PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
1.  A Comparative PCET Study of a Donor-Acceptor Pair Linked by Ionized and Non-ionized Asymmetric Hydrogen-Bonded Interfaces 
A Zn(II) porphyrin-amidinium is the excited state electron donor (D) to a naphthalene diimide acceptor (A) appended with either a carboxylate or sulfonate functionality. The two-point hydrogen bond (---[H+]---) formed between the amidinium and carboxylate or sulfonate establishes a proton-coupled electron transfer (PCET) pathway for charge transfer. The two D---[H+]---A assemblies differ only by the proton configuration within the hydrogen bonding interface. Specifically, the amidinium transfers a proton to the carboxylate to form a non-ionized amidine-carboxylic acid two-point hydrogen network whereas the amidinium maintains both protons when bound to the sulfonate functionality forming an ionized amidinium-sulfonate two-point hydrogen network. These two interface configurations within the dyads thus allow for a direct comparison of PCET kinetics for the same donor and acceptor juxtaposed by an ionized and non-ionized hydrogen-bonded interface. Analysis of PCET kinetics ascertained from transient absorption and transient emission spectroscopy reveal that the ionized interface is more strongly impacted by the local solvent environment, thus establishing that the initial static configuration of the proton interface is a critical determinant to the kinetics of PCET.
doi:10.1021/ja809777j
PMCID: PMC3278395  PMID: 19489645
2.  Proton-coupled electron transfer: the mechanistic underpinning for radical transport and catalysis in biology 
Charge transport and catalysis in enzymes often rely on amino acid radicals as intermediates. The generation and transport of these radicals are synonymous with proton-coupled electron transfer (PCET), which intrinsically is a quantum mechanical effect as both the electron and proton tunnel. The caveat to PCET is that proton transfer (PT) is fundamentally limited to short distances relative to electron transfer (ET). This predicament is resolved in biology by the evolution of enzymes to control PT and ET coordinates on highly different length scales. In doing so, the enzyme imparts exquisite thermodynamic and kinetic controls over radical transport and radical-based catalysis at cofactor active sites. This discussion will present model systems containing orthogonal ET and PT pathways, thereby allowing the proton and electron tunnelling events to be disentangled. Against this mechanistic backdrop, PCET catalysis of oxygen–oxygen bond activation by mono-oxygenases is captured at biomimetic porphyrin redox platforms. The discussion concludes with the case study of radical-based quantum catalysis in a natural biological enzyme, class I Escherichia coli ribonucleotide reductase. Studies are presented that show the enzyme utilizes both collinear and orthogonal PCET to transport charge from an assembled diiron-tyrosyl radical cofactor to the active site over 35 Å away via an amino acid radical-hopping pathway spanning two protein subunits.
doi:10.1098/rstb.2006.1874
PMCID: PMC1647304  PMID: 16873123
proton-coupled electron transfer; amino acid radicals; tunnelling; tyrosine; catalysis; ribonucleotide reductase

Results 1-2 (2)