Search tips
Search criteria

Results 1-10 (10)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  The Architecture of Gene Regulatory Variation across Multiple Human Tissues: The MuTHER Study 
PLoS Genetics  2011;7(2):e1002003.
While there have been studies exploring regulatory variation in one or more tissues, the complexity of tissue-specificity in multiple primary tissues is not yet well understood. We explore in depth the role of cis-regulatory variation in three human tissues: lymphoblastoid cell lines (LCL), skin, and fat. The samples (156 LCL, 160 skin, 166 fat) were derived simultaneously from a subset of well-phenotyped healthy female twins of the MuTHER resource. We discover an abundance of cis-eQTLs in each tissue similar to previous estimates (858 or 4.7% of genes). In addition, we apply factor analysis (FA) to remove effects of latent variables, thus more than doubling the number of our discoveries (1,822 eQTL genes). The unique study design (Matched Co-Twin Analysis—MCTA) permits immediate replication of eQTLs using co-twins (93%–98%) and validation of the considerable gain in eQTL discovery after FA correction. We highlight the challenges of comparing eQTLs between tissues. After verifying previous significance threshold-based estimates of tissue-specificity, we show their limitations given their dependency on statistical power. We propose that continuous estimates of the proportion of tissue-shared signals and direct comparison of the magnitude of effect on the fold change in expression are essential properties that jointly provide a biologically realistic view of tissue-specificity. Under this framework we demonstrate that 30% of eQTLs are shared among the three tissues studied, while another 29% appear exclusively tissue-specific. However, even among the shared eQTLs, a substantial proportion (10%–20%) have significant differences in the magnitude of fold change between genotypic classes across tissues. Our results underline the need to account for the complexity of eQTL tissue-specificity in an effort to assess consequences of such variants for complex traits.
Author Summary
Regulation of gene expression is a fundamental cellular process determining a large proportion of the phenotypic variance. Previous studies have identified genetic loci influencing gene expression levels (eQTLs), but the complexity of their tissue-specific properties has not yet been well-characterized. In this study, we perform cis-eQTL analysis in a unique matched co-twin design for three human tissues derived simultaneously from the same set of individuals. The study design allows validation of the substantial discoveries we make in each tissue. We explore in depth the tissue-dependent features of regulatory variants and estimate the proportions of shared and specific effects. We use continuous measures of eQTL sharing to circumvent the statistical power limitations of comparing direct overlap of eQTLs in multiple tissues. In this framework, we demonstrate that 30% of eQTLs are shared among tissues, while 29% are exclusively tissue-specific. Furthermore, we show that the fold change in expression between eQTL genotypic classes differs between tissues. Even among shared eQTLs, we report a substantial proportion (10%–20%) of significant tissue differences in magnitude of these effects. The complexities we highlight here are essential for understanding the impact of regulatory variants on complex traits.
PMCID: PMC3033383  PMID: 21304890
2.  Assessment of Acute and Chronic Pharmacological Effects on Energy Expenditure and Macronutrient Oxidation in Humans: Responses to Ephedrine 
Journal of Obesity  2010;2011:210484.
Evidence of active brown adipose tissue in human adults suggests that this may become a pharmacological target to induce negative energy balance. We have explored whole-body indirect calorimetry to detect the metabolic effects of thermogenic drugs through administration of ephedrine hydrochloride and have assessed ephedrine's merits as a comparator compound in the evaluation of novel thermogenic agents. Volunteers randomly given ephedrine hydrochloride 15 mg QID (n = 8) or placebo (n = 6) were studied at baseline and after 1-2 and 14-15 days of treatment. We demonstrate that overnight or 23-hour, 2% energy expenditure (EE) and 5% fat (FO) or CHO oxidation effects are detectable both acutely and over 14 days. Compared to placebo, ephedrine increased EE and FO rates overnight (EE 63 kJ day 2, EE 105 kJ, FO 190 kJ, day 14), but not over 23 h. We conclude that modest energy expenditure and fat oxidation responses to pharmacological interventions can be confidently detected by calorimetry in small groups. Ephedrine should provide reliable data against which to compare novel thermogenic compounds.
PMCID: PMC2931375  PMID: 20847897
3.  ZBED6, a Novel Transcription Factor Derived from a Domesticated DNA Transposon Regulates IGF2 Expression and Muscle Growth 
PLoS Biology  2009;7(12):e1000256.
This study identifies a previously uncharacterized protein, encoded by a domesticated DNA transposon, called ZBED6 that regulates the expression of the insulin-like growth factor 2 (IGF2) gene, and possibly numerous others, in all placental mammals including human.
A single nucleotide substitution in intron 3 of IGF2 in pigs abrogates a binding site for a repressor and leads to a 3-fold up-regulation of IGF2 in skeletal muscle. The mutation has major effects on muscle growth, size of the heart, and fat deposition. Here, we have identified the repressor and find that the protein, named ZBED6, is previously unknown, specific for placental mammals, and derived from an exapted DNA transposon. Silencing of Zbed6 in mouse C2C12 myoblasts affected Igf2 expression, cell proliferation, wound healing, and myotube formation. Chromatin immunoprecipitation (ChIP) sequencing using C2C12 cells identified about 2,500 ZBED6 binding sites in the genome, and the deduced consensus motif gave a perfect match with the established binding site in Igf2. Genes associated with ZBED6 binding sites showed a highly significant enrichment for certain Gene Ontology classifications, including development and transcriptional regulation. The phenotypic effects in mutant pigs and ZBED6-silenced C2C12 myoblasts, the extreme sequence conservation, its nucleolar localization, the broad tissue distribution, and the many target genes with essential biological functions suggest that ZBED6 is an important transcription factor in placental mammals, affecting development, cell proliferation, and growth.
Author Summary
The molecular identification of genes and mutations affecting complex traits and disorders has proven to be very challenging in humans as well as in model organisms. These so-called quantitative traits arise from interactions between two or more genes and their environment, and can be mapped to their underlying genes via closely linked stretches of DNA called quantitative trait loci (QTL). Previously, we identified a single nucleotide substitution in a noncoding region of the insulin-like growth factor 2 gene (IGF2) in pigs that is underlying a major QTL affecting muscle growth, heart size, and fat deposition. The mutation disrupts interaction with an unknown nuclear protein acting as a repressor of IGF2 transcription. In the present study, we have isolated a zinc finger protein of unknown function and show that it regulates the expression of IGF2. The protein, which we named ZBED6, is encoded by a domesticated DNA transposon that was inserted into the genome prior to the radiation of placental mammals. ZBED6 is exclusive to placental mammals and highly conserved among species. Our functional characterization of ZBED6 shows that it has a broad tissue distribution and may affect the expression of thousands of other genes, besides IGF2, that control fundamental biological processes. We postulate that ZBED6 is an important transcription factor affecting development, cell proliferation, and growth in placental mammals.
PMCID: PMC2780926  PMID: 20016685
4.  Intracellular Serotonin Modulates Insulin Secretion from Pancreatic β-Cells by Protein Serotonylation 
PLoS Biology  2009;7(10):e1000229.
Non-neuronal, peripheral serotonin deficiency causes diabetes mellitus and identifies an intracellular role for serotonin in the regulation of insulin secretion.
While serotonin (5-HT) co-localization with insulin in granules of pancreatic β-cells was demonstrated more than three decades ago, its physiological role in the etiology of diabetes is still unclear. We combined biochemical and electrophysiological analyses of mice selectively deficient in peripheral tryptophan hydroxylase (Tph1−/−) and 5-HT to show that intracellular 5-HT regulates insulin secretion. We found that these mice are diabetic and have an impaired insulin secretion due to the lack of 5-HT in the pancreas. The pharmacological restoration of peripheral 5-HT levels rescued the impaired insulin secretion in vivo. These findings were further evidenced by patch clamp experiments with isolated Tph1−/− β-cells, which clearly showed that the secretory defect is downstream of Ca2+-signaling and can be rescued by direct intracellular application of 5-HT via the clamp pipette. In elucidating the underlying mechanism further, we demonstrate the covalent coupling of 5-HT by transglutaminases during insulin exocytosis to two key players in insulin secretion, the small GTPases Rab3a and Rab27a. This renders them constitutively active in a receptor-independent signaling mechanism we have recently termed serotonylation. Concordantly, an inhibition of such activating serotonylation in β-cells abates insulin secretion. We also observed inactivation of serotonylated Rab3a by enhanced proteasomal degradation, which is in line with the inactivation of other serotonylated GTPases. Our results demonstrate that 5-HT regulates insulin secretion by serotonylation of GTPases within pancreatic β-cells and suggest that intracellular 5-HT functions in various microenvironments via this mechanism in concert with the known receptor-mediated signaling.
Author Summary
Diabetes is the most prevalent metabolic disease and one that affects individuals of every social and economic status. The disease can arise as a result of reduced secretion of insulin from pancreatic β-cells or reduced action of insulin on its target organs. Therefore, understanding how to prevent and treat diabetes requires an extensive knowledge of the regulation of insulin secretion. In this study, we identify the hormone serotonin as a new regulator of insulin secretion and thereby attribute a function to the co-localization of serotonin and insulin in pancreatic β-cells that was first observed 30 years ago but until now not understood. We first demonstrate that a lack of serotonin in β-cells of transgenic mice leads to reduced insulin secretion and diabetes mellitus and that pharmacological replenishment of serotonin rescues insulin secretion in these mice. Interestingly, serotonin mainly acts not as an intercellular signaling molecule via its traditional surface receptors but intracellularly via regulation of the activity of target proteins through covalent coupling of serotonin to them. This coupling, called serotonylation, activates specific small GTPases, which in turn promote glucose-mediated insulin secretion. Adding this receptor-independent signaling mechanism to the multifarious regulatory functions of serotonin, we hypothesize that protein serotonylation modulates physiological secretion processes in all serotonin-containing tissues.
PMCID: PMC2760755  PMID: 19859528
5.  The V103I polymorphism of the MC4R gene and obesity: population based studies and meta-analysis of 29 563 individuals 
Previous studies have suggested that a variant in the melanocortin-4 receptor (MC4R) gene is important in protecting against common obesity. Larger studies are needed, however, to confirm this relation.
We assessed the association between the V103I polymorphism in the MC4R gene and obesity in three UK population based cohort studies, totalling 8,304 individuals. We also did a meta-analysis of relevant studies, involving 10,975 cases and 18,588 controls, to place our findings in context.
In an analysis of all studies, individuals carrying the isoleucine allele had an 18% (95% CI 4-30%, p=0·015) lower risk of obesity compared with noncarriers. There was no heterogeneity among studies and no apparent publication bias.
This study confirms that the V103I polymorphism protects against human obesity at a population level. As such it provides proof of principle that specific gene variants may, at least in part, explain susceptibility and resistance to common forms of human obesity. A better understanding of the mechanisms underlying this association will help determine whether changes in MC4R activity have therapeutic potential.
PMCID: PMC2683751  PMID: 17356525
6.  Defective peroxisomal proliferators activated receptor gamma activity due to dominant-negative mutation synergizes with hypertension to accelerate cardiac fibrosis in mice 
European Journal of Heart Failure  2009;11(6):533-541.
Humans with inactivating mutations in peroxisomal proliferators activated receptor gamma (PPARγ) typically develop a complex metabolic syndrome characterized by insulin resistance, diabetes, lipodystrophy, hypertension, and dyslipidaemia which is likely to increase their cardiovascular risk. Despite evidence that the activation of PPARγ may prevent cardiac fibrosis and hypertrophy, recent evidence has suggested that pharmacological activation of PPARγ causes increased cardiovascular mortality. In this study, we investigated the effects of defective PPARγ function on the development of cardiac fibrosis and hypertrophy in a murine model carrying a human dominant-negative mutation in PPARγ.
Methods and results
Mice with a dominant-negative point mutation in PPARγ (P465L) and their wild-type (WT) littermates were treated with either subcutaneous angiotensin II (AngII) infusion or saline for 2 weeks. Heterozygous P465L and WT mice developed a similar increase in systolic blood pressure, but the mutant mice developed significantly more severe cardiac fibrosis to AngII that correlated with increased expression of profibrotic genes. Both groups similarly increased the heart weight to body weight ratio compared with saline-treated controls. There were no differences in fibrosis between saline-treated WT and P465L mice.
These results show synergistic pathogenic effects between the presence of defective PPARγ and AngII-induced hypertension and suggest that patients with PPARγ mutation and hypertension may need more aggressive therapeutic measures to reduce the risk of accelerated cardiac fibrosis.
PMCID: PMC2686026  PMID: 19395708
Hypertension; Left ventricular hypertrophy; Interstitial fibrosis; Dominant-negative PPARγ; Lipodystrophy
7.  Dual Lipolytic Control of Body Fat Storage and Mobilization in Drosophila  
PLoS Biology  2007;5(6):e137.
Energy homeostasis is a fundamental property of animal life, providing a genetically fixed balance between fat storage and mobilization. The importance of body fat regulation is emphasized by dysfunctions resulting in obesity and lipodystrophy in humans. Packaging of storage fat in intracellular lipid droplets, and the various molecules and mechanisms guiding storage-fat mobilization, are conserved between mammals and insects. We generated a Drosophila mutant lacking the receptor (AKHR) of the adipokinetic hormone signaling pathway, an insect lipolytic pathway related to ß-adrenergic signaling in mammals. Combined genetic, physiological, and biochemical analyses provide in vivo evidence that AKHR is as important for chronic accumulation and acute mobilization of storage fat as is the Brummer lipase, the homolog of mammalian adipose triglyceride lipase (ATGL). Simultaneous loss of Brummer and AKHR causes extreme obesity and blocks acute storage-fat mobilization in flies. Our data demonstrate that storage-fat mobilization in the fly is coordinated by two lipocatabolic systems, which are essential to adjust normal body fat content and ensure lifelong fat-storage homeostasis.
Author Summary
The amount of body fat that an animal stores is a critical parameter for its survival. Although under-storage of fat creates risk during periods of famine, over-storage also impairs fitness—obesity in humans is associated with severe health threats, such as cardiovascular disease, type II diabetes, and cancer. A delicate balance between two antagonistic processes adjusts body fat storage: lipogenesis produces fat stores, and lipolysis mobilizes fat. It is unclear, however, how many regulatory systems orchestrate lipolysis in animals, whether these systems are evolutionarily conserved, and to what extent impaired lipolytic regulation contributes to excessive body fat accumulation. We show that in the fruit fly Drosophila, lipolysis is under dual control. Inactivation of either of the two control pathways generates flies with excessive fat accumulation and limited fat-mobilization capability. Mutant flies simultaneously lacking key genes of both lipolytic systems, however, are extremely obese and completely blocked in body fat mobilization even when fully food deprived. Interestingly, our study reveals that key components and regulatory mechanisms of lipolysis are evolutionarily conserved between insects and mammals, making the fruit fly a valuable model system for research on lipid metabolism.
Simultaneous loss of the receptor for adipokinetic hormone and the Brummer triglyceride lipase causes extreme obesity and blocks acute storage fat mobilization in flies.
PMCID: PMC1865564  PMID: 17488184
8.  System-Driven and Oscillator-Dependent Circadian Transcription in Mice with a Conditionally Active Liver Clock  
PLoS Biology  2007;5(2):e34.
The mammalian circadian timing system consists of a master pacemaker in neurons of the suprachiasmatic nucleus (SCN) and clocks of a similar molecular makeup in most peripheral body cells. Peripheral oscillators are self-sustained and cell autonomous, but they have to be synchronized by the SCN to ensure phase coherence within the organism. In principle, the rhythmic expression of genes in peripheral organs could thus be driven not only by local oscillators, but also by circadian systemic signals. To discriminate between these mechanisms, we engineered a mouse strain with a conditionally active liver clock, in which REV-ERBα represses the transcription of the essential core clock gene Bmal1 in a doxycycline-dependent manner. We examined circadian liver gene expression genome-wide in mice in which hepatocyte oscillators were either running or arrested, and found that the rhythmic transcription of most genes depended on functional hepatocyte clocks. However, we discovered 31 genes, including the core clock gene mPer2, whose expression oscillated robustly irrespective of whether the liver clock was running or not. By contrast, in liver explants cultured in vitro, circadian cycles of mPer2::luciferase bioluminescence could only be observed when hepatocyte oscillators were operational. Hence, the circadian cycles observed in the liver of intact animals without functional hepatocyte oscillators were likely generated by systemic signals. The finding that rhythmic mPer2 expression can be driven by both systemic cues and local oscillators suggests a plausible mechanism for the phase entrainment of subsidiary clocks in peripheral organs.
Author Summary
In contrast to previously held belief, molecular circadian oscillators are not restricted to specialized pacemaker tissues, such as the brain's suprachiasmatic nucleus (SCN), but exist in virtually all body cells. Although the circadian clocks operative in peripheral cell types are as robust as those residing in SCN neurons, they quickly become desynchronized in vitro due to variations in period length. Hence, in intact animals, the phase coherence between peripheral oscillators must be established by daily signals generated by the SCN master clock. Although the hierarchy between master and slave oscillators is now well established, the respective roles of these clocks in governing the circadian transcription program in a given organ have never been examined. In principle, the circadian expression of genes in a peripheral tissue could be driven either by cyclic systemic cues, by peripheral oscillators, or by both. In order to discriminate between genes regulated by local oscillators and systemic cues in liver, we generated mice in which hepatocyte clocks can be turned on and off at will. These studies suggest that 90% of the circadian transcription program in the liver is abolished or strongly attenuated when hepatocyte clocks are turned off, indicating that the expression of most circadian liver genes is orchestrated by local cellular clocks. The remaining 10% of cyclically expressed liver genes continue to be transcribed in a robustly circadian fashion in the absence of functional hepatocyte oscillators. These genes, which unexpectedly include the bona fide clock gene mPer2, must therefore be regulated by oscillating systemic signals, such as hormones, metabolites, or body temperature. Although temperature rhythms display only modest amplitudes, they appear to play a significant role in the phase entrainment of mPer2 transcription.
Research on mice engineered with an inducible liver clock enabled identification of some genes with expression controlled by the local clock, and other genes (includingmPer2) that maintained circadian oscillations thanks to cues from the SCN.
PMCID: PMC1783671  PMID: 17298173
9.  Conditional Expression of Smad7 in Pancreatic β Cells Disrupts TGF-β Signaling and Induces Reversible Diabetes Mellitus 
PLoS Biology  2006;4(2):e39.
Identification of signaling pathways that maintain and promote adult pancreatic islet functions will accelerate our understanding of organogenesis and improve strategies for treating diseases like diabetes mellitus. Previous work has implicated transforming growth factor-β (TGF-β) signaling as an important regulator of pancreatic islet development, but has not established whether this signaling pathway is required for essential islet functions in the adult pancreas. Here we describe a conditional system for expressing Smad7, a potent inhibitor of TGF-β signaling, to identify distinct roles for this pathway in adult and embryonic β cells. Smad7 expression in Pdx1 + embryonic pancreas cells resulted in striking embryonic β cell hypoplasia and neonatal lethality. Conditional expression of Smad7 in adult Pdx1 + cells reduced detectable β cell expression of MafA, menin, and other factors that regulate β cell function. Reduced pancreatic insulin content and hypoinsulinemia produced overt diabetes that was fully reversed upon resumption of islet TGF-β signaling. Thus, our studies reveal that TGF-β signaling is crucial for establishing and maintaining defining features of mature pancreatic β cells.
TGF-β signaling is known to regulate the development of pancreatic β cells; here the authors show that TGF-β is also required for the maintenance of β cell identity in the adult.
PMCID: PMC1351925  PMID: 16435884
10.  Nuclear Hormone Receptor NHR-49 Controls Fat Consumption and Fatty Acid Composition in C. elegans 
PLoS Biology  2005;3(2):e53.
Mammalian nuclear hormone receptors (NHRs), such as liver X receptor, farnesoid X receptor, and peroxisome proliferator-activated receptors (PPARs), precisely control energy metabolism. Consequently, these receptors are important targets for the treatment of metabolic diseases, including diabetes and obesity. A thorough understanding of NHR fat regulatory networks has been limited, however, by a lack of genetically tractable experimental systems. Here we show that deletion of the Caenorhabditis elegans NHR gene nhr-49 yielded worms with elevated fat content and shortened life span. Employing a quantitative RT-PCR screen, we found that nhr-49 influenced the expression of 13 genes involved in energy metabolism. Indeed, nhr-49 served as a key regulator of fat usage, modulating pathways that control the consumption of fat and maintain a normal balance of fatty acid saturation. We found that the two phenotypes of the nhr-49 knockout were linked to distinct pathways and were separable: The high-fat phenotype was due to reduced expression of enzymes in fatty acid β-oxidation, and the shortened adult life span resulted from impaired expression of a stearoyl-CoA desaturase. Despite its sequence relationship with the mammalian hepatocyte nuclear factor 4 receptor, the biological activities of nhr-49 were most similar to those of the mammalian PPARs, implying an evolutionarily conserved role for NHRs in modulating fat consumption and composition. Our findings in C. elegans provide novel insights into how NHR regulatory networks are coordinated to govern fat metabolism.
Deletion of the Caenorhabditis elegans gene nhr- 49 causes worms to accumulate fat and die younger; but these two phenotypes are a result of distinct and separable pathways
PMCID: PMC547972  PMID: 15719061

Results 1-10 (10)