PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (72)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
1.  Recent progress in the use of genetics to understand links between type 2 diabetes and related metabolic traits 
Genome Biology  2013;14(3):203.
Genome-wide association studies have identified genetic variants associated with increased risk of type 2 diabetes. The aim of this review is to highlight some of the insights into the mechanism underlying type 2 diabetes provided by genetic association studies.
doi:10.1186/gb-2013-14-3-203
PMCID: PMC3663087  PMID: 23548046
2.  Parental diabetes and birthweight in 236 030 individuals in the UK Biobank Study 
Background The UK Biobank study provides a unique opportunity to study the causes and consequences of disease. We aimed to use the UK Biobank data to study the well-established, but poorly understood, association between low birthweight and type 2 diabetes.
Methods We used logistic regression to calculate the odds ratio for participants’ risk of type 2 diabetes given a one standard deviation increase in birthweight. To test for an association between parental diabetes and birthweight, we performed linear regression of self-reported parental diabetes status against birthweight. We performed path and mediation analyses to test the hypothesis that birthweight partly mediates the association between parental diabetes and participant type 2 diabetes status.
Results Of the UK Biobank participants, 277 261 reported their birthweight. Of 257 715 individuals of White ethnicity and singleton pregnancies, 6576 had type 2 diabetes, 19 478 reported maternal diabetes (but not paternal), 20 057 reported paternal diabetes (but not maternal) and 2754 participants reported both parents as having diabetes. Lower birthweight was associated with type 2 diabetes in the UK Biobank participants. A one kilogram increase in birthweight was associated with a lower risk of type 2 diabetes (odds ratio: 0.74; 95% CI: 0.71, 0.76; P = 2 × 10−57). Paternal diabetes was associated with lower birthweight (45 g lower; 95% CI: 36, 54; P = 2 × 10−23) relative to individuals with no parental diabetes. Maternal diabetes was associated with higher birthweight (59 g increase; 95% CI: 50, 68; P = 3 × 10−37). Participants’ lower birthweight was a mediator of the association between reported paternal diabetes and participants’ type 2 diabetes status, explaining 1.1% of the association, and participants’ higher birthweight was a mediator of the association between reported maternal diabetes and participants’ type 2 diabetes status, explaining 1.2% of the association.
Conclusions Data from the UK Biobank provides the strongest evidence by far that paternal diabetes is associated with lower birthweight, whereas maternal diabetes is associated with increased birthweight. Our findings with paternal diabetes are consistent with a role for the same genetic factors influencing foetal growth and type 2 diabetes.
doi:10.1093/ije/dyt220
PMCID: PMC3887570  PMID: 24336895
Type 2 diabetes; parental history; birthweight; UK Biobank; genetics
3.  Multiple type 2 diabetes susceptibility genes following genome-wide association scan in UK samples 
Science (New York, N.Y.)  2007;316(5829):1336-1341.
The molecular mechanisms involved in the development of type 2 diabetes are poorly understood. Starting from genome-wide genotype data for 1,924 diabetic cases and 2,938 population controls generated by the Wellcome Trust Case Control Consortium, we set out to detect replicated diabetes association signals through analysis of 3,757 additional cases and 5,346 controls, and by integration of our findings with equivalent data from other international consortia. We detected diabetes susceptibility loci in and around the genes CDKAL1, CDKN2A/CDKN2B and IGF2BP2 and confirmed the recently described associations at HHEX/IDE and SLC30A8. Our findings provide insights into the genetic architecture of type 2 diabetes, emphasizing the contribution of multiple variants of modest effect. The regions identified underscore the importance of pathways influencing pancreatic beta cell development and function in the etiology of type 2 diabetes.
doi:10.1126/science.1142364
PMCID: PMC3772310  PMID: 17463249
4.  Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits 
Nature genetics  2012;44(4):369-S3.
We present an approximate conditional and joint association analysis that can use summary-level statistics from a meta-analysis of genome-wide association studies (GWAS) and estimated linkage disequilibrium (LD) from a reference sample with individual-level genotype data. Using this method, we analyzed meta-analysis summary data from the GIANT Consortium for height and body mass index (BMI), with the LD structure estimated from genotype data in two independent cohorts. We identified 36 loci with multiple associated variants for height (38 leading and 49 additional SNPs, 87 in total) via a genome-wide SNP selection procedure. The 49 new SNPs explain approximately 1.3% of variance, nearly doubling the heritability explained at the 36 loci. We did not find any locus showing multiple associated SNPs for BMI. The method we present is computationally fast and is also applicable to case-control data, which we demonstrate in an example from meta-analysis of type 2 diabetes by the DIAGRAM Consortium.
doi:10.1038/ng.2213
PMCID: PMC3593158  PMID: 22426310
5.  Human aging is characterized by focused changes in gene expression and deregulation of alternative splicing 
Aging cell  2011;10(5):868-878.
Summary
Aging is a major risk factor for chronic disease in the human population, but there is little human data on gene expression alterations that accompany the process. We examined human peripheral blood leucocyte in-vivo RNA in a large-scale transcriptomic microarray study (subjects aged 30 to 104 years). We tested associations between probe expression intensity and advancing age (adjusting for confounding factors), initially in a discovery set (n = 458), following-up findings in a replication set (n=240). We confirmed expression of key results by real-time PCR. Of 16,571 expressed probes, only 295 (2%) were robustly associated with age. Just six probes were required for a highly efficient model for distinguishing between young and old (Area Under the Curve in replication set; 95%). The focussed nature of age-related gene expression may therefore provide potential biomarkers of aging. Similarly, only 7 of 1065 biological or metabolic pathways were age-associated, in Gene Set Enrichment Analysis (GSEA), notably including the processing of messenger RNAs (mRNAs); (p<0.002, FDR q<0.05). This is supported by our observation of age-associated disruption to the balance of alternatively-expressed isoforms for selected genes, suggesting that modification of mRNA processing may be a feature of human aging.
doi:10.1111/j.1474-9726.2011.00726.x
PMCID: PMC3173580  PMID: 21668623
Aging; Gene expression; mRNA processing; Cell senescence; predictive model
6.  Genome-Wide Association Scan Allowing for Epistasis in Type 2 Diabetes 
Annals of human genetics  2010;75(1):10-19.
Summary
In the presence of epistasis multilocus association tests of human complex traits can provide powerful methods to detect susceptibility variants. We undertook multilocus analyses in 1924 type 2 diabetes cases and 2938 controls from the Wellcome Trust Case Control Consortium (WTCCC). We performed a two-dimensional genome-wide association (GWA) scan using joint two-locus tests of association including main and epistatic effects in 70,236 markers tagging common variants. We found two-locus association at 79 SNP-pairs at a Bonferroni-corrected P-value = 0.05 (uncorrected P-value = 2.14 × 10−11). The 79 pair-wise results always contained rs11196205 in TCF7L2 paired with 79 variants including confirmed variants in FTO, TSPAN8, and CDKAL1, which are associated in the absence of epistasis. However, the majority (82%) of the 79 variants did not have compelling single-locus association signals (P-value = 5 × 10−4). Analyses conditional on the single-locus effects at TCF7L2 established that the joint two-locus results could be attributed to single-locus association at TCF7L2 alone. Interaction analyses among the peak 80 regions and among 23 previously established diabetes candidate genes identified five SNP-pairs with case-control and case-only epistatic signals. Our results demonstrate the feasibility of systematic scans in GWA data, but confirm that single-locus association can underlie and obscure multilocus findings.
doi:10.1111/j.1469-1809.2010.00629.x
PMCID: PMC3430851  PMID: 21133856
Epistasis; simultaneous search; joint effects; genome-wide association
7.  Genomic inflation factors under polygenic inheritance 
Population structure, including population stratification and cryptic relatedness, can cause spurious associations in genome-wide association studies (GWAS). Usually, the scaled median or mean test statistic for association calculated from multiple single-nucleotide-polymorphisms across the genome is used to assess such effects, and ‘genomic control' can be applied subsequently to adjust test statistics at individual loci by a genomic inflation factor. Published GWAS have clearly shown that there are many loci underlying genetic variation for a wide range of complex diseases and traits, implying that a substantial proportion of the genome should show inflation of the test statistic. Here, we show by theory, simulation and analysis of data that in the absence of population structure and other technical artefacts, but in the presence of polygenic inheritance, substantial genomic inflation is expected. Its magnitude depends on sample size, heritability, linkage disequilibrium structure and the number of causal variants. Our predictions are consistent with empirical observations on height in independent samples of ∼4000 and ∼133 000 individuals.
doi:10.1038/ejhg.2011.39
PMCID: PMC3137506  PMID: 21407268
genome-wide association study; genomic inflation factor; polygenic inheritance
8.  Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study: Common Genetic Variants in GCK and TCF7L2 Are Associated With Fasting and Postchallenge Glucose Levels in Pregnancy and With the New Consensus Definition of Gestational Diabetes Mellitus From the International Association of Diabetes and Pregnancy Study Groups 
Diabetes  2010;59(10):2682-2689.
OBJECTIVE
Common genetic variants in GCK and TCF7L2 are associated with higher fasting glucose and type 2 diabetes in nonpregnant populations. However, their associations with glucose levels from oral glucose tolerance tests (OGTTs) in pregnancy have not been assessed in a large sample. We hypothesized that these variants are associated with quantitative measures of glycemia in pregnancy.
RESEARCH DESIGN AND METHODS
We analyzed the associations between variants rs1799884 (GCK) and rs7903146 (TCF7L2) and OGTT outcomes at 24–32 weeks' gestation in 3,811 mothers of European (U.K. and Australia) and 1,706 mothers of Asian (Thailand) ancestry from the HAPO cohort. We also tested associations with offspring birth anthropometrics.
RESULTS
The maternal GCK variant was associated with higher fasting glucose in Europeans (P = 0.001) and Thais (P < 0.0001), 1-h glucose in Europeans (P = 0.001), and 2-h glucose in Thais (P = 0.005). It was also associated with higher European offspring birth weight, fat mass, and skinfold thicknesses (P < 0.05). The TCF7L2 variant was associated with all three maternal glucose outcomes (P = 0.03, P < 0.0001, and P < 0.0001 for fasting and 1-h and 2-h glucose, respectively) in the Europeans but not in the Thais (P > 0.05). In both populations, both variants were associated with higher odds of gestational diabetes mellitus according to the new International Association of Diabetes and Pregnancy Study Groups recommendations (P = 0.001–0.08).
CONCLUSIONS
Maternal GCK and TCF7L2 variants are associated with glucose levels known to carry an increased risk of adverse pregnancy outcome in women without overt diabetes. Further studies will be important to determine the variance in maternal glucose explained by all known genetic variants.
doi:10.2337/db10-0177
PMCID: PMC3083839  PMID: 20682688
9.  Polymorphisms in LMNA and near a SERPINA gene cluster are associated with cognitive function in older people 
Neurobiology of aging  2008;31(9):1563-1568.
A recent genome-wide association (GWA) study of late-onset Alzheimer's disease (LOAD) identified 15 novel single nucleotide polymorphisms (SNPs) independent of ApoE. We hypothesized that variants associated with LOAD are also associated with poor cognitive function in elderly populations. We measured additive associations between the five most strongly associated LOAD SNPs and grouped Mini Mental State Examination (MMSE) scores. Variants were genotyped in respondents (mean age 79yrs) from the Oxford Healthy Aging project (OHAP) and other sites of the MRC Cognitive Function and Aging Study (MRC-CFAS). In adjusted ordinal logistic models, two variants were associated with poorer cognitive function: rs11622883 (OR=1.14, 95%CI: 1.01 to 1.28, p=0.040) and rs505058 (OR=1.29, 95% CI: 1.02 to 1.64, p=0.036). These SNPs are close to a SERPINA gene cluster and within LMNA respectively. The mechanisms underlying the associations with cognitive impairment and LOAD require further elucidation, but both genes are interesting candidates for involvement in age-related cognitive impairment.
doi:10.1016/j.neurobiolaging.2008.08.020
PMCID: PMC2975102  PMID: 18848371
Late-onset Alzheimer's disease; dementia; cognitive function; cognitive impairment; gene; single nucleotide polymorphism; ApoE; LMNA
10.  Allelic heterogeneity and more detailed analyses of known loci explain additional phenotypic variation and reveal complex patterns of association 
Human Molecular Genetics  2011;20(20):4082-4092.
The identification of multiple signals at individual loci could explain additional phenotypic variance (‘missing heritability’) of common traits, and help identify causal genes. We examined gene expression levels as a model trait because of the large number of strong genetic effects acting in cis. Using expression profiles from 613 individuals, we performed genome-wide single nucleotide polymorphism (SNP) analyses to identify cis-expression quantitative trait loci (eQTLs), and conditional analysis to identify second signals. We examined patterns of association when accounting for multiple SNPs at a locus and when including additional SNPs from the 1000 Genomes Project. We identified 1298 cis-eQTLs at an approximate false discovery rate 0.01, of which 118 (9%) showed evidence of a second independent signal. For this subset of 118 traits, accounting for two signals resulted in an average 31% increase in phenotypic variance explained (Wilcoxon P< 0.0001). The association of SNPs with cis gene expression could increase, stay similar or decrease in significance when accounting for linkage disequilibrium with second signals at the same locus. Pairs of SNPs increasing in significance tended to have gene expression increasing alleles on opposite haplotypes, whereas pairs of SNPs decreasing in significance tended to have gene expression increasing alleles on the same haplotypes. Adding data from the 1000 Genomes Project showed that apparently independent signals could be potentially explained by a single association signal. Our results show that accounting for multiple variants at a locus will increase the variance explained in a substantial fraction of loci, but that allelic heterogeneity will be difficult to define without resequencing loci and functional work.
doi:10.1093/hmg/ddr328
PMCID: PMC3177649  PMID: 21798870
11.  Adult height variants affect birth length and growth rate in children 
Human Molecular Genetics  2011;20(20):4069-4075.
Previous studies identified 180 single nucleotide polymorphisms (SNPs) associated with adult height, explaining ∼10% of the variance. The age at which these begin to affect growth is unclear. We modelled the effect of these SNPs on birth length and childhood growth. A total of 7768 participants in the Avon Longitudinal Study of Parents and Children had data available. Individual growth trajectories from 0 to 10 years were estimated using mixed-effects linear spline models and differences in trajectories by individual SNPs and allelic score were determined. The allelic score was associated with birth length (0.026 cm increase per ‘tall’ allele, SE = 0.003, P = 1 × 10−15, equivalent to 0.017 SD). There was little evidence of association between the allelic score and early infancy growth (0–3 months), but there was evidence of association between the allelic score and later growth. This association became stronger with each consecutive growth period, per ‘tall’ allele per month effects were 0.015 SD (3 months–1 year, SE = 0.004), 0.023 SD (1–3 years, SE = 0.003) and 0.028 SD (3–10 years, SE = 0.003). By age 10, the mean height difference between individuals with ≤170 versus ≥191 ‘tall’ alleles (the top and bottom 10%) was 4.7 cm (0.8 SD), explaining ∼5% of the variance. There was evidence of associations with specific growth periods for some SNPs (rs3791675, EFEMP1 and rs6569648, L3MBTL3) and supportive evidence for previously reported age-dependent effects of HHIP and SOCS2 SNPs. SNPs associated with adult height influence birth length and have an increasing effect on growth from late infancy through to late childhood. By age 10, they explain half the height variance (∼5%) of that explained in adults (∼10%).
doi:10.1093/hmg/ddr309
PMCID: PMC3177650  PMID: 21757498
12.  Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study: common genetic variants in GCK and TCF7L2 are associated with fasting and post-challenge glucose levels in pregnancy and with the new consensus definition of gestational diabetes from the International Association of Diabetes and Pregnancy Study Groups 
Diabetes  2010;59(10):2682-2689.
Objective
Common genetic variants in GCK and TCF7L2 are associated with higher fasting glucose and type 2 diabetes in non-pregnant populations. However, their associations with glucose levels from oral glucose tolerance tests (OGTT) in pregnancy have not been assessed in a large sample. We hypothesized that these variants are associated with quantitative measures of glycemia in pregnancy.
Research Design and Methods
We analyzed the associations between variants rs1799884 (GCK) and rs7903146 (TCF7L2) and OGTT outcomes at 24-32 weeks gestation from 3811 mothers of European (UK, Australia) and 1706 mothers of Asian (Thailand) ancestry from the HAPO cohort. We also tested associations with offspring birth anthropometrics.
Results
The maternal GCK variant was associated with higher fasting glucose in Europeans (P=0.001) and Thais (P<0.0001), 1-hour glucose in Europeans (P=0.001), and 2-hour glucose in Thais (P=0.005). It was also associated with higher European offspring birth weight, fat mass and skinfold thicknesses (P<0.05). The TCF7L2 variant was associated with all three maternal glucose outcomes (P=0.03, P<0.0001 and P<0.0001 for fasting, 1-hour and 2-hour glucose, respectively) in the Europeans, but not in the Thais (P>0.05). In both populations, both variants were associated with higher odds of gestational diabetes according to the new IADPSG recommendations (P=0.001-0.08).
Conclusions
Maternal GCK and TCF7L2 variants are associated with glucose levels known to carry an increased risk of adverse pregnancy outcome in women without overt diabetes. Further studies will be important to determine the variance in maternal glucose explained by all known genetic variants.
doi:10.2337/db10-0177
PMCID: PMC3083839  PMID: 20682688
13.  Piecing together the FTO jigsaw 
Genome Biology  2011;12(2):104.
Two recent studies of the FTO gene provide more information on how it affects body mass index.
doi:10.1186/gb-2011-12-2-104
PMCID: PMC3188788  PMID: 21349207
14.  Polygenic Risk Variants for Type 2 Diabetes Susceptibility Modify Age at Diagnosis in Monogenic HNF1A Diabetes 
Diabetes  2009;59(1):266-271.
OBJECTIVE
Mutations in the HNF1A gene are the most common cause of maturity-onset diabetes of the young (MODY). There is a substantial variation in the age at diabetes diagnosis, even within families where diabetes is caused by the same mutation. We investigated the hypothesis that common polygenic variants that predispose to type 2 diabetes might account for the difference in age at diagnosis.
RESEARCH DESIGN AND METHODS
Fifteen robustly associated type 2 diabetes variants were successfully genotyped in 410 individuals from 203 HNF1A-MODY families, from two study centers in the U.K. and Norway. We assessed their effect on the age at diagnosis both individually and in a combined genetic score by summing the number of type 2 diabetes risk alleles carried by each patient.
RESULTS
We confirmed the effects of environmental and genetic factors known to modify the age at HNF1A-MODY diagnosis, namely intrauterine hyperglycemia (−5.1 years if present, P = 1.6 × 10−10) and HNF1A mutation position (−5.2 years if at least two isoforms affected, P = 1.8 × 10−2). Additionally, our data showed strong effects of sex (females diagnosed 3.0 years earlier, P = 6.0 × 10−4) and age at study (0.3 years later diagnosis per year increase in age, P = 4.7 × 10−38). There were no strong individual single nucleotide polymorphism effects; however, in the combined genetic score model, each additional risk allele was associated with 0.35 years earlier diabetes diagnosis (P = 5.1 × 10−3).
CONCLUSIONS
We show that type 2 diabetes risk variants of modest effect sizes reduce the age at diagnosis in HNF1A-MODY. This is one of the first studies to demonstrate that clinical characteristics of a monogenic disease can be modified by common polygenic variants.
doi:10.2337/db09-0555
PMCID: PMC2797932  PMID: 19794065
15.  Interleukin-18 Polymorphism and Physical Functioning in Older People: A Replication Study and Meta-Analysis 
Background
Levels of the proinflammatory cytokine interleukin-18 (IL-18) are raised in old age and are associated with reduced physical functioning. Previous studies have indicated that the C allele of the rs5744256 polymorphism in the IL-18 gene is strongly associated with reduced circulating IL-18 levels. This variant has previously been associated with improved locomotor performance in old age, but the finding requires independent replication.
Methods
We examined the association between the IL-18 polymorphism rs5744256 and physical functioning in three cohorts with a total of 4,107 participants aged 60–85 years: the English Longitudinal Study of Ageing, Caerphilly, and Boyd Orr. We meta-analyzed (N = 6,141) the results with data from the original paper reporting this association: Iowa-Established Populations for Epidemiological Study of the Elderly and InCHIANTI cohorts. Physical functioning was assessed by timed walks or the get up and go test. As locomotor performance tests differed between the cohorts and the distributions of times to complete the test (in seconds) were positively skewed, we used the reciprocal transformation and computed study-specific z scores.
Results
Based on the three new studies, the estimated linear regression coefficient per C allele was 0.011 (95% confidence interval [95% CI]: −0.04 to 0.06). A meta-analysis that pooled the data from all studies showed weak evidence of an effect, with a regression coefficient of 0.047 (95% CI: 0.010 to 0.083).
Conclusions
We did not replicate an association between the IL-18 rs5744256 polymorphism and the physical function in people aged 60–85 years. However, pooling data from all studies suggested a weak association of the C allele of the rs5744256 single nucleotide polymorphism on improving walking times in old age.
doi:10.1093/gerona/glp092
PMCID: PMC2981454  PMID: 19633236
Interleukin-18 polymorphism; IL-18; Ageing; Physical function; Gait speed; Walk time
16.  The longitudinal association of common susceptibility variants for type 2 diabetes and obesity with fasting glucose level and BMI 
BMC Medical Genetics  2010;11:140.
Background
Variation in the effects of genetic variants on physiological traits over time or with age may alter the trajectories of these traits. However, few studies have investigated this possibility for variants associated with type 2 diabetes or obesity, and these show little consensus. We aimed to characterise the possible longitudinal associations of common diabetes-susceptibility variants in the KCNJ11, PPARG, TCF7L2, IGF2BP2, CDKAL1, SLC30A8 and HHEX gene loci, with fasting glucose level; and of an obesity-associated variant in the FTO gene, with body mass index (BMI).
Methods
The study analysed data from the Busselton Health Study (n = 4,554). Cross-sectional association analyses included family data and used the total association test. Longitudinal association analyses of unrelated participant data (n = 2,864) used linear mixed-effects models.
Results
In cross-sectional analyses, we observed associations of the T allele at the IGF2BP2 single nucleotide polymorphism (SNP) rs4402960 with raised fasting glucose (p = 0.045), and the A allele at the FTO SNP rs9939609 with raised BMI (p = 0.003). Longitudinal analyses showed no significant associations between SNPs and changes in fasting glucose or BMI in the same individuals, either over mean follow-up times of 18.7 and 21.8 years respectively, or with age during adulthood.
Conclusions
There was no indication that the effects of common type 2 diabetes variants on fasting glucose varied with age during adulthood or over time.
doi:10.1186/1471-2350-11-140
PMCID: PMC2958899  PMID: 20929593
17.  Circulating β-carotene levels and Type 2 diabetes: Cause or effect? 
Diabetologia  2009;52(10):2117-2121.
Aims and Hypothesis
Circulating β-carotene levels are inversely associated with type 2 diabetes risk, but the causal direction of this association is not certain. In this study we used a Mendelian Randomization approach to provide evidence for or against the causal role of the anti-oxidant vitamin β-carotene in type 2 diabetes.
Methods
We used a common polymorphism (rs6564851) near the β-carotene 15,15'-Monooxygenase 1 (BCMO1) gene that is strongly associated with circulating β-carotene levels (P = 2×10−24) - each G allele is associated with a 0.27 standard deviation increase in levels. We used data from the InCHIANTI study and the ULSAM study to estimate the association between β-carotene levels and type 2 diabetes. We next used a triangulation approach to estimate the expected effect of rs6564851 on type 2 diabetes risk, and compared this to the observed effect using data from 4549 type 2 diabetes cases and 5579 controls from the DIAGRAM consortium.
Results
A 0.27 standard deviation increase in β-carotene levels is associated with an odds ratio of 0.90 (0.86–0.95) for type 2 diabetes in the InCHIANTI study. This association is similar to that of the ULSAM study, OR (0.90 (0.84–0.97)). In contrast there was no association between rs6564851 and type 2 diabetes (OR 0.98 (0.93–1.04, P = 0.58), and this effect size was smaller than that expected given the known associations between rs6564851 and β-carotene levels and the associations between β-carotene levels and type 2 diabetes.
Conclusion
Our Mendelian Randomization studies are in keeping with randomized controlled trials that suggest β-carotene is not causally protective against type 2 diabetes.
doi:10.1007/s00125-009-1475-8
PMCID: PMC2746424  PMID: 19662379
type 2 diabetes; β-carotene; mendelian randomization
18.  Underlying Genetic Models of Inheritance in Established Type 2 Diabetes Associations 
American Journal of Epidemiology  2009;170(5):537-545.
For most associations of common single nucleotide polymorphisms (SNPs) with common diseases, the genetic model of inheritance is unknown. The authors extended and applied a Bayesian meta-analysis approach to data from 19 studies on 17 replicated associations with type 2 diabetes. For 13 SNPs, the data fitted very well to an additive model of inheritance for the diabetes risk allele; for 4 SNPs, the data were consistent with either an additive model or a dominant model; and for 2 SNPs, the data were consistent with an additive or recessive model. Results were robust to the use of different priors and after exclusion of data for which index SNPs had been examined indirectly through proxy markers. The Bayesian meta-analysis model yielded point estimates for the genetic effects that were very similar to those previously reported based on fixed- or random-effects models, but uncertainty about several of the effects was substantially larger. The authors also examined the extent of between-study heterogeneity in the genetic model and found generally small between-study deviation values for the genetic model parameter. Heterosis could not be excluded for 4 SNPs. Information on the genetic model of robustly replicated association signals derived from genome-wide association studies may be useful for predictive modeling and for designing biologic and functional experiments.
doi:10.1093/aje/kwp145
PMCID: PMC2732984  PMID: 19602701
Bayes theorem; diabetes mellitus, type 2; meta-analysis; models, genetic; polymorphism, genetic; population characteristics
19.  The 9p21 Myocardial Infarction risk allele increases risk of Peripheral Artery Disease in older people 
Background
A common variant at chromosome 9p21 (tagged by the rs1333049 or rs10757278 SNP) is strongly associated with Myocardial Infarction (MI) and major arterial aneurysms. An association with Peripheral Arterial Disease (PAD) was also reported in a sample aged <75 years, but this disappeared on removal of respondents with a MI history, resulting in an odds ratio for PAD of 1.09 (p=0.075). We aimed to estimate the association of this variant with Ankle Brachial Index (ABI) and PAD in three older populations.
Methods and Results
We used data from the InCHIANTI, Baltimore Longitudinal Study of Aging and Health, Aging and Body Composition studies. In 2,630 Caucasian individuals (mean age 76.4 years) the C allele at rs1333049 was associated with lower mean ABI measures and with increased prevalence of PAD. These associations remained after removal of baseline and incident MI cases over a 6 year follow-up for both ABI (−0.017 ABI units, 95% CI: −0.03- −0.01, p=1.3×10−4) and PAD (per allele OR: 1.29, 95% CI: 1.06–1.56, p=0.012). These associations also remained after adjustment for known atherosclerosis risk factors including Diabetes Mellitus, smoking, hypercholesterolemia and hypertension.
Conclusions
The C allele at rs1333049 is associated with an increased prevalence of Peripheral Arterial Disease and lower mean Ankle Brachial Index. This association was independent of the presence of diagnosed MI and atherosclerotic risk factors in 3 older Caucasian populations.
doi:10.1161/CIRCGENETICS.108.825935
PMCID: PMC2777723  PMID: 20031606
Genetics; Myocardial Infarction; Peripheral Vascular Disease; 9p21; CDKN2a/2b
20.  Linkage Disequilibrium Mapping of the Replicated Type 2 Diabetes Linkage Signal on Chromosome 1q 
Diabetes  2009;58(7):1704-1709.
OBJECTIVE
Linkage of the chromosome 1q21–25 region to type 2 diabetes has been demonstrated in multiple ethnic groups. We performed common variant fine-mapping across a 23-Mb interval in a multiethnic sample to search for variants responsible for this linkage signal.
RESEARCH DESIGN AND METHODS
In all, 5,290 single nucleotide polymorphisms (SNPs) were successfully genotyped in 3,179 type 2 diabetes case and control subjects from eight populations with evidence of 1q linkage. Samples were ascertained using strategies designed to enhance power to detect variants causal for 1q linkage. After imputation, we estimate ∼80% coverage of common variation across the region (r 2 > 0.8, Europeans). Association signals of interest were evaluated through in silico replication and de novo genotyping in ∼8,500 case subjects and 12,400 control subjects.
RESULTS
Association mapping of the 23-Mb region identified two strong signals, both of which were restricted to the subset of European-descent samples. The first mapped to the NOS1AP (CAPON) gene region (lead SNP: rs7538490, odds ratio 1.38 [95% CI 1.21–1.57], P = 1.4 × 10−6, in 999 case subjects and 1,190 control subjects); the second mapped within an extensive region of linkage disequilibrium that includes the ASH1L and PKLR genes (lead SNP: rs11264371, odds ratio 1.48 [1.18–1.76], P = 1.0 × 10−5, under a dominant model). However, there was no evidence for association at either signal on replication, and, across all data (>24,000 subjects), there was no indication that these variants were causally related to type 2 diabetes status.
CONCLUSIONS
Detailed fine-mapping of the 23-Mb region of replicated linkage has failed to identify common variant signals contributing to the observed signal. Future studies should focus on identification of causal alleles of lower frequency and higher penetrance.
doi:10.2337/db09-0081
PMCID: PMC2699860  PMID: 19389826
21.  Interrogating Type 2 Diabetes Genome-Wide Association Data Using a Biological Pathway-Based Approach 
Diabetes  2009;58(6):1463-1467.
OBJECTIVE
Recent genome-wide association studies have resulted in a dramatic increase in our knowledge of the genetic loci involved in type 2 diabetes. In a complementary approach to these single-marker studies, we attempted to identify biological pathways associated with type 2 diabetes. This approach could allow us to identify additional risk loci.
RESEARCH DESIGN AND METHODS
We used individual level genotype data generated from the Wellcome Trust Case Control Consortium (WTCCC) type 2 diabetes study, consisting of 393,143 autosomal SNPs, genotyped across 1,924 case subjects and 2,938 control subjects. We sought additional evidence from summary level data available from the Diabetes Genetics Initiative (DGI) and the Finland-United States Investigation of NIDDM Genetics (FUSION) studies. Statistical analysis of pathways was performed using a modification of the Gene Set Enrichment Algorithm (GSEA). A total of 439 pathways were analyzed from the Kyoto Encyclopedia of Genes and Genomes, Gene Ontology, and BioCarta databases.
RESULTS
After correcting for the number of pathways tested, we found no strong evidence for any pathway showing association with type 2 diabetes (top Padj = 0.31). The candidate WNT-signaling pathway ranked top (nominal P = 0.0007, excluding TCF7L2; P = 0.002), containing a number of promising single gene associations. These include CCND2 (rs11833537; P = 0.003), SMAD3 (rs7178347; P = 0.0006), and PRICKLE1 (rs1796390; P = 0.001), all expressed in the pancreas.
CONCLUSIONS
Common variants involved in type 2 diabetes risk are likely to occur in or near genes in multiple pathways. Pathway-based approaches to genome-wide association data may be more successful for some complex traits than others, depending on the nature of the underlying disease physiology.
doi:10.2337/db08-1378
PMCID: PMC2682674  PMID: 19252133
22.  Underlying genetic models of inheritance in established type 2 diabetes associations 
American journal of epidemiology  2009;170(5):537-545.
For most associations of common polymorphisms with common diseases, the genetic model of inheritance is unknown. We extended and applied a Bayesian meta-analysis approach to data from 19 studies on 17 replicated associations for type 2 diabetes. For 13 polymorphisms, the data fit very well to an additive model, for 4 polymorphisms the data were consistent with either an additive or dominant model, and for 2 polymorphisms with an additive or recessive model of inheritance for the diabetes risk allele. Results were robust to using different priors and after excluding data where index polymorphisms had been examined indirectly through proxy markers. The Bayesian meta-analysis model yielded point estimates for the genetic effects that are very similar to those previously reported based on fixed or random effects models, but uncertainty about several of the effects was substantially larger. We also examined the extent of between-study heterogeneity in the genetic model and found generally small values of the between-study deviation for the genetic model parameter. Heterosis could not be excluded in 4 SNPs. Information on the genetic model of robustly replicated GWA-derived association signals may be useful for predictive modeling, and for designing biological and functional experiments.
doi:10.1093/aje/kwp145
PMCID: PMC2732984  PMID: 19602701
23.  Large-scale association analysis of TNF/LTA gene region polymorphisms in type 2 diabetes 
BMC Medical Genetics  2010;11:69.
Background
The TNF/LTA locus has been a long-standing T2D candidate gene. Several studies have examined association of TNF/LTA SNPs with T2D but the majority have been small-scale and produced no convincing evidence of association. The purpose of this study is to examine T2D association of tag SNPs in the TNF/LTA region capturing the majority of common variation in a large-scale sample set of UK/Irish origin.
Methods
This study comprised a case-control (1520 cases and 2570 control samples) and a family-based component (423 parent-offspring trios). Eleven tag SNPs (rs928815, rs909253, rs746868, rs1041981 (T60N), rs1800750, rs1800629 (G-308A), rs361525 (G-238A), rs3093662, rs3093664, rs3093665, and rs3093668) were selected across the TNF/LTA locus and genotyped using a fluorescence-based competitive allele specific assay. Quality control of the obtained genotypes was performed prior to single- and multi-point association analyses under the additive model.
Results
We did not find any consistent SNP associations with T2D in the case-control or family-based datasets.
Conclusions
The present study, designed to analyse a set of tag SNPs specifically selected to capture the majority of common variation in the TNF/LTA gene region, found no robust evidence for association with T2D. To investigate the presence of smaller effects of TNF/LTA gene variation with T2D, a large-scale meta-analysis will be required.
doi:10.1186/1471-2350-11-69
PMCID: PMC2873325  PMID: 20459604
24.  Common Genetic Variation in the Melatonin Receptor 1B Gene (MTNR1B) is Associated with Decreased Early Phase Insulin Response 
Diabetologia  2009;52(8):1537-1542.
OBJECTIVE
To investigate whether variation in the melatonin receptor 1B gene (MTNR1B), recently identified as a common genetic determinant of fasting glucose levels in healthy, diabetes free individuals is associated with measures of beta-cell function and whole-body insulin sensitivity.
RESEARCH DESIGN AND METHODS
A total of 1,276 healthy individuals of European ancestry were studied at 19 centres of the RISC study. Whole-body insulin sensitivity (M/I) was assessed by hyperinsulinaemic-euglycemic clamp and indices of beta-cell function were derived from a 75-g oral glucose tolerance test (including 30-min insulin response and glucose sensitivity). We studied rs10830963 in MTNR1B using additive genetic models, adjusting for age, sex, and recruitment centre.
RESULTS
The minor (G) allele of rs10830963 in MTNR1B (frequency 0.30 in HapMap CEU; 0.29 in RISC participants) was associated with higher levels of fasting plasma glucose (standardized beta (95% CI) 0.17 (0.085; 0.25) per G allele; p=5.8×10e-5), consistent with recent observations. In addition, the G-allele was significantly associated with lower early insulin response (−0.19 (−0.28; −0.10); p=1.7×10e-5), as well as with decreased beta-cell glucose sensitivity (−0.11 (−0.20; −0.027); p=0.010). No associations were observed with clamp assessed insulin sensitivity (p=0.15) or different measures of body size (all p-values >0.7).
CONCLUSIONS
Genetic variation in MTNR1B is associated with defective early insulin response and decreased beta-cell glucose sensitivity, which may contribute to the higher glucose levels of non-diabetic individuals carrying the minor G allele of rs10830963 in MTNR1B.
doi:10.1007/s00125-009-1392-x
PMCID: PMC2709880  PMID: 19455304
25.  Adiposity-Related Heterogeneity in Patterns of Type 2 Diabetes Susceptibility Observed in Genome-Wide Association Data 
Diabetes  2009;58(2):505-510.
OBJECTIVE—This study examined how differences in the BMI distribution of type 2 diabetic case subjects affected genome-wide patterns of type 2 diabetes association and considered the implications for the etiological heterogeneity of type 2 diabetes.
RESEARCH DESIGN AND METHODS—We reanalyzed data from the Wellcome Trust Case Control Consortium genome-wide association scan (1,924 case subjects, 2,938 control subjects: 393,453 single-nucleotide polymorphisms [SNPs]) after stratifying case subjects (into “obese” and “nonobese”) according to median BMI (30.2 kg/m2). Replication of signals in which alternative case-ascertainment strategies generated marked effect size heterogeneity in type 2 diabetes association signal was sought in additional samples.
RESULTS—In the “obese-type 2 diabetes” scan, FTO variants had the strongest type 2 diabetes effect (rs8050136: relative risk [RR] 1.49 [95% CI 1.34–1.66], P = 1.3 × 10−13), with only weak evidence for TCF7L2 (rs7901695 RR 1.21 [1.09–1.35], P = 0.001). This situation was reversed in the “nonobese” scan, with FTO association undetectable (RR 1.07 [0.97–1.19], P = 0.19) and TCF7L2 predominant (RR 1.53 [1.37–1.71], P = 1.3 × 10−14). These patterns, confirmed by replication, generated strong combined evidence for between-stratum effect size heterogeneity (FTO: PDIFF = 1.4 × 10−7; TCF7L2: PDIFF = 4.0 × 10−6). Other signals displaying evidence of effect size heterogeneity in the genome-wide analyses (on chromosomes 3, 12, 15, and 18) did not replicate. Analysis of the current list of type 2 diabetes susceptibility variants revealed nominal evidence for effect size heterogeneity for the SLC30A8 locus alone (RRobese 1.08 [1.01–1.15]; RRnonobese 1.18 [1.10–1.27]: PDIFF = 0.04).
CONCLUSIONS—This study demonstrates the impact of differences in case ascertainment on the power to detect and replicate genetic associations in genome-wide association studies. These data reinforce the notion that there is substantial etiological heterogeneity within type 2 diabetes.
doi:10.2337/db08-0906
PMCID: PMC2628627  PMID: 19056611

Results 1-25 (72)