PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Reduced cortical BDNF expression and aberrant memory in Carf knockout mice 
Transcription factors are a key point of convergence between the cell-intrinsic and extracellular signals that guide synaptic development and brain plasticity. Calcium-Response Factor (CaRF) is a unique transcription factor first identified as a binding protein for a calcium-response element in the gene encoding Brain-Derived Neurotrophic Factor (Bdnf). We have now generated Carf knockout (KO) mice to characterize the function of this factor in vivo. Intriguingly, Carf KO mice have selectively reduced expression of Bdnf exon IV-containing mRNA transcripts and BDNF protein in the cerebral cortex while BDNF levels in the hippocampus and striatum remain unchanged, implicating CaRF as a brain region-selective regulator of BDNF expression. At the cellular level, Carf KO mice show altered expression of GABAergic proteins at striatal synapses, raising the possibility that CaRF may contribute to aspects of inhibitory synapse development. Carf KO mice show normal spatial learning in the Morris water maze and normal context-dependent fear conditioning. However they have an enhanced ability to find a new platform location on the first day of reversal training in the water maze and they extinguish conditioned fear more slowly than their wildtype (WT) littermates. Finally, Carf KO mice show normal short-term and long-term memory in a novel object recognition task, but exhibit impairments during the remote memory phase of testing. Taken together these data reveal novel roles for CaRF in the organization and/or function of neural circuits that underlie essential aspects of learning and memory.
doi:10.1523/JNEUROSCI.3997-09.2010
PMCID: PMC2892904  PMID: 20519520
transcription; BDNF; activity-dependent; CaRF; GABAergic synapse; learning and memory
2.  Two pedigrees segregating Duane’s retraction syndrome as a dominant trait map to the DURS2 genetic locus 
PURPOSE
To determine the molecular etiologies of Duane’s retraction syndrome (DRS), we are investigating its genetic bases. We have previously identified the transcription factors SALL4 and HOXA1 as the genes mutated in DRS with radial anomalies, and in DRS with deafness, vascular anomalies, and cognitive deficits, respectively. We know less, however, about the genetic etiology of DRS when it occurs in isolation, and only one genetic locus for isolated DRS, the DURS2 locus on chromosome 2, has been mapped to date. Toward the goal of identifying the DURS2 gene, we have ascertained and studied two pedigrees that segregate DRS as a dominant trait.
METHODS
We enrolled members of two large dominant DRS pedigrees into our ongoing study of the genetic basis of the congenital cranial dysinnervation disorders, and conducted linkage analysis to determine if their DRS phenotype maps to the DURS2 locus.
RESULTS
By haplotype analysis, the DRS phenotype in each family co-segregates with markers spanning the DURS2 region, and linkage analysis reveals maximum lod scores of >2, establishing that the DRS phenotype in these two pedigrees maps to the DURS2 locus.
CONCLUSIONS
These two pedigrees double the published pedigrees known to map to the DURS2 locus, and can thus contribute toward the search for the DURS2 gene. The affected members represent a genetically defined population of DURS2-linked DRS individuals, and hence studies of their clinical and structural features can enhance our understanding of the DURS2 phenotype, as described in the companion paper.
doi:10.1167/iovs.06-0631
PMCID: PMC2829295  PMID: 17197532
Duane’s syndrome; linkage analysis; DUR2
3.  Human CHN1 mutations hyperactivate α2-chimaerin and cause Duane’s retraction syndrome 
Science (New York, N.Y.)  2008;321(5890):839-843.
The RacGAP molecule α2-chimaerin is implicated in neuronal signaling pathways required for precise guidance of developing corticospinal axons. We now demonstrate that a variant of Duane’s retraction syndrome, a congenital eye movement disorder in which affected individuals show aberrant development of axon projections to the extraocular muscles, can result from gain-of-function heterozygous missense mutations in CHN1 that increase α2-chimaerin RacGAP activity in vitro. A subset of mutations enhances α2-chimaerin membrane translocation and/or α2-chimaerin’s previously unrecognized ability to form a complex with itself. In ovo expression of mutant CHN1 alters the development of ocular motor axons. These data demonstrate that human CHN1 mutations can hyperactivate α2-chimaerin and result in aberrant cranial motor neuron development.
doi:10.1126/science.1156121
PMCID: PMC2593867  PMID: 18653847

Results 1-3 (3)