PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (64)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
1.  Identification and Functional Characterization of G6PC2 Coding Variants Influencing Glycemic Traits Define an Effector Transcript at the G6PC2-ABCB11 Locus 
Mahajan, Anubha | Sim, Xueling | Ng, Hui Jin | Manning, Alisa | Rivas, Manuel A. | Highland, Heather M. | Locke, Adam E. | Grarup, Niels | Im, Hae Kyung | Cingolani, Pablo | Flannick, Jason | Fontanillas, Pierre | Fuchsberger, Christian | Gaulton, Kyle J. | Teslovich, Tanya M. | Rayner, N. William | Robertson, Neil R. | Beer, Nicola L. | Rundle, Jana K. | Bork-Jensen, Jette | Ladenvall, Claes | Blancher, Christine | Buck, David | Buck, Gemma | Burtt, Noël P. | Gabriel, Stacey | Gjesing, Anette P. | Groves, Christopher J. | Hollensted, Mette | Huyghe, Jeroen R. | Jackson, Anne U. | Jun, Goo | Justesen, Johanne Marie | Mangino, Massimo | Murphy, Jacquelyn | Neville, Matt | Onofrio, Robert | Small, Kerrin S. | Stringham, Heather M. | Syvänen, Ann-Christine | Trakalo, Joseph | Abecasis, Goncalo | Bell, Graeme I. | Blangero, John | Cox, Nancy J. | Duggirala, Ravindranath | Hanis, Craig L. | Seielstad, Mark | Wilson, James G. | Christensen, Cramer | Brandslund, Ivan | Rauramaa, Rainer | Surdulescu, Gabriela L. | Doney, Alex S. F. | Lannfelt, Lars | Linneberg, Allan | Isomaa, Bo | Tuomi, Tiinamaija | Jørgensen, Marit E. | Jørgensen, Torben | Kuusisto, Johanna | Uusitupa, Matti | Salomaa, Veikko | Spector, Timothy D. | Morris, Andrew D. | Palmer, Colin N. A. | Collins, Francis S. | Mohlke, Karen L. | Bergman, Richard N. | Ingelsson, Erik | Lind, Lars | Tuomilehto, Jaakko | Hansen, Torben | Watanabe, Richard M. | Prokopenko, Inga | Dupuis, Josee | Karpe, Fredrik | Groop, Leif | Laakso, Markku | Pedersen, Oluf | Florez, Jose C. | Morris, Andrew P. | Altshuler, David | Meigs, James B. | Boehnke, Michael | McCarthy, Mark I. | Lindgren, Cecilia M. | Gloyn, Anna L.
PLoS Genetics  2015;11(1):e1004876.
Genome wide association studies (GWAS) for fasting glucose (FG) and insulin (FI) have identified common variant signals which explain 4.8% and 1.2% of trait variance, respectively. It is hypothesized that low-frequency and rare variants could contribute substantially to unexplained genetic variance. To test this, we analyzed exome-array data from up to 33,231 non-diabetic individuals of European ancestry. We found exome-wide significant (P<5×10-7) evidence for two loci not previously highlighted by common variant GWAS: GLP1R (p.Ala316Thr, minor allele frequency (MAF)=1.5%) influencing FG levels, and URB2 (p.Glu594Val, MAF = 0.1%) influencing FI levels. Coding variant associations can highlight potential effector genes at (non-coding) GWAS signals. At the G6PC2/ABCB11 locus, we identified multiple coding variants in G6PC2 (p.Val219Leu, p.His177Tyr, and p.Tyr207Ser) influencing FG levels, conditionally independent of each other and the non-coding GWAS signal. In vitro assays demonstrate that these associated coding alleles result in reduced protein abundance via proteasomal degradation, establishing G6PC2 as an effector gene at this locus. Reconciliation of single-variant associations and functional effects was only possible when haplotype phase was considered. In contrast to earlier reports suggesting that, paradoxically, glucose-raising alleles at this locus are protective against type 2 diabetes (T2D), the p.Val219Leu G6PC2 variant displayed a modest but directionally consistent association with T2D risk. Coding variant associations for glycemic traits in GWAS signals highlight PCSK1, RREB1, and ZHX3 as likely effector transcripts. These coding variant association signals do not have a major impact on the trait variance explained, but they do provide valuable biological insights.
Author Summary
Understanding how FI and FG levels are regulated is important because their derangement is a feature of T2D. Despite recent success from GWAS in identifying regions of the genome influencing glycemic traits, collectively these loci explain only a small proportion of trait variance. Unlocking the biological mechanisms driving these associations has been challenging because the vast majority of variants map to non-coding sequence, and the genes through which they exert their impact are largely unknown. In the current study, we sought to increase our understanding of the physiological pathways influencing both traits using exome-array genotyping in up to 33,231 non-diabetic individuals to identify coding variants and consequently genes associated with either FG or FI levels. We identified novel association signals for both traits including the receptor for GLP-1 agonists which are a widely used therapy for T2D. Furthermore, we identified coding variants at several GWAS loci which point to the genes underlying these association signals. Importantly, we found that multiple coding variants in G6PC2 result in a loss of protein function and lower fasting glucose levels.
doi:10.1371/journal.pgen.1004876
PMCID: PMC4307976  PMID: 25625282
2.  Mendelian Randomization Studies Do Not Support a Causal Role for Reduced Circulating Adiponectin Levels in Insulin Resistance and Type 2 Diabetes 
Yaghootkar, Hanieh | Lamina, Claudia | Scott, Robert A. | Dastani, Zari | Hivert, Marie-France | Warren, Liling L. | Stancáková, Alena | Buxbaum, Sarah G. | Lyytikäinen, Leo-Pekka | Henneman, Peter | Wu, Ying | Cheung, Chloe Y.Y. | Pankow, James S. | Jackson, Anne U. | Gustafsson, Stefan | Zhao, Jing Hua | Ballantyne, Christie M. | Xie, Weijia | Bergman, Richard N. | Boehnke, Michael | el Bouazzaoui, Fatiha | Collins, Francis S. | Dunn, Sandra H. | Dupuis, Josee | Forouhi, Nita G. | Gillson, Christopher | Hattersley, Andrew T. | Hong, Jaeyoung | Kähönen, Mika | Kuusisto, Johanna | Kedenko, Lyudmyla | Kronenberg, Florian | Doria, Alessandro | Assimes, Themistocles L. | Ferrannini, Ele | Hansen, Torben | Hao, Ke | Häring, Hans | Knowles, Joshua W. | Lindgren, Cecilia M. | Nolan, John J. | Paananen, Jussi | Pedersen, Oluf | Quertermous, Thomas | Smith, Ulf | Lehtimäki, Terho | Liu, Ching-Ti | Loos, Ruth J.F. | McCarthy, Mark I. | Morris, Andrew D. | Vasan, Ramachandran S. | Spector, Tim D. | Teslovich, Tanya M. | Tuomilehto, Jaakko | van Dijk, Ko Willems | Viikari, Jorma S. | Zhu, Na | Langenberg, Claudia | Ingelsson, Erik | Semple, Robert K. | Sinaiko, Alan R. | Palmer, Colin N.A. | Walker, Mark | Lam, Karen S.L. | Paulweber, Bernhard | Mohlke, Karen L. | van Duijn, Cornelia | Raitakari, Olli T. | Bidulescu, Aurelian | Wareham, Nick J. | Laakso, Markku | Waterworth, Dawn M. | Lawlor, Debbie A. | Meigs, James B. | Richards, J. Brent | Frayling, Timothy M.
Diabetes  2013;62(10):3589-3598.
Adiponectin is strongly inversely associated with insulin resistance and type 2 diabetes, but its causal role remains controversial. We used a Mendelian randomization approach to test the hypothesis that adiponectin causally influences insulin resistance and type 2 diabetes. We used genetic variants at the ADIPOQ gene as instruments to calculate a regression slope between adiponectin levels and metabolic traits (up to 31,000 individuals) and a combination of instrumental variables and summary statistics–based genetic risk scores to test the associations with gold-standard measures of insulin sensitivity (2,969 individuals) and type 2 diabetes (15,960 case subjects and 64,731 control subjects). In conventional regression analyses, a 1-SD decrease in adiponectin levels was correlated with a 0.31-SD (95% CI 0.26–0.35) increase in fasting insulin, a 0.34-SD (0.30–0.38) decrease in insulin sensitivity, and a type 2 diabetes odds ratio (OR) of 1.75 (1.47–2.13). The instrumental variable analysis revealed no evidence of a causal association between genetically lower circulating adiponectin and higher fasting insulin (0.02 SD; 95% CI −0.07 to 0.11; N = 29,771), nominal evidence of a causal relationship with lower insulin sensitivity (−0.20 SD; 95% CI −0.38 to −0.02; N = 1,860), and no evidence of a relationship with type 2 diabetes (OR 0.94; 95% CI 0.75–1.19; N = 2,777 case subjects and 13,011 control subjects). Using the ADIPOQ summary statistics genetic risk scores, we found no evidence of an association between adiponectin-lowering alleles and insulin sensitivity (effect per weighted adiponectin-lowering allele: −0.03 SD; 95% CI −0.07 to 0.01; N = 2,969) or type 2 diabetes (OR per weighted adiponectin-lowering allele: 0.99; 95% CI 0.95–1.04; 15,960 case subjects vs. 64,731 control subjects). These results do not provide any consistent evidence that interventions aimed at increasing adiponectin levels will improve insulin sensitivity or risk of type 2 diabetes.
doi:10.2337/db13-0128
PMCID: PMC3781444  PMID: 23835345
3.  Clinical and Genetic Correlates of Growth Differentiation Factor-15 in the Community 
Clinical chemistry  2012;58(11):1582-1591.
BACKGROUND
Growth differentiation factor-15 (GDF-15) is a stress-responsive cytokine produced in cardiovascular cells under conditions of inflammation and oxidative stress, and is emerging as an important prognostic marker in individuals with and without existing cardiovascular disease. Thus, we examined the clinical and genetic correlates of circulating GDF-15 levels, which have not been collectively investigated.
METHODS
A total of 2,991 participants of the Framingham Offspring Study free of clinically overt cardiovascular disease underwent measurement of plasma GDF-15 levels (mean age 59 years, 56% women). Clinical correlates of GDF-15 were examined in multivariable analyses. A genome-wide association study of GDF-15 levels was then conducted, including participants of the Framingham Offspring Study and the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) study.
RESULTS
GDF-15 was positively associated with age, smoking, antihypertensive treatment, diabetes, worse kidney function, and non-steroidal anti-inflammatory drug use, but it was negatively associated with total and high-density lipoprotein cholesterol. Clinical correlates accounted for 38% of inter-individual variation in circulating GDF-15, whereas genetic factors account for up to 38% of residual variability (h2=0.38; P=2.5 × 10−11). We identified one genome-wide significant locus, which included the GDF15 gene, on chromosome 19p13.11 associated with GDF-15 concentrations (smallest P=2.74−32 for rs888663). Conditional analyses revealed two independent association signals at this locus (rs888663 and rs1054564), which were associated with altered cis-gene expression in blood cell lines.
CONCLUSIONS
In ambulatory individuals, both cardiometabolic risk factors and genetic factors play an important role in determining circulating GDF-15 concentrations, and contribute similarly to overall variation.
doi:10.1373/clinchem.2012.190322
PMCID: PMC4150608  PMID: 22997280
Epidemiology; Genetics; Risk factors; Cardiovascular diseases
4.  Distribution and Medical Impact of Loss-of-Function Variants in the Finnish Founder Population 
PLoS Genetics  2014;10(7):e1004494.
Exome sequencing studies in complex diseases are challenged by the allelic heterogeneity, large number and modest effect sizes of associated variants on disease risk and the presence of large numbers of neutral variants, even in phenotypically relevant genes. Isolated populations with recent bottlenecks offer advantages for studying rare variants in complex diseases as they have deleterious variants that are present at higher frequencies as well as a substantial reduction in rare neutral variation. To explore the potential of the Finnish founder population for studying low-frequency (0.5–5%) variants in complex diseases, we compared exome sequence data on 3,000 Finns to the same number of non-Finnish Europeans and discovered that, despite having fewer variable sites overall, the average Finn has more low-frequency loss-of-function variants and complete gene knockouts. We then used several well-characterized Finnish population cohorts to study the phenotypic effects of 83 enriched loss-of-function variants across 60 phenotypes in 36,262 Finns. Using a deep set of quantitative traits collected on these cohorts, we show 5 associations (p<5×10−8) including splice variants in LPA that lowered plasma lipoprotein(a) levels (P = 1.5×10−117). Through accessing the national medical records of these participants, we evaluate the LPA finding via Mendelian randomization and confirm that these splice variants confer protection from cardiovascular disease (OR = 0.84, P = 3×10−4), demonstrating for the first time the correlation between very low levels of LPA in humans with potential therapeutic implications for cardiovascular diseases. More generally, this study articulates substantial advantages for studying the role of rare variation in complex phenotypes in founder populations like the Finns and by combining a unique population genetic history with data from large population cohorts and centralized research access to National Health Registers.
Author Summary
We explored the coding regions of 3,000 Finnish individuals with 3,000 non-Finnish Europeans (NFEs) using whole-exome sequence data, in order to understand how an individual from a bottlenecked population might differ from an individual from an out-bred population. We provide empirical evidence that there are more rare and low-frequency deleterious alleles in Finns compared to NFEs, such that an average Finn has almost twice as many low-frequency complete knockouts of a gene. As such, we hypothesized that some of these low-frequency loss-of-function variants might have important medical consequences in humans and genotyped 83 of these variants in 36,000 Finns. In doing so, we discovered that completely knocking out the TSFM gene might result in inviability or a very severe phenotype in humans and that knocking out the LPA gene might confer protection against coronary heart diseases, suggesting that LPA is likely to be a good potential therapeutic target.
doi:10.1371/journal.pgen.1004494
PMCID: PMC4117444  PMID: 25078778
5.  Genome Wide Association Identifies Common Variants at the SERPINA6/SERPINA1 Locus Influencing Plasma Cortisol and Corticosteroid Binding Globulin 
PLoS Genetics  2014;10(7):e1004474.
Variation in plasma levels of cortisol, an essential hormone in the stress response, is associated in population-based studies with cardio-metabolic, inflammatory and neuro-cognitive traits and diseases. Heritability of plasma cortisol is estimated at 30–60% but no common genetic contribution has been identified. The CORtisol NETwork (CORNET) consortium undertook genome wide association meta-analysis for plasma cortisol in 12,597 Caucasian participants, replicated in 2,795 participants. The results indicate that <1% of variance in plasma cortisol is accounted for by genetic variation in a single region of chromosome 14. This locus spans SERPINA6, encoding corticosteroid binding globulin (CBG, the major cortisol-binding protein in plasma), and SERPINA1, encoding α1-antitrypsin (which inhibits cleavage of the reactive centre loop that releases cortisol from CBG). Three partially independent signals were identified within the region, represented by common SNPs; detailed biochemical investigation in a nested sub-cohort showed all these SNPs were associated with variation in total cortisol binding activity in plasma, but some variants influenced total CBG concentrations while the top hit (rs12589136) influenced the immunoreactivity of the reactive centre loop of CBG. Exome chip and 1000 Genomes imputation analysis of this locus in the CROATIA-Korcula cohort identified missense mutations in SERPINA6 and SERPINA1 that did not account for the effects of common variants. These findings reveal a novel common genetic source of variation in binding of cortisol by CBG, and reinforce the key role of CBG in determining plasma cortisol levels. In turn this genetic variation may contribute to cortisol-associated degenerative diseases.
Author Summary
Cortisol is a steroid hormone from the adrenal glands that is essential in the response to stress. Most cortisol in blood is bound to corticosteroid binding globulin (CBG). Diseases causing cortisol deficiency (Addison's disease) or excess (Cushing's syndrome) are life-threatening. Variations in plasma cortisol have been associated with cardiovascular and psychiatric diseases and their risk factors. To dissect the genetic contribution to variation in plasma cortisol, we formed the CORtisol NETwork (CORNET) consortium and recruited collaborators with suitable samples from more than 15,000 people. The results reveal that the major genetic influence on plasma cortisol is mediated by variations in the binding capacity of CBG. This is determined by differences in the circulating concentrations of CBG and also in the immunoreactivity of its ‘reactive centre loop’, potentially influencing not only binding affinity for cortisol but also the stability of CBG and hence the tissue delivery of cortisol. These findings provide the first evidence for a common genetic effect on levels of this clinically important hormone, suggest that differences in CBG between individuals are biologically important, and pave the way for further research to dissect causality in the associations of plasma cortisol with common diseases.
doi:10.1371/journal.pgen.1004474
PMCID: PMC4091794  PMID: 25010111
6.  The human GIMAP5 gene has a common polyadenylation polymorphism increasing risk to systemic lupus erythematosus 
Journal of Medical Genetics  2007;44(5):314-321.
Background
Several members of the GIMAP gene family have been suggested as being involved in different aspects of the immune system in different species. Recently, a mutation in the GIMAP5 gene was shown to cause lymphopenia in a rat model of autoimmune insulin‐dependent diabetes. Thus it was hypothesised that genetic variation in GIMAP5 may be involved in susceptibility to other autoimmune disorders where lymphopenia is a key feature, such as systemic lupus erythematosus (SLE).
Material and methods
To investigate this, seven single nucleotide polymorphisms in GIMAP5 were analysed in five independent sets of family‐based SLE collections, containing more than 2000 samples.
Result
A significant increase in SLE risk associated with the most common GIMAP5 haplotype was found (OR 1.26, 95% CI 1.02 to 1.54, p = 0.0033). In families with probands diagnosed with trombocytopenia, the risk was increased (OR 2.11, 95% CI 1.09 to 4.09, p = 0.0153). The risk haplotype bears a polymorphic polyadenylation signal which alters the 3′ part of GIMAP5 mRNA by producing an inefficient polyadenylation signal. This results in higher proportion of non‐terminated mRNA for homozygous individuals (p<0.005), a mechanism shown to be causal in thalassaemias. To further assess the functional effect of the polymorphic polyadenylation signal in the risk haplotype, monocytes were treated with several cytokines affecting apoptosis. All the apoptotic cytokines induced GIMAP5 expression in two monocyte cell lines (1.5–6 times, p<0.0001 for all tests).
Conclusion
Taken together, the data suggest the role of GIMAP5 in the pathogenesis of SLE.
doi:10.1136/jmg.2006.046185
PMCID: PMC2597989  PMID: 17220214
genetic association; autoimmune; apoptosis; susceptibility gene
7.  Loss-of-function mutations in SLC30A8 protect against type 2 diabetes 
Flannick, Jason | Thorleifsson, Gudmar | Beer, Nicola L. | Jacobs, Suzanne B. R. | Grarup, Niels | Burtt, Noël P. | Mahajan, Anubha | Fuchsberger, Christian | Atzmon, Gil | Benediktsson, Rafn | Blangero, John | Bowden, Don W. | Brandslund, Ivan | Brosnan, Julia | Burslem, Frank | Chambers, John | Cho, Yoon Shin | Christensen, Cramer | Douglas, Desirée A. | Duggirala, Ravindranath | Dymek, Zachary | Farjoun, Yossi | Fennell, Timothy | Fontanillas, Pierre | Forsén, Tom | Gabriel, Stacey | Glaser, Benjamin | Gudbjartsson, Daniel F. | Hanis, Craig | Hansen, Torben | Hreidarsson, Astradur B. | Hveem, Kristian | Ingelsson, Erik | Isomaa, Bo | Johansson, Stefan | Jørgensen, Torben | Jørgensen, Marit Eika | Kathiresan, Sekar | Kong, Augustine | Kooner, Jaspal | Kravic, Jasmina | Laakso, Markku | Lee, Jong-Young | Lind, Lars | Lindgren, Cecilia M | Linneberg, Allan | Masson, Gisli | Meitinger, Thomas | Mohlke, Karen L | Molven, Anders | Morris, Andrew P. | Potluri, Shobha | Rauramaa, Rainer | Ribel-Madsen, Rasmus | Richard, Ann-Marie | Rolph, Tim | Salomaa, Veikko | Segrè, Ayellet V. | Skärstrand, Hanna | Steinthorsdottir, Valgerdur | Stringham, Heather M. | Sulem, Patrick | Tai, E Shyong | Teo, Yik Ying | Teslovich, Tanya | Thorsteinsdottir, Unnur | Trimmer, Jeff K. | Tuomi, Tiinamaija | Tuomilehto, Jaakko | Vaziri-Sani, Fariba | Voight, Benjamin F. | Wilson, James G. | Boehnke, Michael | McCarthy, Mark I. | Njølstad, Pål R. | Pedersen, Oluf | Groop, Leif | Cox, David R. | Stefansson, Kari | Altshuler, David
Nature genetics  2014;46(4):357-363.
Loss-of-function mutations protective against human disease provide in vivo validation of therapeutic targets1,2,3, yet none are described for type 2 diabetes (T2D). Through sequencing or genotyping ~150,000 individuals across five ethnicities, we identified 12 rare protein-truncating variants in SLC30A8, which encodes an islet zinc transporter (ZnT8)4 and harbors a common variant (p.Trp325Arg) associated with T2D risk, glucose, and proinsulin levels5–7. Collectively, protein-truncating variant carriers had 65% reduced T2D risk (p=1.7×10−6), and non-diabetic Icelandic carriers of a frameshift variant (p.Lys34SerfsX50) demonstrated reduced glucose levels (−0.17 s.d., p=4.6×10−4). The two most common protein-truncating variants (p.Arg138X and p.Lys34SerfsX50) individually associate with T2D protection and encode unstable ZnT8 proteins. Previous functional study of SLC30A8 suggested reduced zinc transport increases T2D risk8,9, yet phenotypic heterogeneity was observed in rodent Slc30a8 knockouts10–15. Contrastingly, loss-of-function mutations in humans provide strong evidence that SLC30A8 haploinsufficiency protects against T2D, proposing ZnT8 inhibition as a therapeutic strategy in T2D prevention.
doi:10.1038/ng.2915
PMCID: PMC4051628  PMID: 24584071
8.  Discovery and Refinement of Loci Associated with Lipid Levels 
Willer, Cristen J. | Schmidt, Ellen M. | Sengupta, Sebanti | Peloso, Gina M. | Gustafsson, Stefan | Kanoni, Stavroula | Ganna, Andrea | Chen, Jin | Buchkovich, Martin L. | Mora, Samia | Beckmann, Jacques S. | Bragg-Gresham, Jennifer L. | Chang, Hsing-Yi | Demirkan, Ayşe | Den Hertog, Heleen M. | Do, Ron | Donnelly, Louise A. | Ehret, Georg B. | Esko, Tõnu | Feitosa, Mary F. | Ferreira, Teresa | Fischer, Krista | Fontanillas, Pierre | Fraser, Ross M. | Freitag, Daniel F. | Gurdasani, Deepti | Heikkilä, Kauko | Hyppönen, Elina | Isaacs, Aaron | Jackson, Anne U. | Johansson, Åsa | Johnson, Toby | Kaakinen, Marika | Kettunen, Johannes | Kleber, Marcus E. | Li, Xiaohui | Luan, Jian’an | Lyytikäinen, Leo-Pekka | Magnusson, Patrik K.E. | Mangino, Massimo | Mihailov, Evelin | Montasser, May E. | Müller-Nurasyid, Martina | Nolte, Ilja M. | O’Connell, Jeffrey R. | Palmer, Cameron D. | Perola, Markus | Petersen, Ann-Kristin | Sanna, Serena | Saxena, Richa | Service, Susan K. | Shah, Sonia | Shungin, Dmitry | Sidore, Carlo | Song, Ci | Strawbridge, Rona J. | Surakka, Ida | Tanaka, Toshiko | Teslovich, Tanya M. | Thorleifsson, Gudmar | Van den Herik, Evita G. | Voight, Benjamin F. | Volcik, Kelly A. | Waite, Lindsay L. | Wong, Andrew | Wu, Ying | Zhang, Weihua | Absher, Devin | Asiki, Gershim | Barroso, Inês | Been, Latonya F. | Bolton, Jennifer L. | Bonnycastle, Lori L | Brambilla, Paolo | Burnett, Mary S. | Cesana, Giancarlo | Dimitriou, Maria | Doney, Alex S.F. | Döring, Angela | Elliott, Paul | Epstein, Stephen E. | Ingi Eyjolfsson, Gudmundur | Gigante, Bruna | Goodarzi, Mark O. | Grallert, Harald | Gravito, Martha L. | Groves, Christopher J. | Hallmans, Göran | Hartikainen, Anna-Liisa | Hayward, Caroline | Hernandez, Dena | Hicks, Andrew A. | Holm, Hilma | Hung, Yi-Jen | Illig, Thomas | Jones, Michelle R. | Kaleebu, Pontiano | Kastelein, John J.P. | Khaw, Kay-Tee | Kim, Eric | Klopp, Norman | Komulainen, Pirjo | Kumari, Meena | Langenberg, Claudia | Lehtimäki, Terho | Lin, Shih-Yi | Lindström, Jaana | Loos, Ruth J.F. | Mach, François | McArdle, Wendy L | Meisinger, Christa | Mitchell, Braxton D. | Müller, Gabrielle | Nagaraja, Ramaiah | Narisu, Narisu | Nieminen, Tuomo V.M. | Nsubuga, Rebecca N. | Olafsson, Isleifur | Ong, Ken K. | Palotie, Aarno | Papamarkou, Theodore | Pomilla, Cristina | Pouta, Anneli | Rader, Daniel J. | Reilly, Muredach P. | Ridker, Paul M. | Rivadeneira, Fernando | Rudan, Igor | Ruokonen, Aimo | Samani, Nilesh | Scharnagl, Hubert | Seeley, Janet | Silander, Kaisa | Stančáková, Alena | Stirrups, Kathleen | Swift, Amy J. | Tiret, Laurence | Uitterlinden, Andre G. | van Pelt, L. Joost | Vedantam, Sailaja | Wainwright, Nicholas | Wijmenga, Cisca | Wild, Sarah H. | Willemsen, Gonneke | Wilsgaard, Tom | Wilson, James F. | Young, Elizabeth H. | Zhao, Jing Hua | Adair, Linda S. | Arveiler, Dominique | Assimes, Themistocles L. | Bandinelli, Stefania | Bennett, Franklyn | Bochud, Murielle | Boehm, Bernhard O. | Boomsma, Dorret I. | Borecki, Ingrid B. | Bornstein, Stefan R. | Bovet, Pascal | Burnier, Michel | Campbell, Harry | Chakravarti, Aravinda | Chambers, John C. | Chen, Yii-Der Ida | Collins, Francis S. | Cooper, Richard S. | Danesh, John | Dedoussis, George | de Faire, Ulf | Feranil, Alan B. | Ferrières, Jean | Ferrucci, Luigi | Freimer, Nelson B. | Gieger, Christian | Groop, Leif C. | Gudnason, Vilmundur | Gyllensten, Ulf | Hamsten, Anders | Harris, Tamara B. | Hingorani, Aroon | Hirschhorn, Joel N. | Hofman, Albert | Hovingh, G. Kees | Hsiung, Chao Agnes | Humphries, Steve E. | Hunt, Steven C. | Hveem, Kristian | Iribarren, Carlos | Järvelin, Marjo-Riitta | Jula, Antti | Kähönen, Mika | Kaprio, Jaakko | Kesäniemi, Antero | Kivimaki, Mika | Kooner, Jaspal S. | Koudstaal, Peter J. | Krauss, Ronald M. | Kuh, Diana | Kuusisto, Johanna | Kyvik, Kirsten O. | Laakso, Markku | Lakka, Timo A. | Lind, Lars | Lindgren, Cecilia M. | Martin, Nicholas G. | März, Winfried | McCarthy, Mark I. | McKenzie, Colin A. | Meneton, Pierre | Metspalu, Andres | Moilanen, Leena | Morris, Andrew D. | Munroe, Patricia B. | Njølstad, Inger | Pedersen, Nancy L. | Power, Chris | Pramstaller, Peter P. | Price, Jackie F. | Psaty, Bruce M. | Quertermous, Thomas | Rauramaa, Rainer | Saleheen, Danish | Salomaa, Veikko | Sanghera, Dharambir K. | Saramies, Jouko | Schwarz, Peter E.H. | Sheu, Wayne H-H | Shuldiner, Alan R. | Siegbahn, Agneta | Spector, Tim D. | Stefansson, Kari | Strachan, David P. | Tayo, Bamidele O. | Tremoli, Elena | Tuomilehto, Jaakko | Uusitupa, Matti | van Duijn, Cornelia M. | Vollenweider, Peter | Wallentin, Lars | Wareham, Nicholas J. | Whitfield, John B. | Wolffenbuttel, Bruce H.R. | Ordovas, Jose M. | Boerwinkle, Eric | Palmer, Colin N.A. | Thorsteinsdottir, Unnur | Chasman, Daniel I. | Rotter, Jerome I. | Franks, Paul W. | Ripatti, Samuli | Cupples, L. Adrienne | Sandhu, Manjinder S. | Rich, Stephen S. | Boehnke, Michael | Deloukas, Panos | Kathiresan, Sekar | Mohlke, Karen L. | Ingelsson, Erik | Abecasis, Gonçalo R.
Nature genetics  2013;45(11):10.1038/ng.2797.
Low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides, and total cholesterol are heritable, modifiable, risk factors for coronary artery disease. To identify new loci and refine known loci influencing these lipids, we examined 188,578 individuals using genome-wide and custom genotyping arrays. We identify and annotate 157 loci associated with lipid levels at P < 5×10−8, including 62 loci not previously associated with lipid levels in humans. Using dense genotyping in individuals of European, East Asian, South Asian, and African ancestry, we narrow association signals in 12 loci. We find that loci associated with blood lipids are often associated with cardiovascular and metabolic traits including coronary artery disease, type 2 diabetes, blood pressure, waist-hip ratio, and body mass index. Our results illustrate the value of genetic data from individuals of diverse ancestries and provide insights into biological mechanisms regulating blood lipids to guide future genetic, biological, and therapeutic research.
doi:10.1038/ng.2797
PMCID: PMC3838666  PMID: 24097068
9.  Common variants associated with plasma triglycerides and risk for coronary artery disease 
Do, Ron | Willer, Cristen J. | Schmidt, Ellen M. | Sengupta, Sebanti | Gao, Chi | Peloso, Gina M. | Gustafsson, Stefan | Kanoni, Stavroula | Ganna, Andrea | Chen, Jin | Buchkovich, Martin L. | Mora, Samia | Beckmann, Jacques S. | Bragg-Gresham, Jennifer L. | Chang, Hsing-Yi | Demirkan, Ayşe | Den Hertog, Heleen M. | Donnelly, Louise A. | Ehret, Georg B. | Esko, Tõnu | Feitosa, Mary F. | Ferreira, Teresa | Fischer, Krista | Fontanillas, Pierre | Fraser, Ross M. | Freitag, Daniel F. | Gurdasani, Deepti | Heikkilä, Kauko | Hyppönen, Elina | Isaacs, Aaron | Jackson, Anne U. | Johansson, Åsa | Johnson, Toby | Kaakinen, Marika | Kettunen, Johannes | Kleber, Marcus E. | Li, Xiaohui | Luan, Jian'an | Lyytikäinen, Leo-Pekka | Magnusson, Patrik K.E. | Mangino, Massimo | Mihailov, Evelin | Montasser, May E. | Müller-Nurasyid, Martina | Nolte, Ilja M. | O'Connell, Jeffrey R. | Palmer, Cameron D. | Perola, Markus | Petersen, Ann-Kristin | Sanna, Serena | Saxena, Richa | Service, Susan K. | Shah, Sonia | Shungin, Dmitry | Sidore, Carlo | Song, Ci | Strawbridge, Rona J. | Surakka, Ida | Tanaka, Toshiko | Teslovich, Tanya M. | Thorleifsson, Gudmar | Van den Herik, Evita G. | Voight, Benjamin F. | Volcik, Kelly A. | Waite, Lindsay L. | Wong, Andrew | Wu, Ying | Zhang, Weihua | Absher, Devin | Asiki, Gershim | Barroso, Inês | Been, Latonya F. | Bolton, Jennifer L. | Bonnycastle, Lori L | Brambilla, Paolo | Burnett, Mary S. | Cesana, Giancarlo | Dimitriou, Maria | Doney, Alex S.F. | Döring, Angela | Elliott, Paul | Epstein, Stephen E. | Eyjolfsson, Gudmundur Ingi | Gigante, Bruna | Goodarzi, Mark O. | Grallert, Harald | Gravito, Martha L. | Groves, Christopher J. | Hallmans, Göran | Hartikainen, Anna-Liisa | Hayward, Caroline | Hernandez, Dena | Hicks, Andrew A. | Holm, Hilma | Hung, Yi-Jen | Illig, Thomas | Jones, Michelle R. | Kaleebu, Pontiano | Kastelein, John J.P. | Khaw, Kay-Tee | Kim, Eric | Klopp, Norman | Komulainen, Pirjo | Kumari, Meena | Langenberg, Claudia | Lehtimäki, Terho | Lin, Shih-Yi | Lindström, Jaana | Loos, Ruth J.F. | Mach, François | McArdle, Wendy L | Meisinger, Christa | Mitchell, Braxton D. | Müller, Gabrielle | Nagaraja, Ramaiah | Narisu, Narisu | Nieminen, Tuomo V.M. | Nsubuga, Rebecca N. | Olafsson, Isleifur | Ong, Ken K. | Palotie, Aarno | Papamarkou, Theodore | Pomilla, Cristina | Pouta, Anneli | Rader, Daniel J. | Reilly, Muredach P. | Ridker, Paul M. | Rivadeneira, Fernando | Rudan, Igor | Ruokonen, Aimo | Samani, Nilesh | Scharnagl, Hubert | Seeley, Janet | Silander, Kaisa | Stančáková, Alena | Stirrups, Kathleen | Swift, Amy J. | Tiret, Laurence | Uitterlinden, Andre G. | van Pelt, L. Joost | Vedantam, Sailaja | Wainwright, Nicholas | Wijmenga, Cisca | Wild, Sarah H. | Willemsen, Gonneke | Wilsgaard, Tom | Wilson, James F. | Young, Elizabeth H. | Zhao, Jing Hua | Adair, Linda S. | Arveiler, Dominique | Assimes, Themistocles L. | Bandinelli, Stefania | Bennett, Franklyn | Bochud, Murielle | Boehm, Bernhard O. | Boomsma, Dorret I. | Borecki, Ingrid B. | Bornstein, Stefan R. | Bovet, Pascal | Burnier, Michel | Campbell, Harry | Chakravarti, Aravinda | Chambers, John C. | Chen, Yii-Der Ida | Collins, Francis S. | Cooper, Richard S. | Danesh, John | Dedoussis, George | de Faire, Ulf | Feranil, Alan B. | Ferrières, Jean | Ferrucci, Luigi | Freimer, Nelson B. | Gieger, Christian | Groop, Leif C. | Gudnason, Vilmundur | Gyllensten, Ulf | Hamsten, Anders | Harris, Tamara B. | Hingorani, Aroon | Hirschhorn, Joel N. | Hofman, Albert | Hovingh, G. Kees | Hsiung, Chao Agnes | Humphries, Steve E. | Hunt, Steven C. | Hveem, Kristian | Iribarren, Carlos | Järvelin, Marjo-Riitta | Jula, Antti | Kähönen, Mika | Kaprio, Jaakko | Kesäniemi, Antero | Kivimaki, Mika | Kooner, Jaspal S. | Koudstaal, Peter J. | Krauss, Ronald M. | Kuh, Diana | Kuusisto, Johanna | Kyvik, Kirsten O. | Laakso, Markku | Lakka, Timo A. | Lind, Lars | Lindgren, Cecilia M. | Martin, Nicholas G. | März, Winfried | McCarthy, Mark I. | McKenzie, Colin A. | Meneton, Pierre | Metspalu, Andres | Moilanen, Leena | Morris, Andrew D. | Munroe, Patricia B. | Njølstad, Inger | Pedersen, Nancy L. | Power, Chris | Pramstaller, Peter P. | Price, Jackie F. | Psaty, Bruce M. | Quertermous, Thomas | Rauramaa, Rainer | Saleheen, Danish | Salomaa, Veikko | Sanghera, Dharambir K. | Saramies, Jouko | Schwarz, Peter E.H. | Sheu, Wayne H-H | Shuldiner, Alan R. | Siegbahn, Agneta | Spector, Tim D. | Stefansson, Kari | Strachan, David P. | Tayo, Bamidele O. | Tremoli, Elena | Tuomilehto, Jaakko | Uusitupa, Matti | van Duijn, Cornelia M. | Vollenweider, Peter | Wallentin, Lars | Wareham, Nicholas J. | Whitfield, John B. | Wolffenbuttel, Bruce H.R. | Altshuler, David | Ordovas, Jose M. | Boerwinkle, Eric | Palmer, Colin N.A. | Thorsteinsdottir, Unnur | Chasman, Daniel I. | Rotter, Jerome I. | Franks, Paul W. | Ripatti, Samuli | Cupples, L. Adrienne | Sandhu, Manjinder S. | Rich, Stephen S. | Boehnke, Michael | Deloukas, Panos | Mohlke, Karen L. | Ingelsson, Erik | Abecasis, Goncalo R. | Daly, Mark J. | Neale, Benjamin M. | Kathiresan, Sekar
Nature genetics  2013;45(11):1345-1352.
Triglycerides are transported in plasma by specific triglyceride-rich lipoproteins; in epidemiologic studies, increased triglyceride levels correlate with higher risk for coronary artery disease (CAD). However, it is unclear whether this association reflects causal processes. We used 185 common variants recently mapped for plasma lipids (P<5×10−8 for each) to examine the role of triglycerides on risk for CAD. First, we highlight loci associated with both low-density lipoprotein cholesterol (LDL-C) and triglycerides, and show that the direction and magnitude of both are factors in determining CAD risk. Second, we consider loci with only a strong magnitude of association with triglycerides and show that these loci are also associated with CAD. Finally, in a model accounting for effects on LDL-C and/or high-density lipoprotein cholesterol, a polymorphism's strength of effect on triglycerides is correlated with the magnitude of its effect on CAD risk. These results suggest that triglyceride-rich lipoproteins causally influence risk for CAD.
doi:10.1038/ng.2795
PMCID: PMC3904346  PMID: 24097064
10.  Insights Into the Molecular Mechanism for Type 2 Diabetes Susceptibility at the KCNQ1 Locus From Temporal Changes in Imprinting Status in Human Islets 
Diabetes  2013;62(3):987-992.
The molecular basis of type 2 diabetes predisposition at most established susceptibility loci remains poorly understood. KCNQ1 maps within the 11p15.5 imprinted domain, a region with an established role in congenital growth phenotypes. Variants intronic to KCNQ1 influence diabetes susceptibility when maternally inherited. By use of quantitative PCR and pyrosequencing of human adult islet and fetal pancreas samples, we investigated the imprinting status of regional transcripts and aimed to determine whether type 2 diabetes risk alleles influence regional DNA methylation and gene expression. The results demonstrate that gene expression patterns differ by developmental stage. CDKN1C showed monoallelic expression in both adult and fetal tissue, whereas PHLDA2, SLC22A18, and SLC22A18AS were biallelically expressed in both tissues. Temporal changes in imprinting were observed for KCNQ1 and KCNQ1OT1, with monoallelic expression in fetal tissues and biallelic expression in adult samples. Genotype at the type 2 diabetes risk variant rs2237895 influenced methylation levels of regulatory sequence in fetal pancreas but without demonstrable effects on gene expression. We demonstrate that CDKN1C, KCNQ1, and KCNQ1OT1 are most likely to mediate diabetes susceptibility at the KCNQ1 locus and identify temporal differences in imprinting status and methylation effects, suggesting that diabetes risk effects may be mediated in early development.
doi:10.2337/db12-0819
PMCID: PMC3581222  PMID: 23139357
11.  Mapping cis- and trans-regulatory effects across multiple tissues in twins 
Nature genetics  2012;44(10):1084-1089.
Sequence-based variation in gene expression is a key driver of disease risk. Common variants regulating expression in cis have been mapped in many eQTL studies typically in single tissues from unrelated individuals. Here, we present a comprehensive analysis of gene expression across multiple tissues conducted in a large set of mono- and dizygotic twins that allows systematic dissection of genetic (cis and trans) and non-genetic effects on gene expression. Using identity-by-descent estimates, we show that at least 40% of the total heritable cis-effect on expression cannot be accounted for by common cis-variants, a finding which exposes the contribution of low frequency and rare regulatory variants with respect to both transcriptional regulation and complex trait susceptibility. We show that a substantial proportion of gene expression heritability is trans to the structural gene and identify several replicating trans-variants which act predominantly in a tissue-restricted manner and may regulate the transcription of many genes.
doi:10.1038/ng.2394
PMCID: PMC3784328  PMID: 22941192
12.  Multiple type 2 diabetes susceptibility genes following genome-wide association scan in UK samples 
Science (New York, N.Y.)  2007;316(5829):1336-1341.
The molecular mechanisms involved in the development of type 2 diabetes are poorly understood. Starting from genome-wide genotype data for 1,924 diabetic cases and 2,938 population controls generated by the Wellcome Trust Case Control Consortium, we set out to detect replicated diabetes association signals through analysis of 3,757 additional cases and 5,346 controls, and by integration of our findings with equivalent data from other international consortia. We detected diabetes susceptibility loci in and around the genes CDKAL1, CDKN2A/CDKN2B and IGF2BP2 and confirmed the recently described associations at HHEX/IDE and SLC30A8. Our findings provide insights into the genetic architecture of type 2 diabetes, emphasizing the contribution of multiple variants of modest effect. The regions identified underscore the importance of pathways influencing pancreatic beta cell development and function in the etiology of type 2 diabetes.
doi:10.1126/science.1142364
PMCID: PMC3772310  PMID: 17463249
13.  Contribution of 32 GWAS-Identified Common Variants to Severe Obesity in European Adults Referred for Bariatric Surgery 
PLoS ONE  2013;8(8):e70735.
The prevalence of severe obesity, defined as body mass index (BMI) ≥35.0 kg/m2, is rising rapidly. Given the disproportionately high health burden and healthcare costs associated with this condition, understanding the underlying aetiology, including predisposing genetic factors, is a biomedical research priority. Previous studies have suggested that severe obesity represents an extreme tail of the population BMI variation, reflecting shared genetic factors operating across the spectrum. Here, we sought to determine whether a panel of 32 known common obesity-susceptibility variants contribute to severe obesity in patients (n = 1,003, mean BMI 48.4±8.1 kg/m2) attending bariatric surgery clinics in two European centres. We examined the effects of these 32 common variants on obesity risk and BMI, both as individual markers and in combination as a genetic risk score, in a comparison with normal-weight controls (n = 1,809, BMI 18.0–24.9 kg/m2); an approach which, to our knowledge, has not been previously undertaken in the setting of a bariatric clinic. We found strong associations with severe obesity for SNP rs9939609 within the FTO gene (P = 9.3×10−8) and SNP rs2815752 near the NEGR1 gene (P = 3.6×10−4), and directionally consistent nominal associations (P<0.05) for 12 other SNPs. The genetic risk score associated with severe obesity (P = 8.3×10−11) but, within the bariatric cohort, this score did not associate with BMI itself (P = 0.264). Our results show significant effects of individual BMI-associated common variants within a relatively small sample size of bariatric patients. Furthermore, the burden of such low-penetrant risk alleles contributes to severe obesity in this population. Our findings support that severe obesity observed in bariatric patients represents an extreme tail of the population BMI variation. Moreover, future genetic studies focused on bariatric patients may provide valuable insights into the pathogenesis of obesity at a population level.
doi:10.1371/journal.pone.0070735
PMCID: PMC3737377  PMID: 23950990
14.  Assessing association between protein truncating variants and quantitative traits 
Bioinformatics  2013;29(19):2419-2426.
Motivation: In sequencing studies of common diseases and quantitative traits, power to test rare and low frequency variants individually is weak. To improve power, a common approach is to combine statistical evidence from several genetic variants in a region. Major challenges are how to do the combining and which statistical framework to use.
General approaches for testing association between rare variants and quantitative traits include aggregating genotypes and trait values, referred to as ‘collapsing’, or using a score-based variance component test. However, little attention has been paid to alternative models tailored for protein truncating variants. Recent studies have highlighted the important role that protein truncating variants, commonly referred to as ‘loss of function’ variants, may have on disease susceptibility and quantitative levels of biomarkers. We propose a Bayesian modelling framework for the analysis of protein truncating variants and quantitative traits.
Results: Our simulation results show that our models have an advantage over the commonly used methods. We apply our models to sequence and exome-array data and discover strong evidence of association between low plasma triglyceride levels and protein truncating variants at APOC3 (Apolipoprotein C3).
Availability: Software is available from http://www.well.ox.ac.uk/~rivas/mamba
Contact: donnelly@well.ox.ac.uk
doi:10.1093/bioinformatics/btt409
PMCID: PMC3777107  PMID: 23860716
15.  FTO genotype is associated with phenotypic variability of body mass index 
Yang, Jian | Loos, Ruth J. F. | Powell, Joseph E. | Medland, Sarah E. | Speliotes, Elizabeth K. | Chasman, Daniel I. | Rose, Lynda M. | Thorleifsson, Gudmar | Steinthorsdottir, Valgerdur | Mägi, Reedik | Waite, Lindsay | Smith, Albert Vernon | Yerges-Armstrong, Laura M. | Monda, Keri L. | Hadley, David | Mahajan, Anubha | Li, Guo | Kapur, Karen | Vitart, Veronique | Huffman, Jennifer E. | Wang, Sophie R. | Palmer, Cameron | Esko, Tõnu | Fischer, Krista | Zhao, Jing Hua | Demirkan, Ayşe | Isaacs, Aaron | Feitosa, Mary F. | Luan, Jian’an | Heard-Costa, Nancy L. | White, Charles | Jackson, Anne U. | Preuss, Michael | Ziegler, Andreas | Eriksson, Joel | Kutalik, Zoltán | Frau, Francesca | Nolte, Ilja M. | Van Vliet-Ostaptchouk, Jana V. | Hottenga, Jouke-Jan | Jacobs, Kevin B. | Verweij, Niek | Goel, Anuj | Medina-Gomez, Carolina | Estrada, Karol | Bragg-Gresham, Jennifer Lynn | Sanna, Serena | Sidore, Carlo | Tyrer, Jonathan | Teumer, Alexander | Prokopenko, Inga | Mangino, Massimo | Lindgren, Cecilia M. | Assimes, Themistocles L. | Shuldiner, Alan R. | Hui, Jennie | Beilby, John P. | McArdle, Wendy L. | Hall, Per | Haritunians, Talin | Zgaga, Lina | Kolcic, Ivana | Polasek, Ozren | Zemunik, Tatijana | Oostra, Ben A. | Junttila, M. Juhani | Grönberg, Henrik | Schreiber, Stefan | Peters, Annette | Hicks, Andrew A. | Stephens, Jonathan | Foad, Nicola S. | Laitinen, Jaana | Pouta, Anneli | Kaakinen, Marika | Willemsen, Gonneke | Vink, Jacqueline M. | Wild, Sarah H. | Navis, Gerjan | Asselbergs, Folkert W. | Homuth, Georg | John, Ulrich | Iribarren, Carlos | Harris, Tamara | Launer, Lenore | Gudnason, Vilmundur | O’Connell, Jeffrey R. | Boerwinkle, Eric | Cadby, Gemma | Palmer, Lyle J. | James, Alan L. | Musk, Arthur W. | Ingelsson, Erik | Psaty, Bruce M. | Beckmann, Jacques S. | Waeber, Gerard | Vollenweider, Peter | Hayward, Caroline | Wright, Alan F. | Rudan, Igor | Groop, Leif C. | Metspalu, Andres | Khaw, Kay Tee | van Duijn, Cornelia M. | Borecki, Ingrid B. | Province, Michael A. | Wareham, Nicholas J. | Tardif, Jean-Claude | Huikuri, Heikki V. | Cupples, L. Adrienne | Atwood, Larry D. | Fox, Caroline S. | Boehnke, Michael | Collins, Francis S. | Mohlke, Karen L. | Erdmann, Jeanette | Schunkert, Heribert | Hengstenberg, Christian | Stark, Klaus | Lorentzon, Mattias | Ohlsson, Claes | Cusi, Daniele | Staessen, Jan A. | Van der Klauw, Melanie M. | Pramstaller, Peter P. | Kathiresan, Sekar | Jolley, Jennifer D. | Ripatti, Samuli | Jarvelin, Marjo-Riitta | de Geus, Eco J. C. | Boomsma, Dorret I. | Penninx, Brenda | Wilson, James F. | Campbell, Harry | Chanock, Stephen J. | van der Harst, Pim | Hamsten, Anders | Watkins, Hugh | Hofman, Albert | Witteman, Jacqueline C. | Zillikens, M. Carola | Uitterlinden, André G. | Rivadeneira, Fernando | Zillikens, M. Carola | Kiemeney, Lambertus A. | Vermeulen, Sita H. | Abecasis, Goncalo R. | Schlessinger, David | Schipf, Sabine | Stumvoll, Michael | Tönjes, Anke | Spector, Tim D. | North, Kari E. | Lettre, Guillaume | McCarthy, Mark I. | Berndt, Sonja I. | Heath, Andrew C. | Madden, Pamela A. F. | Nyholt, Dale R. | Montgomery, Grant W. | Martin, Nicholas G. | McKnight, Barbara | Strachan, David P. | Hill, William G. | Snieder, Harold | Ridker, Paul M. | Thorsteinsdottir, Unnur | Stefansson, Kari | Frayling, Timothy M. | Hirschhorn, Joel N. | Goddard, Michael E. | Visscher, Peter M.
Nature  2012;490(7419):267-272.
There is evidence across several species for genetic control of phenotypic variation of complex traits1–4, such that the variance among phenotypes is genotype dependent. Understanding genetic control of variability is important in evolutionary biology, agricultural selection programmes and human medicine, yet for complex traits, no individual genetic variants associated with variance, as opposed to the mean, have been identified. Here we perform a meta-analysis of genome-wide association studies of phenotypic variation using 170,000 samples on height and body mass index (BMI) in human populations. We report evidence that the single nucleotide polymorphism (SNP) rs7202116 at the FTO gene locus, which is known to be associated with obesity (as measured by mean BMI for each rs7202116 genotype)5–7, is also associated with phenotypic variability. We show that the results are not due to scale effects or other artefacts, and find no other experiment-wise significant evidence for effects on variability, either at loci other than FTO for BMI or at any locus for height. The difference in variance for BMI among individuals with opposite homozygous genotypes at the FTO locus is approximately 7%, corresponding to a difference of 0.5 kilograms in the standard deviation of weight. Our results indicate that genetic variants can be discovered that are associated with variability, and that between-person variability in obesity can partly be explained by the genotype at the FTO locus. The results are consistent with reported FTO by environment interactions for BMI8, possibly mediated by DNA methylation9,10. Our BMI results for other SNPs and our height results for all SNPs suggest that most genetic variants, including those that influence mean height or mean BMI, are not associated with phenotypic variance, or that their effects on variability are too small to detect even with samples sizes greater than 100,000.
doi:10.1038/nature11401
PMCID: PMC3564953  PMID: 22982992
16.  Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways 
Scott, Robert A | Lagou, Vasiliki | Welch, Ryan P | Wheeler, Eleanor | Montasser, May E | Luan, Jian’an | Mägi, Reedik | Strawbridge, Rona J | Rehnberg, Emil | Gustafsson, Stefan | Kanoni, Stavroula | Rasmussen-Torvik, Laura J | Yengo, Loïc | Lecoeur, Cecile | Shungin, Dmitry | Sanna, Serena | Sidore, Carlo | Johnson, Paul C D | Jukema, J Wouter | Johnson, Toby | Mahajan, Anubha | Verweij, Niek | Thorleifsson, Gudmar | Hottenga, Jouke-Jan | Shah, Sonia | Smith, Albert V | Sennblad, Bengt | Gieger, Christian | Salo, Perttu | Perola, Markus | Timpson, Nicholas J | Evans, David M | Pourcain, Beate St | Wu, Ying | Andrews, Jeanette S | Hui, Jennie | Bielak, Lawrence F | Zhao, Wei | Horikoshi, Momoko | Navarro, Pau | Isaacs, Aaron | O’Connell, Jeffrey R | Stirrups, Kathleen | Vitart, Veronique | Hayward, Caroline | Esko, Tönu | Mihailov, Evelin | Fraser, Ross M | Fall, Tove | Voight, Benjamin F | Raychaudhuri, Soumya | Chen, Han | Lindgren, Cecilia M | Morris, Andrew P | Rayner, Nigel W | Robertson, Neil | Rybin, Denis | Liu, Ching-Ti | Beckmann, Jacques S | Willems, Sara M | Chines, Peter S | Jackson, Anne U | Kang, Hyun Min | Stringham, Heather M | Song, Kijoung | Tanaka, Toshiko | Peden, John F | Goel, Anuj | Hicks, Andrew A | An, Ping | Müller-Nurasyid, Martina | Franco-Cereceda, Anders | Folkersen, Lasse | Marullo, Letizia | Jansen, Hanneke | Oldehinkel, Albertine J | Bruinenberg, Marcel | Pankow, James S | North, Kari E | Forouhi, Nita G | Loos, Ruth J F | Edkins, Sarah | Varga, Tibor V | Hallmans, Göran | Oksa, Heikki | Antonella, Mulas | Nagaraja, Ramaiah | Trompet, Stella | Ford, Ian | Bakker, Stephan J L | Kong, Augustine | Kumari, Meena | Gigante, Bruna | Herder, Christian | Munroe, Patricia B | Caulfield, Mark | Antti, Jula | Mangino, Massimo | Small, Kerrin | Miljkovic, Iva | Liu, Yongmei | Atalay, Mustafa | Kiess, Wieland | James, Alan L | Rivadeneira, Fernando | Uitterlinden, Andre G | Palmer, Colin N A | Doney, Alex S F | Willemsen, Gonneke | Smit, Johannes H | Campbell, Susan | Polasek, Ozren | Bonnycastle, Lori L | Hercberg, Serge | Dimitriou, Maria | Bolton, Jennifer L | Fowkes, Gerard R | Kovacs, Peter | Lindström, Jaana | Zemunik, Tatijana | Bandinelli, Stefania | Wild, Sarah H | Basart, Hanneke V | Rathmann, Wolfgang | Grallert, Harald | Maerz, Winfried | Kleber, Marcus E | Boehm, Bernhard O | Peters, Annette | Pramstaller, Peter P | Province, Michael A | Borecki, Ingrid B | Hastie, Nicholas D | Rudan, Igor | Campbell, Harry | Watkins, Hugh | Farrall, Martin | Stumvoll, Michael | Ferrucci, Luigi | Waterworth, Dawn M | Bergman, Richard N | Collins, Francis S | Tuomilehto, Jaakko | Watanabe, Richard M | de Geus, Eco J C | Penninx, Brenda W | Hofman, Albert | Oostra, Ben A | Psaty, Bruce M | Vollenweider, Peter | Wilson, James F | Wright, Alan F | Hovingh, G Kees | Metspalu, Andres | Uusitupa, Matti | Magnusson, Patrik K E | Kyvik, Kirsten O | Kaprio, Jaakko | Price, Jackie F | Dedoussis, George V | Deloukas, Panos | Meneton, Pierre | Lind, Lars | Boehnke, Michael | Shuldiner, Alan R | van Duijn, Cornelia M | Morris, Andrew D | Toenjes, Anke | Peyser, Patricia A | Beilby, John P | Körner, Antje | Kuusisto, Johanna | Laakso, Markku | Bornstein, Stefan R | Schwarz, Peter E H | Lakka, Timo A | Rauramaa, Rainer | Adair, Linda S | Smith, George Davey | Spector, Tim D | Illig, Thomas | de Faire, Ulf | Hamsten, Anders | Gudnason, Vilmundur | Kivimaki, Mika | Hingorani, Aroon | Keinanen-Kiukaanniemi, Sirkka M | Saaristo, Timo E | Boomsma, Dorret I | Stefansson, Kari | van der Harst, Pim | Dupuis, Josée | Pedersen, Nancy L | Sattar, Naveed | Harris, Tamara B | Cucca, Francesco | Ripatti, Samuli | Salomaa, Veikko | Mohlke, Karen L | Balkau, Beverley | Froguel, Philippe | Pouta, Anneli | Jarvelin, Marjo-Riitta | Wareham, Nicholas J | Bouatia-Naji, Nabila | McCarthy, Mark I | Franks, Paul W | Meigs, James B | Teslovich, Tanya M | Florez, Jose C | Langenberg, Claudia | Ingelsson, Erik | Prokopenko, Inga | Barroso, Inês
Nature genetics  2012;44(9):991-1005.
Through genome-wide association meta-analyses of up to 133,010 individuals of European ancestry without diabetes, including individuals newly genotyped using the Metabochip, we have raised the number of confirmed loci influencing glycemic traits to 53, of which 33 also increase type 2 diabetes risk (q < 0.05). Loci influencing fasting insulin showed association with lipid levels and fat distribution, suggesting impact on insulin resistance. Gene-based analyses identified further biologically plausible loci, suggesting that additional loci beyond those reaching genome-wide significance are likely to represent real associations. This conclusion is supported by an excess of directionally consistent and nominally significant signals between discovery and follow-up studies. Functional follow-up of these newly discovered loci will further improve our understanding of glycemic control.
doi:10.1038/ng.2385
PMCID: PMC3433394  PMID: 22885924
17.  Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes 
Morris, Andrew P | Voight, Benjamin F | Teslovich, Tanya M | Ferreira, Teresa | Segrè, Ayellet V | Steinthorsdottir, Valgerdur | Strawbridge, Rona J | Khan, Hassan | Grallert, Harald | Mahajan, Anubha | Prokopenko, Inga | Kang, Hyun Min | Dina, Christian | Esko, Tonu | Fraser, Ross M | Kanoni, Stavroula | Kumar, Ashish | Lagou, Vasiliki | Langenberg, Claudia | Luan, Jian'an | Lindgren, Cecilia M | Müller-Nurasyid, Martina | Pechlivanis, Sonali | Rayner, N William | Scott, Laura J | Wiltshire, Steven | Yengo, Loic | Kinnunen, Leena | Rossin, Elizabeth J | Raychaudhuri, Soumya | Johnson, Andrew D | Dimas, Antigone S | Loos, Ruth J F | Vedantam, Sailaja | Chen, Han | Florez, Jose C | Fox, Caroline | Liu, Ching-Ti | Rybin, Denis | Couper, David J | Kao, Wen Hong L | Li, Man | Cornelis, Marilyn C | Kraft, Peter | Sun, Qi | van Dam, Rob M | Stringham, Heather M | Chines, Peter S | Fischer, Krista | Fontanillas, Pierre | Holmen, Oddgeir L | Hunt, Sarah E | Jackson, Anne U | Kong, Augustine | Lawrence, Robert | Meyer, Julia | Perry, John RB | Platou, Carl GP | Potter, Simon | Rehnberg, Emil | Robertson, Neil | Sivapalaratnam, Suthesh | Stančáková, Alena | Stirrups, Kathleen | Thorleifsson, Gudmar | Tikkanen, Emmi | Wood, Andrew R | Almgren, Peter | Atalay, Mustafa | Benediktsson, Rafn | Bonnycastle, Lori L | Burtt, Noël | Carey, Jason | Charpentier, Guillaume | Crenshaw, Andrew T | Doney, Alex S F | Dorkhan, Mozhgan | Edkins, Sarah | Emilsson, Valur | Eury, Elodie | Forsen, Tom | Gertow, Karl | Gigante, Bruna | Grant, George B | Groves, Christopher J | Guiducci, Candace | Herder, Christian | Hreidarsson, Astradur B | Hui, Jennie | James, Alan | Jonsson, Anna | Rathmann, Wolfgang | Klopp, Norman | Kravic, Jasmina | Krjutškov, Kaarel | Langford, Cordelia | Leander, Karin | Lindholm, Eero | Lobbens, Stéphane | Männistö, Satu | Mirza, Ghazala | Mühleisen, Thomas W | Musk, Bill | Parkin, Melissa | Rallidis, Loukianos | Saramies, Jouko | Sennblad, Bengt | Shah, Sonia | Sigurðsson, Gunnar | Silveira, Angela | Steinbach, Gerald | Thorand, Barbara | Trakalo, Joseph | Veglia, Fabrizio | Wennauer, Roman | Winckler, Wendy | Zabaneh, Delilah | Campbell, Harry | van Duijn, Cornelia | Uitterlinden89-, Andre G | Hofman, Albert | Sijbrands, Eric | Abecasis, Goncalo R | Owen, Katharine R | Zeggini, Eleftheria | Trip, Mieke D | Forouhi, Nita G | Syvänen, Ann-Christine | Eriksson, Johan G | Peltonen, Leena | Nöthen, Markus M | Balkau, Beverley | Palmer, Colin N A | Lyssenko, Valeriya | Tuomi, Tiinamaija | Isomaa, Bo | Hunter, David J | Qi, Lu | Shuldiner, Alan R | Roden, Michael | Barroso, Ines | Wilsgaard, Tom | Beilby, John | Hovingh, Kees | Price, Jackie F | Wilson, James F | Rauramaa, Rainer | Lakka, Timo A | Lind, Lars | Dedoussis, George | Njølstad, Inger | Pedersen, Nancy L | Khaw, Kay-Tee | Wareham, Nicholas J | Keinanen-Kiukaanniemi, Sirkka M | Saaristo, Timo E | Korpi-Hyövälti, Eeva | Saltevo, Juha | Laakso, Markku | Kuusisto, Johanna | Metspalu, Andres | Collins, Francis S | Mohlke, Karen L | Bergman, Richard N | Tuomilehto, Jaakko | Boehm, Bernhard O | Gieger, Christian | Hveem, Kristian | Cauchi, Stephane | Froguel, Philippe | Baldassarre, Damiano | Tremoli, Elena | Humphries, Steve E | Saleheen, Danish | Danesh, John | Ingelsson, Erik | Ripatti, Samuli | Salomaa, Veikko | Erbel, Raimund | Jöckel, Karl-Heinz | Moebus, Susanne | Peters, Annette | Illig, Thomas | de Faire, Ulf | Hamsten, Anders | Morris, Andrew D | Donnelly, Peter J | Frayling, Timothy M | Hattersley, Andrew T | Boerwinkle, Eric | Melander, Olle | Kathiresan, Sekar | Nilsson, Peter M | Deloukas, Panos | Thorsteinsdottir, Unnur | Groop, Leif C | Stefansson, Kari | Hu, Frank | Pankow, James S | Dupuis, Josée | Meigs, James B | Altshuler, David | Boehnke, Michael | McCarthy, Mark I
Nature genetics  2012;44(9):981-990.
To extend understanding of the genetic architecture and molecular basis of type 2 diabetes (T2D), we conducted a meta-analysis of genetic variants on the Metabochip involving 34,840 cases and 114,981 controls, overwhelmingly of European descent. We identified ten previously unreported T2D susceptibility loci, including two demonstrating sex-differentiated association. Genome-wide analyses of these data are consistent with a long tail of further common variant loci explaining much of the variation in susceptibility to T2D. Exploration of the enlarged set of susceptibility loci implicates several processes, including CREBBP-related transcription, adipocytokine signalling and cell cycle regulation, in diabetes pathogenesis.
doi:10.1038/ng.2383
PMCID: PMC3442244  PMID: 22885922
18.  The Presence of Methylation Quantitative Trait Loci Indicates a Direct Genetic Influence on the Level of DNA Methylation in Adipose Tissue 
PLoS ONE  2013;8(2):e55923.
Genetic variants that associate with DNA methylation at CpG sites (methylation quantitative trait loci, meQTLs) offer a potential biological mechanism of action for disease associated SNPs. We investigated whether meQTLs exist in abdominal subcutaneous adipose tissue (SAT) and if CpG methylation associates with metabolic syndrome (MetSyn) phenotypes. We profiled 27,718 genomic regions in abdominal SAT samples of 38 unrelated individuals using differential methylation hybridization (DMH) together with genotypes at 5,227,243 SNPs and expression of 17,209 mRNA transcripts. Validation and replication of significant meQTLs was pursued in an independent cohort of 181 female twins. We find that, at 5% false discovery rate, methylation levels of 149 DMH regions associate with at least one SNP in a ±500 kilobase cis-region in our primary study. We sought to validate 19 of these in the replication study and find that five of these significantly associate with the corresponding meQTL SNPs from the primary study. We find that none of the 149 meQTL top SNPs is a significant expression quantitative trait locus in our expression data, but we observed association between expression levels of two mRNA transcripts and cis-methylation status. Our results indicate that DNA CpG methylation in abdominal SAT is partly under genetic control. This study provides a starting point for future investigations of DNA methylation in adipose tissue.
doi:10.1371/journal.pone.0055923
PMCID: PMC3576415  PMID: 23431366
19.  Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes 
Morris, Andrew P | Voight, Benjamin F | Teslovich, Tanya M | Ferreira, Teresa | Segré, Ayellet V | Steinthorsdottir, Valgerdur | Strawbridge, Rona J | Khan, Hassan | Grallert, Harald | Mahajan, Anubha | Prokopenko, Inga | Kang, Hyun Min | Dina, Christian | Esko, Tonu | Fraser, Ross M | Kanoni, Stavroula | Kumar, Ashish | Lagou, Vasiliki | Langenberg, Claudia | Luan, Jian’an | Lindgren, Cecilia M | Müller-Nurasyid, Martina | Pechlivanis, Sonali | Rayner, N William | Scott, Laura J | Wiltshire, Steven | Yengo, Loic | Kinnunen, Leena | Rossin, Elizabeth J | Raychaudhuri, Soumya | Johnson, Andrew D | Dimas, Antigone S | Loos, Ruth J F | Vedantam, Sailaja | Chen, Han | Florez, Jose C | Fox, Caroline | Liu, Ching-Ti | Rybin, Denis | Couper, David J | Kao, Wen Hong L | Li, Man | Cornelis, Marilyn C | Kraft, Peter | Sun, Qi | van Dam, Rob M | Stringham, Heather M | Chines, Peter S | Fischer, Krista | Fontanillas, Pierre | Holmen, Oddgeir L | Hunt, Sarah E | Jackson, Anne U | Kong, Augustine | Lawrence, Robert | Meyer, Julia | Perry, John R B | Platou, Carl G P | Potter, Simon | Rehnberg, Emil | Robertson, Neil | Sivapalaratnam, Suthesh | Stančáková, Alena | Stirrups, Kathleen | Thorleifsson, Gudmar | Tikkanen, Emmi | Wood, Andrew R | Almgren, Peter | Atalay, Mustafa | Benediktsson, Rafn | Bonnycastle, Lori L | Burtt, Noël | Carey, Jason | Charpentier, Guillaume | Crenshaw, Andrew T | Doney, Alex S F | Dorkhan, Mozhgan | Edkins, Sarah | Emilsson, Valur | Eury, Elodie | Forsen, Tom | Gertow, Karl | Gigante, Bruna | Grant, George B | Groves, Christopher J | Guiducci, Candace | Herder, Christian | Hreidarsson, Astradur B | Hui, Jennie | James, Alan | Jonsson, Anna | Rathmann, Wolfgang | Klopp, Norman | Kravic, Jasmina | Krjutškov, Kaarel | Langford, Cordelia | Leander, Karin | Lindholm, Eero | Lobbens, Stéphane | Männistö, Satu | Mirza, Ghazala | Mühleisen, Thomas W | Musk, Bill | Parkin, Melissa | Rallidis, Loukianos | Saramies, Jouko | Sennblad, Bengt | Shah, Sonia | Sigurðsson, Gunnar | Silveira, Angela | Steinbach, Gerald | Thorand, Barbara | Trakalo, Joseph | Veglia, Fabrizio | Wennauer, Roman | Winckler, Wendy | Zabaneh, Delilah | Campbell, Harry | van Duijn, Cornelia | Uitterlinden, Andre G | Hofman, Albert | Sijbrands, Eric | Abecasis, Goncalo R | Owen, Katharine R | Zeggini, Eleftheria | Trip, Mieke D | Forouhi, Nita G | Syvänen, Ann-Christine | Eriksson, Johan G | Peltonen, Leena | Nöthen, Markus M | Balkau, Beverley | Palmer, Colin N A | Lyssenko, Valeriya | Tuomi, Tiinamaija | Isomaa, Bo | Hunter, David J | Qi, Lu | Shuldiner, Alan R | Roden, Michael | Barroso, Ines | Wilsgaard, Tom | Beilby, John | Hovingh, Kees | Price, Jackie F | Wilson, James F | Rauramaa, Rainer | Lakka, Timo A | Lind, Lars | Dedoussis, George | Njølstad, Inger | Pedersen, Nancy L | Khaw, Kay-Tee | Wareham, Nicholas J | Keinanen-Kiukaanniemi, Sirkka M | Saaristo, Timo E | Korpi-Hyövälti, Eeva | Saltevo, Juha | Laakso, Markku | Kuusisto, Johanna | Metspalu, Andres | Collins, Francis S | Mohlke, Karen L | Bergman, Richard N | Tuomilehto, Jaakko | Boehm, Bernhard O | Gieger, Christian | Hveem, Kristian | Cauchi, Stephane | Froguel, Philippe | Baldassarre, Damiano | Tremoli, Elena | Humphries, Steve E | Saleheen, Danish | Danesh, John | Ingelsson, Erik | Ripatti, Samuli | Salomaa, Veikko | Erbel, Raimund | Jöckel, Karl-Heinz | Moebus, Susanne | Peters, Annette | Illig, Thomas | de Faire, Ulf | Hamsten, Anders | Morris, Andrew D | Donnelly, Peter J | Frayling, Timothy M | Hattersley, Andrew T | Boerwinkle, Eric | Melander, Olle | Kathiresan, Sekar | Nilsson, Peter M | Deloukas, Panos | Thorsteinsdottir, Unnur | Groop, Leif C | Stefansson, Kari | Hu, Frank | Pankow, James S | Dupuis, Josée | Meigs, James B | Altshuler, David | Boehnke, Michael | McCarthy, Mark I
Nature genetics  2012;44(9):981-990.
To extend understanding of the genetic architecture and molecular basis of type 2 diabetes (T2D), we conducted a meta-analysis of genetic variants on the Metabochip involving 34,840 cases and 114,981 controls, overwhelmingly of European descent. We identified ten previously unreported T2D susceptibility loci, including two demonstrating sex-differentiated association. Genome-wide analyses of these data are consistent with a long tail of further common variant loci explaining much of the variation in susceptibility to T2D. Exploration of the enlarged set of susceptibility loci implicates several processes, including CREBBP-related transcription, adipocytokine signalling and cell cycle regulation, in diabetes pathogenesis.
doi:10.1038/ng.2383
PMCID: PMC3442244  PMID: 22885922
20.  The miRNA Profile of Human Pancreatic Islets and Beta-Cells and Relationship to Type 2 Diabetes Pathogenesis 
PLoS ONE  2013;8(1):e55272.
Recent advances in the understanding of the genetics of type 2 diabetes (T2D) susceptibility have focused attention on the regulation of transcriptional activity within the pancreatic beta-cell. MicroRNAs (miRNAs) represent an important component of regulatory control, and have proven roles in the development of human disease and control of glucose homeostasis. We set out to establish the miRNA profile of human pancreatic islets and of enriched beta-cell populations, and to explore their potential involvement in T2D susceptibility. We used Illumina small RNA sequencing to profile the miRNA fraction in three preparations each of primary human islets and of enriched beta-cells generated by fluorescence-activated cell sorting. In total, 366 miRNAs were found to be expressed (i.e. >100 cumulative reads) in islets and 346 in beta-cells; of the total of 384 unique miRNAs, 328 were shared. A comparison of the islet-cell miRNA profile with those of 15 other human tissues identified 40 miRNAs predominantly expressed (i.e. >50% of all reads seen across the tissues) in islets. Several highly-expressed islet miRNAs, such as miR-375, have established roles in the regulation of islet function, but others (e.g. miR-27b-3p, miR-192-5p) have not previously been described in the context of islet biology. As a first step towards exploring the role of islet-expressed miRNAs and their predicted mRNA targets in T2D pathogenesis, we looked at published T2D association signals across these sites. We found evidence that predicted mRNA targets of islet-expressed miRNAs were globally enriched for signals of T2D association (p-values <0.01, q-values <0.1). At six loci with genome-wide evidence for T2D association (AP3S2, KCNK16, NOTCH2, SCL30A8, VPS26A, and WFS1) predicted mRNA target sites for islet-expressed miRNAs overlapped potentially causal variants. In conclusion, we have described the miRNA profile of human islets and beta-cells and provide evidence linking islet miRNAs to T2D pathogenesis.
doi:10.1371/journal.pone.0055272
PMCID: PMC3555946  PMID: 23372846
21.  Variants in MTNR1B influence fasting glucose levels 
Prokopenko, Inga | Langenberg, Claudia | Florez, Jose C | Saxena, Richa | Soranzo, Nicole | Thorleifsson, Gudmar | Loos, Ruth J F | Manning, Alisa K | Jackson, Anne U | Aulchenko, Yurii | Potter, Simon C | Erdos, Michael R | Sanna, Serena | Hottenga, Jouke-Jan | Wheeler, Eleanor | Kaakinen, Marika | Lyssenko, Valeriya | Chen, Wei-Min | Ahmadi, Kourosh | Beckmann, Jacques S | Bergman, Richard N | Bochud, Murielle | Bonnycastle, Lori L | Buchanan, Thomas A | Cao, Antonio | Cervino, Alessandra | Coin, Lachlan | Collins, Francis S | Crisponi, Laura | de Geus, Eco J C | Dehghan, Abbas | Deloukas, Panos | Doney, Alex S F | Elliott, Paul | Freimer, Nelson | Gateva, Vesela | Herder, Christian | Hofman, Albert | Hughes, Thomas E | Hunt, Sarah | Illig, Thomas | Inouye, Michael | Isomaa, Bo | Johnson, Toby | Kong, Augustine | Krestyaninova, Maria | Kuusisto, Johanna | Laakso, Markku | Lim, Noha | Lindblad, Ulf | Lindgren, Cecilia M | McCann, Owen T | Mohlke, Karen L | Morris, Andrew D | Naitza, Silvia | Orrù, Marco | Palmer, Colin N A | Pouta, Anneli | Randall, Joshua | Rathmann, Wolfgang | Saramies, Jouko | Scheet, Paul | Scott, Laura J | Scuteri, Angelo | Sharp, Stephen | Sijbrands, Eric | Smit, Jan H | Song, Kijoung | Steinthorsdottir, Valgerdur | Stringham, Heather M | Tuomi, Tiinamaija | Tuomilehto, Jaakko | Uitterlinden, André G | Voight, Benjamin F | Waterworth, Dawn | Wichmann, H-Erich | Willemsen, Gonneke | Witteman, Jacqueline C M | Yuan, Xin | Zhao, Jing Hua | Zeggini, Eleftheria | Schlessinger, David | Sandhu, Manjinder | Boomsma, Dorret I | Uda, Manuela | Spector, Tim D | Penninx, Brenda WJH | Altshuler, David | Vollenweider, Peter | Jarvelin, Marjo Riitta | Lakatta, Edward | Waeber, Gerard | Fox, Caroline S | Peltonen, Leena | Groop, Leif C | Mooser, Vincent | Cupples, L Adrienne | Thorsteinsdottir, Unnur | Boehnke, Michael | Barroso, Inês | Van Duijn, Cornelia | Dupuis, Josée | Watanabe, Richard M | Stefansson, Kari | McCarthy, Mark I | Wareham, Nicholas J | Meigs, James B | Abecasis, Gonçalo R
Nature genetics  2008;41(1):77-81.
To identify previously unknown genetic loci associated with fasting glucose concentrations, we examined the leading association signals in ten genome-wide association scans involving a total of 36,610 individuals of European descent. Variants in the gene encoding melatonin receptor 1B (MTNR1B) were consistently associated with fasting glucose across all ten studies. The strongest signal was observed at rs10830963, where each G allele (frequency 0.30 in HapMap CEU) was associated with an increase of 0.07 (95% CI = 0.06-0.08) mmol/l in fasting glucose levels (P = 3.2 = × 10−50) and reduced beta-cell function as measured by homeostasis model assessment (HOMA-B, P = 1.1 × 10−15). The same allele was associated with an increased risk of type 2 diabetes (odds ratio = 1.09 (1.05-1.12), per G allele P = 3.3 × 10−7) in a meta-analysis of 13 case-control studies totaling 18,236 cases and 64,453 controls. Our analyses also confirm previous associations of fasting glucose with variants at the G6PC2 (rs560887, P = 1.1 × 10−57) and GCK (rs4607517, P = 1.0 × 10−25) loci.
doi:10.1038/ng.290
PMCID: PMC2682768  PMID: 19060907
22.  The Metabochip, a Custom Genotyping Array for Genetic Studies of Metabolic, Cardiovascular, and Anthropometric Traits 
PLoS Genetics  2012;8(8):e1002793.
Genome-wide association studies have identified hundreds of loci for type 2 diabetes, coronary artery disease and myocardial infarction, as well as for related traits such as body mass index, glucose and insulin levels, lipid levels, and blood pressure. These studies also have pointed to thousands of loci with promising but not yet compelling association evidence. To establish association at additional loci and to characterize the genome-wide significant loci by fine-mapping, we designed the “Metabochip,” a custom genotyping array that assays nearly 200,000 SNP markers. Here, we describe the Metabochip and its component SNP sets, evaluate its performance in capturing variation across the allele-frequency spectrum, describe solutions to methodological challenges commonly encountered in its analysis, and evaluate its performance as a platform for genotype imputation. The metabochip achieves dramatic cost efficiencies compared to designing single-trait follow-up reagents, and provides the opportunity to compare results across a range of related traits. The metabochip and similar custom genotyping arrays offer a powerful and cost-effective approach to follow-up large-scale genotyping and sequencing studies and advance our understanding of the genetic basis of complex human diseases and traits.
Author Summary
Recent genetic studies have identified hundreds of regions of the human genome that contribute to risk for type 2 diabetes, coronary artery disease and myocardial infarction, and to related quantitative traits such as body mass index, glucose and insulin levels, blood lipid levels, and blood pressure. These results motivate two central questions: (1) can further genetic investigation identify additional associated regions?; and (2) can more detailed genetic investigation help us identify the causal variants (or variants more strongly correlated with the causal variants) in the regions identified so far? Addressing these questions requires assaying many genetic variants in DNA samples from thousands of individuals, which is expensive and timeconsuming when done a few SNPs at a time. To facilitate these investigations, we designed the “Metabochip,” a custom genotyping array that assays variation in nearly 200,000 sites in the human genome. Here we describe the Metabochip, evaluate its performance in assaying human genetic variation, and describe solutions to methodological challenges commonly encountered in its analysis.
doi:10.1371/journal.pgen.1002793
PMCID: PMC3410907  PMID: 22876189
23.  A genome-wide association meta-analysis identifies new childhood obesity loci 
Bradfield, Jonathan P. | Taal, H. Rob | Timpson, Nicholas J. | Scherag, André | Lecoeur, Cecile | Warrington, Nicole M. | Hypponen, Elina | Holst, Claus | Valcarcel, Beatriz | Thiering, Elisabeth | Salem, Rany M. | Schumacher, Fredrick R. | Cousminer, Diana L. | Sleiman, Patrick M.A. | Zhao, Jianhua | Berkowitz, Robert I. | Vimaleswaran, Karani S. | Jarick, Ivonne | Pennell, Craig E. | Evans, David M. | St. Pourcain, Beate | Berry, Diane J. | Mook-Kanamori, Dennis O | Hofman, Albert | Rivadeinera, Fernando | Uitterlinden, André G. | van Duijn, Cornelia M. | van der Valk, Ralf J.P. | de Jongste, Johan C. | Postma, Dirkje S. | Boomsma, Dorret I. | Gauderman, William J. | Hassanein, Mohamed T. | Lindgren, Cecilia M. | Mägi, Reedik | Boreham, Colin A.G. | Neville, Charlotte E. | Moreno, Luis A. | Elliott, Paul | Pouta, Anneli | Hartikainen, Anna-Liisa | Li, Mingyao | Raitakari, Olli | Lehtimäki, Terho | Eriksson, Johan G. | Palotie, Aarno | Dallongeville, Jean | Das, Shikta | Deloukas, Panos | McMahon, George | Ring, Susan M. | Kemp, John P. | Buxton, Jessica L. | Blakemore, Alexandra I.F. | Bustamante, Mariona | Guxens, Mònica | Hirschhorn, Joel N. | Gillman, Matthew W. | Kreiner-Møller, Eskil | Bisgaard, Hans | Gilliland, Frank D. | Heinrich, Joachim | Wheeler, Eleanor | Barroso, Inês | O'Rahilly, Stephen | Meirhaeghe, Aline | Sørensen, Thorkild I.A. | Power, Chris | Palmer, Lyle J. | Hinney, Anke | Widen, Elisabeth | Farooqi, I. Sadaf | McCarthy, Mark I. | Froguel, Philippe | Meyre, David | Hebebrand, Johannes | Jarvelin, Marjo-Riitta | Jaddoe, Vincent W.V. | Smith, George Davey | Hakonarson, Hakon | Grant, Struan F.A.
Nature Genetics  2012;44(5):526-531.
Multiple genetic variants have been associated with adult obesity and a few with severe obesity in childhood; however, less progress has been made to establish genetic influences on common early-onset obesity. We performed a North American-Australian-European collaborative meta-analysis of fourteen studies consisting of 5,530 cases (≥95th percentile of body mass index (BMI)) and 8,318 controls (<50th percentile of BMI) of European ancestry. Taking forward the eight novel signals yielding association with P < 5×10−6 in to nine independent datasets (n = 2,818 cases and 4,083 controls) we observed two loci that yielded a genome wide significant combined P-value, namely near OLFM4 on 13q14 (rs9568856; P=1.82×10−9; OR=1.22) and within HOXB5 on 17q21 (rs9299; P=3.54×10−9; OR=1.14). Both loci continued to show association when including two extreme childhood obesity cohorts (n = 2,214 cases and 2,674 controls). Finally, these two loci yielded directionally consistent associations in the GIANT meta-analysis of adult BMI1.
doi:10.1038/ng.2247
PMCID: PMC3370100  PMID: 22484627
24.  Extent, Causes, and Consequences of Small RNA Expression Variation in Human Adipose Tissue 
PLoS Genetics  2012;8(5):e1002704.
Small RNAs are functional molecules that modulate mRNA transcripts and have been implicated in the aetiology of several common diseases. However, little is known about the extent of their variability within the human population. Here, we characterise the extent, causes, and effects of naturally occurring variation in expression and sequence of small RNAs from adipose tissue in relation to genotype, gene expression, and metabolic traits in the MuTHER reference cohort. We profiled the expression of 15 to 30 base pair RNA molecules in subcutaneous adipose tissue from 131 individuals using high-throughput sequencing, and quantified levels of 591 microRNAs and small nucleolar RNAs. We identified three genetic variants and three RNA editing events. Highly expressed small RNAs are more conserved within mammals than average, as are those with highly variable expression. We identified 14 genetic loci significantly associated with nearby small RNA expression levels, seven of which also regulate an mRNA transcript level in the same region. In addition, these loci are enriched for variants significant in genome-wide association studies for body mass index. Contrary to expectation, we found no evidence for negative correlation between expression level of a microRNA and its target mRNAs. Trunk fat mass, body mass index, and fasting insulin were associated with more than twenty small RNA expression levels each, while fasting glucose had no significant associations. This study highlights the similar genetic complexity and shared genetic control of small RNA and mRNA transcripts, and gives a quantitative picture of small RNA expression variation in the human population.
Author Summary
Genetic information is transmitted to the cell only through RNA molecules. A special class of RNAs is comprised of the small (up to 30 nucleotide) ones, known to be potent regulators of various cellular processes. At the same time, they have not been as widely studied as messenger RNAs—we do not know how much variation in their sequence and expression level occurs naturally in human populations or how this variability influences other traits. We measured small RNA levels and genetic variability in fat tissue from 131 individuals by high-throughput sequencing. We could associate the expression levels with genetic background of the individuals, as well as changes in metabolic traits. Surprisingly, we found no large scale influence of small RNA variation on mRNA levels, their main regulatory target. Overall, our study is the first to give a quantitative picture of the naturally occurring variation in these important regulatory molecules in human fat tissue.
doi:10.1371/journal.pgen.1002704
PMCID: PMC3349731  PMID: 22589741
25.  Coexpression Network Analysis in Abdominal and Gluteal Adipose Tissue Reveals Regulatory Genetic Loci for Metabolic Syndrome and Related Phenotypes 
PLoS Genetics  2012;8(2):e1002505.
Metabolic Syndrome (MetS) is highly prevalent and has considerable public health impact, but its underlying genetic factors remain elusive. To identify gene networks involved in MetS, we conducted whole-genome expression and genotype profiling on abdominal (ABD) and gluteal (GLU) adipose tissue, and whole blood (WB), from 29 MetS cases and 44 controls. Co-expression network analysis for each tissue independently identified nine, six, and zero MetS–associated modules of coexpressed genes in ABD, GLU, and WB, respectively. Of 8,992 probesets expressed in ABD or GLU, 685 (7.6%) were expressed in ABD and 51 (0.6%) in GLU only. Differential eigengene network analysis of 8,256 shared probesets detected 22 shared modules with high preservation across adipose depots (DABD-GLU = 0.89), seven of which were associated with MetS (FDR P<0.01). The strongest associated module, significantly enriched for immune response–related processes, contained 94/620 (15%) genes with inter-depot differences. In an independent cohort of 145/141 twins with ABD and WB longitudinal expression data, median variability in ABD due to familiality was greater for MetS–associated versus un-associated modules (ABD: 0.48 versus 0.18, P = 0.08; GLU: 0.54 versus 0.20, P = 7.8×10−4). Cis-eQTL analysis of probesets associated with MetS (FDR P<0.01) and/or inter-depot differences (FDR P<0.01) provided evidence for 32 eQTLs. Corresponding eSNPs were tested for association with MetS–related phenotypes in two GWAS of >100,000 individuals; rs10282458, affecting expression of RARRES2 (encoding chemerin), was associated with body mass index (BMI) (P = 6.0×10−4); and rs2395185, affecting inter-depot differences of HLA-DRB1 expression, was associated with high-density lipoprotein (P = 8.7×10−4) and BMI–adjusted waist-to-hip ratio (P = 2.4×10−4). Since many genes and their interactions influence complex traits such as MetS, integrated analysis of genotypes and coexpression networks across multiple tissues relevant to clinical traits is an efficient strategy to identify novel associations.
Author Summary
Metabolic Syndrome (MetS) is a highly prevalent disorder with considerable public health concern, but its underlying genetic factors remain elusive. Given that most cellular components exert their functions through interactions with other cellular components, even the largest of genome-wide association (GWA) studies may often not detect their effects, nor necessarily provide insight into the complex molecular mechanisms of the disease. Rather than focusing on individual genes, the analysis of coexpression networks can be used for finding clusters (modules) of correlated expression levels across samples. In this study, we used a gene network–based approach for integrating clinical MetS, genotypic, and gene expression data from abdominal and gluteal adipose tissue and whole blood. We identified modules of genes related to MetS significantly enriched for immune response and oxidative phosphorylation pathways. We tested SNPs for association with MetS–associated expression (eSNPs), and tested prioritised eSNPs for association with MetS–related phenotypes in two large-scale GWA datasets. We identified two loci, neither of which had reached genome-wide significance levels in GWAs, associated with expression levels of RARRES2 and HLA-DRB1 and with MetS–related phenotypes, demonstrating that the integrated analysis of genotype and expression data from relevant multiple tissues can identify novel associations with complex traits such as MetS.
doi:10.1371/journal.pgen.1002505
PMCID: PMC3285582  PMID: 22383892

Results 1-25 (64)