients. Mean follow-up was 6 years for incident MI or death. Plasma CXCL12 levels were positively associated with several cardiovascular risk factors (age, hypertension, diabetes, hypercholesterolaemia), lower estimated glomerular filtration rate (eGFR), and higher inflammatory cytokine levels (P < 0.05). In fully adjusted models, higher study-entry CXCL12 was associated with increased odds of prevalent CVD (OR 1.23; 95% confidence interval 1.14, 1.33, P < 0.001) for one standard deviation (SD) increase in CXCL12. Similarly, one SD higher CXCL12 increased the hazard of incident MI (1.26; 1.09,1.45, P < 0.001), death (1.20; 1.09,1.33, P < 0.001), and combined MI/death (1.23; 1.13–1.34, P < 0.001) adjusting for demographic factors, known CVD risk factors, and inflammatory markers and remained significant for MI (1.19; 1.03,1.39, P = 0.01) and the combined MI/death (1.13; 1.03,1.24, P = 0.01) after further controlling for eGFR and urinary albumin:creatinine ratio.
In CKD, higher plasma CXCL12 was associated with CVD risk factors and prevalent CVD as well as the hazard of incident MI and death. Further studies are required to establish if plasma CXCL12 reflect causal actions at the vessel wall and is a tool for genomic and therapeutic trials.
PMCID: PMC4132636  PMID: 24306482
Atherosclerosis; Chemokines; Myocardial infarction; CXCL12
7.  Nuclear Receptors and microRNA-144 Coordinately Regulate Cholesterol Efflux 
Circulation research  2013;112(12):1529-1531.
The ATP-binding cassette transporter A1 (ABCA1) is a key mediator of cellular cholesterol efflux and HDL maturation. ABCA1 mRNA has an unusually long 3’ untranslated region, which makes it highly susceptible to microRNA (miRNA) targeting and repression. As such, multiple miRNAs have been reported to directly target ABCA1, including miR-33a/b, miR-26, miR-106b, and miR-758. Many of these miRNAs participate in feed-forward or feedback networks in controlling cholesterol and lipid homeostasis. Antisense oligonucleotide-based inhibition of miR-33 was found to increase HDL-C levels and regress atherosclerosis in mice and non-human primates. In this edition of Circulation Research, two separate studies identified novel miRNA networks driven by nuclear receptor induced miR-144 targeting of ABCA1 and cholesterol efflux. The first study reports that miR-144 serves to buffer uncontrolled ABCA1 activation in response to high cholesterol states and liver X receptor (LXR) activation in macrophages and liver. The second study highlights the role of miR-144 and ABCA1 in promotion of bile acid secretion in response to farensoid X receptor (FXR) activation in the liver. These studies suggest that anti-miR-144, like anti-miR-33, could be a novel approach to targeting HDL and reverse cholesterol transport.
PMCID: PMC4043301  PMID: 23743223
8.  Adipose Modulation of High-Density Lipoprotein Cholesterol 
Circulation  2011;124(15):1602-1605.
PMCID: PMC3928975  PMID: 21986773
Editorials; high-density lipoprotein cholesterol; lipoproteins; obesity; adipose tissue; Reverse Cholesterol Transport
9.  Apolipoprotein A-I and cholesterol efflux: The good, the bad, and the modified 
Circulation research  2014;114(11):1681-1683.
PMCID: PMC4104775  PMID: 24855198
10.  Targeting High Density Lipoproteins in the Prevention of Cardiovascular Disease? 
Current cardiology reports  2012;14(6):684-691.
Recent studies involving HDL-raising therapeutics have greatly changed our understanding of this field. Despite effectively raising HDL-C levels, niacin remains of uncertain clinical benefit. Synthetic niacin receptor agonists are unlikely to raise HDL-C or have other beneficial effects on plasma lipids. Despite the failure in phase 3 of two CETP inhibitors, two potent CETP inhibitors that raise HDL-C levels by > 100% (and reduce LDL-C substantially) are in late stage clinical development. Infusions of recombinant HDL containing ‘wild-type’ apoA-I or apoA-I Milano, as well as autologous delipidated HDL, all demonstrated promising early results and remain in clinical development. A small molecule that causes upregulation of endogenous apoA-I production is also in clinical development. Finally, upregulation of macrophage cholesterol efflux pathways through agonism of liver X receptors or antagonism of miR-33 remains of substantial interest. The field of HDL therapeutics is poised to transition from the ‘HDL-cholesterol hypothesis’ to the ‘HDL flux hypothesis’ in which the impact on flux from macrophage to feces is deemed to be of greater therapeutic benefit than the increase in steady-state concentrations of HDL cholesterol.
PMCID: PMC3517174  PMID: 22991041
Lipids; HDL; reverse cholesterol transport; niacin; GPR109A; cholesteryl ester transfer protein; CETP; anacetrapib; torcetrapib; dalcetrapib; evacetrapib; apoA-I; recombinant HDL; RVX-208; Liver X receptor; miR-33; cardiovascular disease
11.  Differential Association of Plasma Angiopoietin-Like Proteins 3 and 4 with Lipid and Metabolic Traits 
ANGPTL3 and ANGPTL4 are secreted proteins that inhibit lipoprotein lipase (LPL) in vitro. Genetic variants at the ANGPTL3 and ANGPTL4 gene loci are significantly associated with plasma lipid traits. The aim of this study was to evaluate the association of plasma angiopoietin-like protein 3 (ANGPTL3) and 4 (ANGPTL4) concentrations with lipid and metabolic traits in a large community-based sample.
Approach and Results
Plasma ANGPTL3 and ANGPTL4 levels were measured in 1770 subjects using a validated ELISA assay. A Pearson unadjusted correlation analysis and a linear regression analysis adjusting for age, gender and race were performed. ANGPTL3 levels were significantly positively associated with low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) levels (both P < 2 ×10−5) but not triglycerides. In contrast, ANGPTL4 levels were significantly negatively associated with LDL-C and HDL-C (both P < 2 × 10−5) and positively associated with triglycerides (P=0.003). In addition, ANGPTL4, but not ANGPTL3, levels were significantly positively associated with fasting blood glucose and metabolic syndrome.
Despite having similar biochemical effects in vitro, plasma ANGPTL3 and ANGPTL4 concentrations have nearly opposite relationships with plasma lipids. ANGPTL4 is strongly negatively associated with LDL-C and HDL-C and positively with multiple features of the metabolic syndrome including triglycerides, whereas ANGPTL3 is positively associated with LDL-C and HDL-C and not with metabolic syndrome traits including triglycerides. While ANGPTL3 and ANGPTL4 both inhibit LPL in vitro and influence lipoprotein metabolism in vivo, the physiology of these related proteins and their effects on lipoproteins is clearly divergent and complex.
PMCID: PMC4104779  PMID: 24626437
Angiopoietin-Like Protein 3; Angiopoietin-Like Protein 4; lipid metabolism; low-density lipoprotein cholesterol; high-density lipoprotein cholesterol; triglycerides; epidemiology; lipids; lipoproteins; metabolic syndrome; diabetes mellitus
12.  Robust passive and active efflux of cellular cholesterol to a designer functional mimic of high density lipoprotein 
Journal of Lipid Research  2015;56(5):972-985.
The ability of HDL to support macrophage cholesterol efflux is an integral part of its atheroprotective action. Augmenting this ability, especially when HDL cholesterol efflux capacity from macrophages is poor, represents a promising therapeutic strategy. One approach to enhancing macrophage cholesterol efflux is infusing blood with HDL mimics. Previously, we reported the synthesis of a functional mimic of HDL (fmHDL) that consists of a gold nanoparticle template, a phospholipid bilayer, and apo A-I. In this work, we characterize the ability of fmHDL to support the well-established pathways of cellular cholesterol efflux from model cell lines and primary macrophages. fmHDL received cell cholesterol by unmediated (aqueous) and ABCG1- and scavenger receptor class B type I (SR-BI)-mediated diffusion. Furthermore, the fmHDL holoparticle accepted cholesterol and phospholipid by the ABCA1 pathway. These results demonstrate that fmHDL supports all the cholesterol efflux pathways available to native HDL and thus, represents a promising infusible therapeutic for enhancing macrophage cholesterol efflux. fmHDL accepts cholesterol from cells by all known pathways of cholesterol efflux: unmediated, ABCG1- and SR-BI-mediated diffusion, and through ABCA1.
PMCID: PMC4409287  PMID: 25652088
ATP-binding cassette transporter A1; atherosclerosis; macrophages; cholesterol efflux; ATP-binding cassette transporter G1; scavenger receptor class B type I
13.  Exome Sequencing in Suspected Monogenic Dyslipidemias 
Exome sequencing is a promising tool for gene mapping in Mendelian disorders. We utilized this technique in an attempt to identify novel genes underlying monogenic dyslipidemias.
Methods and Results
We performed exome sequencing on 213 selected family members from 41 kindreds with suspected Mendelian inheritance of extreme levels of low-density lipoprotein (LDL) cholesterol (after candidate gene sequencing excluded known genetic causes for high LDL cholesterol families) or high-density lipoprotein (HDL) cholesterol. We used standard analytic approaches to identify candidate variants and also assigned a polygenic score to each individual in order to account for their burden of common genetic variants known to influence lipid levels. In nine families, we identified likely pathogenic variants in known lipid genes (ABCA1, APOB, APOE, LDLR, LIPA, and PCSK9); however, we were unable to identify obvious genetic etiologies in the remaining 32 families despite follow-up analyses. We identified three factors that limited novel gene discovery: (1) imperfect sequencing coverage across the exome hid potentially causal variants; (2) large numbers of shared rare alleles within families obfuscated causal variant identification; and (3) individuals from 15% of families carried a significant burden of common lipid-related alleles, suggesting complex inheritance can masquerade as monogenic disease.
We identified the genetic basis of disease in nine of 41 families; however, none of these represented novel gene discoveries. Our results highlight the promise and limitations of exome sequencing as a discovery technique in suspected monogenic dyslipidemias. Considering the confounders identified may inform the design of future exome sequencing studies.
PMCID: PMC4406825  PMID: 25632026
genetics; human; DNA sequencing; Exome sequencing; lipids; Mendelian Genetics
14.  Genetic manipulation of the ApoF/Stat2 locus supports an important role for Type I Interferon signaling in atherosclerosis 
Atherosclerosis  2014;233(1):234-241.
Apolipoprotein F (ApoF) is a sialoglycoprotein that is a component of the HDL and LDL fractions of human serum. We sought to test the hypothesis that ApoF plays an important role in atherosclerosis in mice by modulating lipoprotein function. Atherosclerosis was assessed in male low density lipoprotein receptor knockout (LDLR KO) and ApoF/LDLR double knockout (DKO) mice fed a Western diet for 16 weeks. ApoF/LDLR DKO mice showed a 39% reduction in lesional area by en face analysis of aortas (p<0.05), despite no significant differences in plasma lipid parameters. ApoF KO mice had reduced expression of Interferon alpha (IFNα) responsive genes in liver and spleen, as well as impaired macrophage activation. Interferon alpha induced gene 27 like 2a (Ifi27l2a), Oligoadenylate synthetases 2 and 3 (Oas2 and Oas3) were significantly reduced in the ApoF KO mice relative to wild type controls. These effects were attributable to hypomorphic expression of Stat2 in the ApoF KO mice, a critical gene in the Type I IFN pathway that is situated just 425 base pairs downstream of ApoF. These studies implicate STAT2 as a potentially important player in atherosclerosis, and support the growing evidence that the Type I IFN pathway may contribute to this complex disease.
PMCID: PMC3936605  PMID: 24529150
ApoF; STAT2; Atherosclerosis; Type I IFN
15.  Systematic Cell-Based Phenotyping of Missense Alleles Empowers Rare Variant Association Studies: A Case for LDLR and Myocardial Infarction 
PLoS Genetics  2015;11(2):e1004855.
A fundamental challenge to contemporary genetics is to distinguish rare missense alleles that disrupt protein functions from the majority of alleles neutral on protein activities. High-throughput experimental tools to securely discriminate between disruptive and non-disruptive missense alleles are currently missing. Here we establish a scalable cell-based strategy to profile the biological effects and likely disease relevance of rare missense variants in vitro. We apply this strategy to systematically characterize missense alleles in the low-density lipoprotein receptor (LDLR) gene identified through exome sequencing of 3,235 individuals and exome-chip profiling of 39,186 individuals. Our strategy reliably identifies disruptive missense alleles, and disruptive-allele carriers have higher plasma LDL-cholesterol (LDL-C). Importantly, considering experimental data refined the risk of rare LDLR allele carriers from 4.5- to 25.3-fold for high LDL-C, and from 2.1- to 20-fold for early-onset myocardial infarction. Our study generates proof-of-concept that systematic functional variant profiling may empower rare variant-association studies by orders of magnitude.
Author Summary
Exome sequencing has proven powerful to identify protein-coding variation across the human genome, unravel the basis of monogenic diseases and discover rare alleles that confer risk for complex disease. Nevertheless, two key challenges limit its application to complex phenotypes: first, most alleles identified in a population are extremely rare; and second, most alleles are neutral on protein activities. Consequently, association tests that rely on enumerating rare alleles in cases and controls (termed rare variant association studies, RVAS) are typically underpowered, as the many neutral alleles dampen signals that arise from the few alleles that disrupt protein functions. Strategies to securely discriminate disruptive from neutral variants are immature, in particular for missense variants. Here we show that the statistical power of RVAS improves dramatically if variants are stratified according to their in vitro ascertained functions. We establish scalable technology to objectively profile the biological effects of exome-identified missense variants in the low-density lipoprotein receptor (LDLR) through systematic overexpression and complementation experiments in cells. We demonstrate that carriers of LDLR alleles, which our experiments identify as “disruptive-missense”, have higher plasma LDL-C, and that considering in vitro data may make it possible to reduce RVAS sample sizes by more than 2-fold.
PMCID: PMC4409815  PMID: 25647241
16.  Genetic Basis of Atherosclerosis: Insights from Mice and Humans 
Circulation Research  2012;110(2):337-355.
Atherosclerosis is a complex and heritable disease involving multiple cell types and the interactions of many different molecular pathways. The genetic and molecular mechanisms of atherosclerosis have in part been elucidated by mouse models; at least 100 different genes have been shown to influence atherosclerosis in mice. Importantly, unbiased genome-wide association studies have recently identified a number of novel loci robustly associated with atherosclerotic coronary artery disease (CAD). Here we review the genetic data elucidated from mouse models of atherosclerosis, as well as significant associations for human CAD. Furthermore, we discuss in greater detail some of these novel human CAD loci. The combination of mouse and human genetics has the potential to identify and validate novel genes that influence atherosclerosis, some of which may be candidates for new therapeutic approaches.
PMCID: PMC3357004  PMID: 22267839
CAD; Lipids; Mice; GWAS; Genome-wide
17.  IL-1 and atherosclerosis: a murine twist to an evolving human story 
Inflammation is a critical component of atherosclerosis. IL-1 is a classic proinflammatory cytokine that has been linked to atherosclerosis. A clinical trial has been launched in which an antibody specific for IL-1β is being studied for its effects on cardiovascular events in patients with atherosclerosis. In this issue of the JCI, Alexander et al. report that mice lacking the receptor for IL-1 unexpectedly have features of advanced atherosclerosis that suggest the atherosclerotic plaques may be less stable. These findings illustrate the complexity of inflammatory pathways in atherosclerosis and suggest the need for careful calibration of antiinflammatory approaches to atherosclerosis.
PMCID: PMC3248309  PMID: 22201674
18.  CPAP, Weight Loss, or Both for Obstructive Sleep Apnea 
The New England journal of medicine  2014;370(24):2265-2275.
Obesity and obstructive sleep apnea tend to coexist and are associated with inflammation, insulin resistance, dyslipidemia, and high blood pressure, but their causal relation to these abnormalities is unclear.
We randomly assigned 181 patients with obesity, moderate-to-severe obstructive sleep apnea, and serum levels of C-reactive protein (CRP) greater than 1.0 mg per liter to receive treatment with continuous positive airway pressure (CPAP), a weight-loss intervention, or CPAP plus a weight-loss intervention for 24 weeks. We assessed the incremental effect of the combined interventions over each one alone on the CRP level (the primary end point), insulin sensitivity, lipid levels, and blood pressure.
Among the 146 participants for whom there were follow-up data, those assigned to weight loss only and those assigned to the combined interventions had reductions in CRP levels, insulin resistance, and serum triglyceride levels. None of these changes were observed in the group receiving CPAP alone. Blood pressure was reduced in all three groups. No significant incremental effect on CRP levels was found for the combined interventions as compared with either weight loss or CPAP alone. Reductions in insulin resistance and serum triglyceride levels were greater in the combined-intervention group than in the group receiving CPAP only, but there were no significant differences in these values between the combined-intervention group and the weight-loss group. In per-protocol analyses, which included 90 participants who met prespecified criteria for adherence, the combined interventions resulted in a larger reduction in systolic blood pressure and mean arterial pressure than did either CPAP or weight loss alone.
In adults with obesity and obstructive sleep apnea, CPAP combined with a weight-loss intervention did not reduce CRP levels more than either intervention alone. In secondary analyses, weight loss provided an incremental reduction in insulin resistance and serum triglyceride levels when combined with CPAP. In addition, adherence to a regimen of weight loss and CPAP may result in incremental reductions in blood pressure as compared with either intervention alone.
PMCID: PMC4138510  PMID: 24918371
19.  Biodistribution of AAV8 Vectors Expressing Human Low-Density Lipoprotein Receptor in a Mouse Model of Homozygous Familial Hypercholesterolemia 
Recombinant adeno-associated viral vectors based on serotype 8 (AAV8) transduce liver with superior tropism following intravenous (IV) administration. Previous studies conducted by our lab demonstrated that AAV8-mediated transfer of the human low-density lipoprotein receptor (LDLR) gene driven by a strong liver-specific promoter (thyroxin-binding globulin [TBG]) leads to high level and persistent gene expression in the liver. The approach proved efficacious in reducing plasma cholesterol levels and resulted in the regression of atherosclerotic lesions in a murine model of homozygous familial hypercholesterolemia (hoFH). Prior to advancing this vector, called AAV8.TBG.hLDLR, to the clinic, we set out to investigate vector biodistribution in an hoFH mouse model following IV vector administration to assess the safety profile of this investigational agent. Although AAV genomes were present in all organs at all time points tested (up to 180 days), vector genomes were sequestered mainly in the liver, which contained levels of vector 3 logs higher than that found in other organs. In both sexes, the level of AAV genomes gradually declined and appeared to stabilize 90 days post vector administration in most organs although vector genomes remained high in liver. Vector loads in the circulating blood were high and close to those in liver at the early time point (day 3) but rapidly decreased to a level close to the limit of quantification of the assay. The results of this vector biodistribution study further support a proposed clinical trial to evaluate AAV8 gene therapy for hoFH patients.
PMCID: PMC4003465  PMID: 24070336
20.  Hepatic sortilin regulates both apolipoprotein B secretion and LDL catabolism 
The Journal of Clinical Investigation  2012;122(8):2807-2816.
Genome-wide association studies (GWAS) have identified a genetic variant at a locus on chromosome 1p13 that is associated with reduced risk of myocardial infarction, reduced plasma levels of LDL cholesterol (LDL-C), and markedly increased expression of the gene sortilin-1 (SORT1) in liver. Sortilin is a lysosomal sorting protein that binds ligands both in the Golgi apparatus and at the plasma membrane and traffics them to the lysosome. We previously reported that increased hepatic sortilin expression in mice reduced plasma LDL-C levels. Here we show that increased hepatic sortilin not only reduced hepatic apolipoprotein B (APOB) secretion, but also increased LDL catabolism, and that both effects were dependent on intact lysosomal targeting. Loss-of-function studies demonstrated that sortilin serves as a bona fide receptor for LDL in vivo in mice. Our data are consistent with a model in which increased hepatic sortilin binds intracellular APOB-containing particles in the Golgi apparatus as well as extracellular LDL at the plasma membrane and traffics them to the lysosome for degradation. We thus provide functional evidence that genetically increased hepatic sortilin expression both reduces hepatic APOB secretion and increases LDL catabolism, providing dual mechanisms for the very strong association between increased hepatic sortilin expression and reduced plasma LDL-C levels in humans.
PMCID: PMC3408750  PMID: 22751103
21.  High-Density Lipoprotein Hydrolysis by Endothelial Lipase Activates PPARα 
Circulation research  2006;98(4):490-498.
Although high-density lipoprotein (HDL) is known to inhibit endothelial adhesion molecule expression, the mechanism for this anti-inflammatory effect remains obscure. Surprisingly, we observed that HDL no longer decreased adhesion of U937 monocytoid cells to tumor necrosis factor (TNF)α-stimulated human endothelial cells (EC) in the presence of the general lipase inhibitor tetrahydrolipstatin. In considering endothelial mechanisms responsible for this effect, we found that endothelial lipase (EL) overexpression in both EC and non-EL–expressing NIH/3T3 mouse embryonic fibroblasts cells significantly decreased TNFα-induced VCAM1 expression and promoter activity in a manner dependent on HDL concentration and intact EL activity. Given recent evidence for lipolytic activation of peroxisome proliferator-activated receptors (PPARs)—nuclear receptors implicated in metabolism, atherosclerosis, and inflammation—we hypothesized HDL hydrolysis by EL is an endogenous endothelial mechanism for PPAR activation. In both EL-transfected NIH cells and bovine EC, HDL significantly increased PPAR ligand binding domain activation in the order PPAR-α≫-γ>-δ. Moreover, HDL stimulation induced expression of the canonical PPARα-target gene acyl-CoA-oxidase (ACO) in a PPARα-dependent manner in ECs. Conditioned media from EL-adenovirus transfected cells but not control media exposed to HDL also activated PPARα. PPARα activation by EL was most potent with HDL as a substrate, with lesser effects on LDL and VLDL. Finally, HDL inhibited leukocyte adhesion to TNFα-stimulated ECs isolated from wild-type but not PPARα-deficient mice. This data establishes HDL hydrolysis by EL as a novel, distinct natural pathway for PPARα activation and identifies a potential mechanism for HDL-mediated repression of VCAM1 expression, with significant implications for both EL and PPARs in inflammation and vascular biology.
PMCID: PMC4231787  PMID: 16439686
adhesion molecules; endothelial cells; HDL cholesterol; high-density lipoproteins; lipase; PPARs; transcriptional regulation
22.  PPARα activation promotes macrophage reverse cholesterol transport through an LXR-dependent pathway 
Peroxisome proliferator-activate receptorα (PPARα) activation has been shown in vitro to increase macrophage cholesterol efflux, the initial step in reverse cholesterol transport (RCT). However, it remains unclear whether PPARα activation promotes macrophage RCT in vivo.
Methods and Results
We demonstrated that a specific potent PPARα agonist GW7647 inhibited atherosclerosis and promoted macrophage RCT in hypercholesterolemic mice expressing the human apoA-I gene. We compared the effect of GW7647 on RCT in human apoA-I transgenic (hA-ITg) mice with wild-type (WT) mice and showed that the PPARα agonist promoted RCT in hA-ITg mice to a much greater extent than in WT mice, indicating that human apoA-I expression is important for PPARα-induced RCT. We further investigated the dependence of the macrophage PPARα-LXR pathway on the promotion of RCT by GW7647. Primary murine macrophages lacking PPARα or LXR abolished the ability of GW7647 to promote RCT in hA-ITg mice. In concert, the PPARα agonist promoted cholesterol efflux and ABCA1/ABCG1 expression in primary macrophages and this was also by the PPARα-LXR pathway.
Our observations demonstrate that a potent PPARα agonist promotes macrophage RCT in vivo in a manner that is enhanced by human apoA-I expression and dependent on both macrophage PPARα and LXR expression.
PMCID: PMC3202300  PMID: 21441141
PPARα; LXR; cholesterol efflux; reverse cholesterol transport; apolipoprotein A-I
23.  Diabetes Reduces Bone Marrow and Circulating Porcine Endothelial Progenitor Cells, an Effect Ameliorated by Atorvastatin and Independent of Cholesterol 
Bone marrow derived endothelial progenitor cells (EPCs) are early precursors of mature endothelial cells which replenish aging and damaged endothelial cells. The authors studied a diabetic swine model to determine if induction of DM adversely affects either bone marrow or circulating EPCs and whether a HMG-CoA reductase inhibitor (statin) improves development and recruitment of EPCs in the absence of cholesterol lowering. Streptozotocin was administered to Yorkshire pigs to induce DM. One month after induction, diabetic pigs were treated with atorvastatin (statin, n = 10), ezetimibe (n = 10) or untreated (n = 10) and evaluated for number of bone marrow and circulating EPCs and femoral artery endothelial function. There was no effect of either medication on cholesterol level. One month after induction of DM prior to administration of drugs, the number of bone marrow and circulating EPCs significantly decreased (P < 0.0001) compared to baseline. Three months after DM induction, the mean proportion of circulating EPCs significantly increased in the atorvastatin group, but not in the control or ezetimibe groups. The control group showed progressive reduction in percentage of flow mediated vasodilatation (no dilatation at 3 months) whereas the atorvastatin group and ezetimibe exhibited vasodilatation, 6% and 4% respectively. DM results in significant impairment of bone marrow and circulating EPCs as well as endothelial function. The effect is ameliorated, in part, by atorvastatin independent of its cholesterol lowering effect. These data suggest a model wherein accelerated atherosclerosis seen with DM may, in part, result from reduction in EPCs which may be ameliorated by treatment with a statin.
PMCID: PMC4221094  PMID: 19051240
diabetes mellitus; endothelium; endothelial progenitor cells; statin; inflammation; cytometry
24.  Monogenic causes of elevated HDL cholesterol and implications for development of new therapeutics 
Clinical lipidology  2013;8(6):635-648.
Identification of the CETP, LIPG (encoding endothelial lipase) and APOC3 genes, and ana lysis of rare genetic variants in them, have allowed researchers to increase understanding of HDL metabolism significantly. However, development of cardiovascular risk-reducing therapeutics targeting the proteins encoded by these genes has been less straightforward. The failure of two CETP inhibitors is complex but illustrates a possible over-reliance on HDL cholesterol as a marker of therapeutic efficacy. The case of endothelial lipase exemplifies the importance of utilizing population-wide genetic studies of rare variants in potential therapeutic targets to gain information on cardiovascular disease end points. Similar population-wide studies of cardiovascular end points make apoC-III a potentially attractive target for lipid-related drug discovery. These three cases illustrate the positives and negatives of single-gene studies relating to HDL-related cardiovascular drug discovery; such studies should focus not only on HDL cholesterol and other components of the lipid profile, but also on the effect genetic variants have on cardiovascular end points.
PMCID: PMC4217288  PMID: 25374625
anacetrapib; apoC-III; CETP; cholesterol; dalcetrapib; endothelial lipase; evacetrapib; genetics; HDL; ISI-APOCIIIRX; torcetrapib
25.  Anti-oxidative and cholesterol efflux capacities of high-density lipoprotein are reduced in ischaemic cardiomyopathy 
European Journal of Heart Failure  2013;15(11):1215-1219.
Various pathological changes lead to the development of heart failure (HF). HDL is dysfunctional in both acute coronary syndrome, as measured by the HDL inflammatory index (HII) assay, and stable coronary disease, as measured by cholesterol efflux capacity. We therefore hypothesized that these functions of HDL are also impaired in subjects with ischaemic cardiomyopathy.
Methods and results
A case–control study was performed on subjects in the University of Pennsylvania Catheterization Study (PennCath) cohort of patients with angina. Cases had EF <50% and angiographic CAD (≥70% stenosis of any vessel; n = 23); controls included those with EF ≥55% and no CAD (n = 46). Serum from subjects was apolipoprotein-B depleted to isolate an HDL fraction. To measure HDL anti-oxidative capacity, the HDL fraction was incubated with LDL and a reporter lipid that fluoresces when oxidized. To measure cholesterol efflux capacity, the HDL fraction was also incubated with macrophages and tritium-labelled cholesterol. Mean HII was higher and efflux capacity lower in subjects with ischaemic cardiomyopathy (HII 0.26 vs. –0.028; efflux 0.80 vs. 0.92; P < 0.05). In a multivariable logistic regression model, both high HII and low efflux capacity were significant risk factors for HF [HII odds ratio (OR) 2.8, 95% confidence interval (CI) 2.0–3.9, P = 0.002; efflux OR 2.1, 95% CI 1.5–3.0, P = 0.03]. These effects persisted after adjustment for covariates and traditional risk factors for HF.
Subjects with reduced EF from ischaemia have lower HDL concentration and also impaired HDL function. HDL is a versatile lipoprotein particle with various anti-inflammatory and vasoprotective functions, whose impairment may contribute to ischaemic heart failure.
PMCID: PMC3888304  PMID: 23709232
Heart failure; Coronary artery disease; HDL cholesterol

Results 1-25 (151)