Search tips
Search criteria

Results 1-7 (7)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Pharmacogenetics of Oral Antidiabetic Drugs 
Oral antidiabetic drugs (OADs) are used for more than a half-century in the treatment of type 2 diabetes. Only in the last five years, intensive research has been conducted in the pharmacogenetics of these drugs based mainly on the retrospective register studies, but only a handful of associations detected in these studies were replicated. The gene variants in CYP2C9, ABCC8/KCNJ11, and TCF7L2 were associated with the effect of sulfonylureas. CYP2C9 encodes sulfonylurea metabolizing cytochrome P450 isoenzyme 2C9, ABCC8 and KCNJ11 genes encode proteins constituting ATP-sensitive K+ channel which is a therapeutic target for sulfonylureas, and TCF7L2 is a gene with the strongest association with type 2 diabetes. SLC22A1, SLC47A1, and ATM gene variants were repeatedly associated with the response to metformin. SLC22A1 and SLC47A1 encode metformin transporters OCT1 and MATE1, respectively. The function of a gene variant near ATM gene identified by a genome-wide association study is not elucidated so far. The first variant associated with the response to gliptins is a polymorphism in the proximity of CTRB1/2 gene which encodes chymotrypsinogen. Establishment of diabetes pharmacogenetics consortia and reduction in costs of genomics might lead to some significant clinical breakthroughs in this field in a near future.
PMCID: PMC3845331  PMID: 24324494
2.  Molecular mechanism of action of metformin: old or new insights? 
Diabetologia  2013;56:1898-1906.
Metformin is the first-line drug treatment for type 2 diabetes. Globally, over 100 million patients are prescribed this drug annually. Metformin was discovered before the era of target-based drug discovery and its molecular mechanism of action remains an area of vigorous diabetes research. An improvement in our understanding of metformin’s molecular targets is likely to enable target-based identification of second-generation drugs with similar properties, a development that has been impossible up to now. The notion that 5' AMP-activated protein kinase (AMPK) mediates the anti-hyperglycaemic action of metformin has recently been challenged by genetic loss-of-function studies, thrusting the AMPK-independent effects of the drug into the spotlight for the first time in more than a decade. Key AMPK-independent effects of the drug include the mitochondrial actions that have been known for many years and which are still thought to be the primary site of action of metformin. Coupled with recent evidence of AMPK-independent effects on the counter-regulatory hormone glucagon, new paradigms of AMPK-independent drug action are beginning to take shape. In this review we summarise the recent research developments on the molecular action of metformin.
PMCID: PMC3737434  PMID: 23835523
AMPK; Biguanide; Energy metabolism; Gluconeogenesis; LKB1; Mitochondrial respiration; Organic cation transporter; Review; Type 2 diabetes
3.  Paradoxical Lower Serum Triglyceride Levels and Higher Type 2 Diabetes Mellitus Susceptibility in Obese Individuals with the PNPLA3 148M Variant 
PLoS ONE  2012;7(6):e39362.
Obesity is highly associated with elevated serum triglycerides, hepatic steatosis and type 2 diabetes (T2D). The I148M (rs738409) genetic variant of patatin-like phospholipase domain-containing 3 gene (PNPLA3) is known to modulate hepatic triglyceride accumulation, leading to steatosis. No association between PNPLA3 I148M genotype and T2D in Europeans has been reported. Aim of this study is to examine the relationship between PNPLA3 I148M genotypes and serum triglycerides, insulin resistance and T2D susceptibility by testing a gene-environment interaction model with severe obesity.
Methods and Findings
PNPLA3 I148M was genotyped in a large obese cohort, the SOS study (n = 3,473) and in the Go-DARTS (n = 15,448), a T2D case-control study. Metabolic parameters were examined across the PNPLA3 I148M genotypes in participants of the SOS study at baseline and at 2- and 10-year follow up after bariatric surgery or conventional therapy. The associations with metabolic parameters were validated in the Go-DARTS study. Serum triglycerides were found to be lower in the PNPLA3 148M carriers from the SOS study at baseline and from the Go-DARTS T2D cohort. An increased risk for T2D conferred by the 148M allele was found in the SOS study (O.R. 1.09, 95% C.I. 1.01-1.39, P = 0.040) and in severely obese individuals in the Go-DARTS study (O.R. 1.37, 95% C.I. 1.13-1.66, P = 0.001). The 148M allele was no longer associated with insulin resistance or T2D after bariatric surgery in the SOS study and no association with the 148M allele was observed in the less obese (BMI<35) individuals in the Go-DARTS study (P for interaction  = 0.002). This provides evidence for the obesity interaction with I48M allele and T2D risk in a large-scale cross-sectional and a prospective interventional study.
Severely obese individuals carrying the PNPLA3 148M allele have lower serum triglyceride levels, are more insulin resistant and more susceptible to T2D. This study supports the hypothesis that obesity-driven hepatic lipid accumulation may contribute to T2D susceptibility.
PMCID: PMC3377675  PMID: 22724004
4.  The FTO Gene is Associated with an Atherogenic Lipid Profile and Myocardial Infarction in Patients with Type 2 Diabetes: A Go-DARTS study 
Common variation in the Fat Mass and Obesity related (FTO) gene is associated with increased body fat and susceptibility to type 2 diabetes (T2D). We hypothesized that this would also associate with metabolic phenotypes of insulin resistance, and increased risk of cardiovascular morbidity and mortality.
Methods and Results
FTO rs9939609 genotype was determined in 4897 patients with T2D in the prospective Genetics of Diabetes Audit and Research Study in Tayside Scotland (Go-DARTS) study. The A allele was associated with lower plasma HDL cholesterol (mean difference 0.03 mmol/L, p=0.008), higher triglycerides (0.1 mmol/L, p=0.007), higher atherogenic index of plasma (0.03, p=0.003) and, as expected, increased BMI (0.77 kg/m2, p=8.8×10−6). During a mean follow up of 3.6 years the A allele was also associated with increased risk (HR 2.36, CI 1.49-3.74, p=0.0002) of fatal and non fatal myocardial infarction (total 324 events) in a model including baseline age, gender, prevalent myocardial infarction, smoking status, statin and insulin use. This association diminished but remained significant when obesity related traits such as BMI, glycated haemoglobin and lipid parameters were also included (HR 2.01 CI 1.18-3.45, p=0.011). There was a strong interaction of FTO genotype and statin use and cardiovascular outcome (p=0.001) such that cardiovascular morbidity and mortality was completely abrogated in individuals prescribed statins.
The increased fat mass in carriers of the A allele of rs9939609 of FTO is associated not only with increased risk of T2D, but also with an increase in atherogenic lipid profile, and myocardial infarction in these patients. This variant may therefore in future contribute to more effective targeting of specific preventative therapy.
PMCID: PMC3045745  PMID: 20031593
Genetics; Myocardial Infarction; Diabetes Mellitus
5.  Reduced-Function SLC22A1 Polymorphisms Encoding Organic Cation Transporter 1 and Glycemic Response to Metformin: A GoDARTS Study 
Diabetes  2009;58(6):1434-1439.
Metformin is actively transported into the liver by the organic cation transporter (OCT)1 (encoded by SLC22A1). In 12 normoglycemic individuals, reduced-function variants in SLC22A1 were shown to decrease the ability of metformin to reduce glucose excursion in response to oral glucose. We assessed the effect of two common loss-of-function polymorphisms in SLC22A1 on metformin response in a large cohort of patients with type 2 diabetes.
The Diabetes Audit and Research in Tayside Scotland (DARTS) database includes prescribing and biochemistry information and clinical phenotypes of all patients with diabetes within Tayside, Scotland, from 1992 onwards. R61C and 420del variants of SLC22A1 were genotyped in 3,450 patients with type 2 diabetes who were incident users of metformin. We assessed metformin response by modeling the maximum A1C reduction in 18 months after starting metformin and investigated whether a treatment target of A1C <7% was achieved. Sustained metformin effect on A1C between 6 and 42 months was also assessed, as was the time to metformin monotherapy failure. Covariates were SLC22A1 genotype, BMI, average drug dose, adherence, and creatinine clearance.
A total of 1,531 patients were identified with a definable metformin response. R61C and 420del variants did not affect the initial A1C reduction (P = 0.47 and P = 0.92, respectively), the chance of achieving a treatment target (P = 0.83 and P = 0.36), the average A1C on monotherapy up to 42 months (P = 0.44 and P = 0.75), or the hazard of monotherapy failure (P = 0.85 and P = 0.56).
The SLC22A1 loss-of-function variants, R61C and 420del, do not attenuate the A1C reduction achieved by metformin in patients with type 2 diabetes.
PMCID: PMC2682689  PMID: 19336679
6.  Genetic evidence that raised sex hormone binding globulin (SHBG) levels reduce the risk of type 2 diabetes 
Human Molecular Genetics  2009;19(3):535-544.
Epidemiological studies consistently show that circulating sex hormone binding globulin (SHBG) levels are lower in type 2 diabetes patients than non-diabetic individuals, but the causal nature of this association is controversial. Genetic studies can help dissect causal directions of epidemiological associations because genotypes are much less likely to be confounded, biased or influenced by disease processes. Using this Mendelian randomization principle, we selected a common single nucleotide polymorphism (SNP) near the SHBG gene, rs1799941, that is strongly associated with SHBG levels. We used data from this SNP, or closely correlated SNPs, in 27 657 type 2 diabetes patients and 58 481 controls from 15 studies. We then used data from additional studies to estimate the difference in SHBG levels between type 2 diabetes patients and controls. The SHBG SNP rs1799941 was associated with type 2 diabetes [odds ratio (OR) 0.94, 95% CI: 0.91, 0.97; P = 2 × 10−5], with the SHBG raising allele associated with reduced risk of type 2 diabetes. This effect was very similar to that expected (OR 0.92, 95% CI: 0.88, 0.96), given the SHBG-SNP versus SHBG levels association (SHBG levels are 0.2 standard deviations higher per copy of the A allele) and the SHBG levels versus type 2 diabetes association (SHBG levels are 0.23 standard deviations lower in type 2 diabetic patients compared to controls). Results were very similar in men and women. There was no evidence that this variant is associated with diabetes-related intermediate traits, including several measures of insulin secretion and resistance. Our results, together with those from another recent genetic study, strengthen evidence that SHBG and sex hormones are involved in the aetiology of type 2 diabetes.
PMCID: PMC2798726  PMID: 19933169
7.  Macrosomia and Hyperinsulinaemic Hypoglycaemia in Patients with Heterozygous Mutations in the HNF4A Gene 
PLoS Medicine  2007;4(4):e118.
Macrosomia is associated with considerable neonatal and maternal morbidity. Factors that predict macrosomia are poorly understood. The increased rate of macrosomia in the offspring of pregnant women with diabetes and in congenital hyperinsulinaemia is mediated by increased foetal insulin secretion. We assessed the in utero and neonatal role of two key regulators of pancreatic insulin secretion by studying birthweight and the incidence of neonatal hypoglycaemia in patients with heterozygous mutations in the maturity-onset diabetes of the young (MODY) genes HNF4A (encoding HNF-4α) and HNF1A/TCF1 (encoding HNF-1α), and the effect of pancreatic deletion of Hnf4a on foetal and neonatal insulin secretion in mice.
Methods and Findings
We examined birthweight and hypoglycaemia in 108 patients from families with diabetes due to HNF4A mutations, and 134 patients from families with HNF1A mutations. Birthweight was increased by a median of 790 g in HNF4A-mutation carriers compared to non-mutation family members (p < 0.001); 56% (30/54) of HNF4A-mutation carriers were macrosomic compared with 13% (7/54) of non-mutation family members (p < 0.001). Transient hypoglycaemia was reported in 8/54 infants with heterozygous HNF4A mutations, but was reported in none of 54 non-mutation carriers (p = 0.003). There was documented hyperinsulinaemia in three cases. Birthweight and prevalence of neonatal hypoglycaemia were not increased in HNF1A-mutation carriers. Mice with pancreatic β-cell deletion of Hnf4a had hyperinsulinaemia in utero and hyperinsulinaemic hypoglycaemia at birth.
HNF4A mutations are associated with a considerable increase in birthweight and macrosomia, and are a novel cause of neonatal hypoglycaemia. This study establishes a key role for HNF4A in determining foetal birthweight, and uncovers an unanticipated feature of the natural history of HNF4A-deficient diabetes, with hyperinsulinaemia at birth evolving to decreased insulin secretion and diabetes later in life.
HNF4A mutations were found to be associated with a considerable increase in birthweight and macrosomia, and were a cause of neonatal hypoglycaemia.
Editors' Summary
MODY, or maturity-onset diabetes of the young, is a particular subtype of diabetes; only a few percent of people with diabetes are thought to have this subtype. The condition comes about as a result of a mutation in one of six genes. Generally, people with MODY have high glucose (sugar) levels in the blood, and the typical symptoms of diabetes, such as increased thirst and urination, typically develop when the person is below the age of 25 y. Two of the genes that are known to cause MODY are mutant forms of HNF4A and HNF1A. The proteins that are encoded by these two genes control insulin levels produced by the pancreas; when these genes are mutated, not enough insulin is produced. Without enough insulin to control blood sugar, levels rise, leading to the symptoms of diabetes. However, MODY can be managed by many of the same interventions as other types of diabetes, such as diet, exercise, drug treatments, and insulin injections.
Why Was This Study Done?
Although the evidence shows that individuals who carry mutations in HNF4A and HNF1A do not produce enough insulin and therefore have higher glucose levels in their blood, there were some tantalizing suggestions from mouse experiments that this might not be the whole story. Specifically, the researchers suspected that during embryonic development, mutations in HNF4A or HNF1A might actually cause higher insulin levels. Too much insulin during development of a fetus is known to cause it to gain weight, resulting in a baby that is larger than the average size for its age. Larger babies are risky for both the baby and the mother. The researchers doing this study wanted to understand more precisely what the links were between the forms of MODY caused by HNF4A and HNF1A mutations, and birth-weight and blood-sugar levels.
What Did the Researchers Do and Find?
In this study, the researchers examined 15 families in which some family members had MODY caused by a mutation in HNF4A. They compared the birthweight for family members carrying the mutation (54 people) against the birthweight for those who did not (54 people). A similar comparison was done for 38 families in which some members had a different form of MODY, this time caused by a mutation in HNF1A. The results showed that the birthweight of family members who carried a mutation in HNF4A was, on average, 790 g higher than the birthweight of family members who didn't carry the mutation. Low blood-sugar levels at birth were also more common in people carrying the HNF4A mutation as compared to people who did not. However, the HNF1A mutation did not seem to be associated with greater birthweight or low blood-sugar levels at birth. Finally, in order to understand these findings further, the researchers created embryonic mice carrying mutations in the mouse equivalent of HNF4A. These embryos produced more insulin than normal mouse embryos and, after birth, were more likely to have low blood-sugar levels.
What Do These Findings Mean?
These findings show that there is a link between mutations in HNF4A, but not in HNF1A, and increased birthweight. The increase found in this study is quite substantial (a median weight of 4,660 g in the affected babies; a birthweight of more than 4,000 g is generally considered large). The results suggest that in human embryos with a mutated form of HNF4A, too much insulin is produced during development, causing faster growth and a higher chance of the baby being born with low blood-sugar levels. This is an unexpected finding, because later in life the HNF4A mutation causes lower insulin levels. Therefore, the biochemical pathways causing this type of MODY seem to be quite complicated, and further research will need to be done to fully understand them. Crucially, the research also suggests that pregnant women carrying HNF4A mutations should be closely followed to check their baby's growth and minimize the chance of complications. Doctors and families should also consider doing a genetic test for HNF4A if a baby has low blood-sugar levels and if there is a family history of diabetes; this would increase the chance of diagnosing MODY early.
Additional Information.
Please access these Web sites via the online version of this summary at 0040118.
In a related Perspective in PLoS Medicine, Benjamin Glaser discusses causes of type 2 diabetes mellitus in the context of this study's findings
The US National Institute of Diabetes and Digestive and Kidney Diseases has pages of information on different types of diabetes
Wikipedia has an entry on Maturity Onset Diabetes of the Young (MODY) (note that Wikipedia is an internet encyclopedia that anyone can edit)
Diabetes Research Department, Peninsula Medical School, Exeter, UK provides information for patients and doctors on genetic types of diabetes; the website is maintained by the research group carrying out this study
Information from the Centers for Disease Control and Prevention on diabetes and pregnancy
PMCID: PMC1845156  PMID: 17407387

Results 1-7 (7)