PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (70)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
1.  HMG-coenzyme A reductase inhibition, type 2 diabetes, and bodyweight: evidence from genetic analysis and randomised trials 
Swerdlow, Daniel I | Preiss, David | Kuchenbaecker, Karoline B | Holmes, Michael V | Engmann, Jorgen E L | Shah, Tina | Sofat, Reecha | Stender, Stefan | Johnson, Paul C D | Scott, Robert A | Leusink, Maarten | Verweij, Niek | Sharp, Stephen J | Guo, Yiran | Giambartolomei, Claudia | Chung, Christina | Peasey, Anne | Amuzu, Antoinette | Li, KaWah | Palmen, Jutta | Howard, Philip | Cooper, Jackie A | Drenos, Fotios | Li, Yun R | Lowe, Gordon | Gallacher, John | Stewart, Marlene C W | Tzoulaki, Ioanna | Buxbaum, Sarah G | van der A, Daphne L | Forouhi, Nita G | Onland-Moret, N Charlotte | van der Schouw, Yvonne T | Schnabel, Renate B | Hubacek, Jaroslav A | Kubinova, Ruzena | Baceviciene, Migle | Tamosiunas, Abdonas | Pajak, Andrzej | Topor-Madry, Romanvan | Stepaniak, Urszula | Malyutina, Sofia | Baldassarre, Damiano | Sennblad, Bengt | Tremoli, Elena | de Faire, Ulf | Veglia, Fabrizio | Ford, Ian | Jukema, J Wouter | Westendorp, Rudi G J | de Borst, Gert Jan | de Jong, Pim A | Algra, Ale | Spiering, Wilko | der Zee, Anke H Maitland-van | Klungel, Olaf H | de Boer, Anthonius | Doevendans, Pieter A | Eaton, Charles B | Robinson, Jennifer G | Duggan, David | Kjekshus, John | Downs, John R | Gotto, Antonio M | Keech, Anthony C | Marchioli, Roberto | Tognoni, Gianni | Sever, Peter S | Poulter, Neil R | Waters, David D | Pedersen, Terje R | Amarenco, Pierre | Nakamura, Haruo | McMurray, John J V | Lewsey, James D | Chasman, Daniel I | Ridker, Paul M | Maggioni, Aldo P | Tavazzi, Luigi | Ray, Kausik K | Seshasai, Sreenivasa Rao Kondapally | Manson, JoAnn E | Price, Jackie F | Whincup, Peter H | Morris, Richard W | Lawlor, Debbie A | Smith, George Davey | Ben-Shlomo, Yoav | Schreiner, Pamela J | Fornage, Myriam | Siscovick, David S | Cushman, Mary | Kumari, Meena | Wareham, Nick J | Verschuren, W M Monique | Redline, Susan | Patel, Sanjay R | Whittaker, John C | Hamsten, Anders | Delaney, Joseph A | Dale, Caroline | Gaunt, Tom R | Wong, Andrew | Kuh, Diana | Hardy, Rebecca | Kathiresan, Sekar | Castillo, Berta A | van der Harst, Pim | Brunner, Eric J | Tybjaerg-Hansen, Anne | Marmot, Michael G | Krauss, Ronald M | Tsai, Michael | Coresh, Josef | Hoogeveen, Ronald C | Psaty, Bruce M | Lange, Leslie A | Hakonarson, Hakon | Dudbridge, Frank | Humphries, Steve E | Talmud, Philippa J | Kivimäki, Mika | Timpson, Nicholas J | Langenberg, Claudia | Asselbergs, Folkert W | Voevoda, Mikhail | Bobak, Martin | Pikhart, Hynek | Wilson, James G | Reiner, Alex P | Keating, Brendan J | Hingorani, Aroon D | Sattar, Naveed
Lancet  2015;385(9965):351-361.
Summary
Background
Statins increase the risk of new-onset type 2 diabetes mellitus. We aimed to assess whether this increase in risk is a consequence of inhibition of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), the intended drug target.
Methods
We used single nucleotide polymorphisms in the HMGCR gene, rs17238484 (for the main analysis) and rs12916 (for a subsidiary analysis) as proxies for HMGCR inhibition by statins. We examined associations of these variants with plasma lipid, glucose, and insulin concentrations; bodyweight; waist circumference; and prevalent and incident type 2 diabetes. Study-specific effect estimates per copy of each LDL-lowering allele were pooled by meta-analysis. These findings were compared with a meta-analysis of new-onset type 2 diabetes and bodyweight change data from randomised trials of statin drugs. The effects of statins in each randomised trial were assessed using meta-analysis.
Findings
Data were available for up to 223 463 individuals from 43 genetic studies. Each additional rs17238484-G allele was associated with a mean 0·06 mmol/L (95% CI 0·05–0·07) lower LDL cholesterol and higher body weight (0·30 kg, 0·18–0·43), waist circumference (0·32 cm, 0·16–0·47), plasma insulin concentration (1·62%, 0·53–2·72), and plasma glucose concentration (0·23%, 0·02–0·44). The rs12916 SNP had similar effects on LDL cholesterol, bodyweight, and waist circumference. The rs17238484-G allele seemed to be associated with higher risk of type 2 diabetes (odds ratio [OR] per allele 1·02, 95% CI 1·00–1·05); the rs12916-T allele association was consistent (1·06, 1·03–1·09). In 129 170 individuals in randomised trials, statins lowered LDL cholesterol by 0·92 mmol/L (95% CI 0·18–1·67) at 1-year of follow-up, increased bodyweight by 0·24 kg (95% CI 0·10–0·38 in all trials; 0·33 kg, 95% CI 0·24–0·42 in placebo or standard care controlled trials and −0·15 kg, 95% CI −0·39 to 0·08 in intensive-dose vs moderate-dose trials) at a mean of 4·2 years (range 1·9–6·7) of follow-up, and increased the odds of new-onset type 2 diabetes (OR 1·12, 95% CI 1·06–1·18 in all trials; 1·11, 95% CI 1·03–1·20 in placebo or standard care controlled trials and 1·12, 95% CI 1·04–1·22 in intensive-dose vs moderate dose trials).
Interpretation
The increased risk of type 2 diabetes noted with statins is at least partially explained by HMGCR inhibition.
Funding
The funding sources are cited at the end of the paper.
doi:10.1016/S0140-6736(14)61183-1
PMCID: PMC4322187  PMID: 25262344
2.  Association between circulating 25-hydroxyvitamin D and incident type 2 diabetes: a mendelian randomisation study 
Summary
Background
Low circulating concentrations of 25-hydroxyvitamin D (25[OH]D), a marker of vitamin D status, are associated with an increased risk of type 2 diabetes, but whether this association is causal remains unclear. We aimed to estimate the unconfounded, causal association between 25(OH)D concentration and risk of type 2 diabetes using a mendelian randomisation approach.
Methods
Using several data sources from populations of European descent, including type 2 diabetes cases and non-cases, we did a mendelian randomisation analysis using single nucleotide polymorphisms (SNPs) within or near four genes related to 25(OH)D synthesis and metabolism: DHCR7 (related to vitamin D synthesis), CYP2R1 (hepatic 25-hydroxylation), DBP (also known as GC; transport), and CYP24A1 (catabolism). We assessed each SNP for an association with circulating 25(OH)D concentration (5449 non-cases; two studies), risk of type 2 diabetes (28 144 cases, 76 344 non-cases; five studies), and glycaemic traits (concentrations of fasting glucose, 2-h glucose, fasting insulin, and HbA1c; 46 368 non-cases; study consortium). We combined these associations in a likelihood-based mendelian randomisation analysis to estimate the causal association of 25(OH)D concentration with type 2 diabetes and the glycaemic traits, and compared them with that from a meta-analysis of data from observational studies (8492 cases, 89 698 non-cases; 22 studies) that assessed the association between 25(OH)D concentration and type 2 diabetes.
Findings
All four SNPs were associated with 25(OH)D concentrations (p<10−6). The mendelian randomisation-derived unconfounded odds ratio for type 2 diabetes was 1·01 (95% CI 0·75–1·36; p=0·94) per 25·0 nmol/L (1 SD) lower 25(OH)D concentration. The corresponding (potentially confounded) relative risk from the meta-analysis of data from observational studies was 1·21 (1·16–1·27; p=7·3 × 10−19). The mendelian randomisation-derived estimates for glycaemic traits were not significant (p>0·25).
Interpretation
The association between 25(OH)D concentration and type 2 diabetes is unlikely to be causal. Efforts to increase 25(OH)D concentrations might not reduce the risk of type 2 diabetes as would be expected on the basis of observational evidence. These findings warrant further investigations to identify causal factors that might increase 25(OH)D concentration and also reduce the risk of type 2 diabetes.
Funding
UK Medical Research Council Epidemiology Unit and European Union Sixth Framework Programme.
doi:10.1016/S2213-8587(14)70184-6
PMCID: PMC4286815  PMID: 25281353
3.  The Association Between Dietary Flavonoid and Lignan Intakes and Incident Type 2 Diabetes in European Populations 
Diabetes Care  2013;36(12):3961-3970.
OBJECTIVE
To study the association between dietary flavonoid and lignan intakes, and the risk of development of type 2 diabetes among European populations.
RESEARCH DESIGN AND METHODS
The European Prospective Investigation into Cancer and Nutrition-InterAct case-cohort study included 12,403 incident type 2 diabetes cases and a stratified subcohort of 16,154 participants from among 340,234 participants with 3.99 million person-years of follow-up in eight European countries. At baseline, country-specific validated dietary questionnaires were used. A flavonoid and lignan food composition database was developed from the Phenol-Explorer, the U.K. Food Standards Agency, and the U.S. Department of Agriculture databases. Hazard ratios (HRs) from country-specific Prentice-weighted Cox regression models were pooled using random-effects meta-analysis.
RESULTS
In multivariable models, a trend for an inverse association between total flavonoid intake and type 2 diabetes was observed (HR for the highest vs. the lowest quintile, 0.90 [95% CI 0.77–1.04]; P valuetrend = 0.040), but not with lignans (HR 0.88 [95% CI 0.72–1.07]; P valuetrend = 0.119). Among flavonoid subclasses, flavonols (HR 0.81 [95% CI 0.69–0.95]; P valuetrend = 0.020) and flavanols (HR 0.82 [95% CI 0.68–0.99]; P valuetrend = 0.012), including flavan-3-ol monomers (HR 0.73 [95% CI 0.57–0.93]; P valuetrend = 0.029), were associated with a significantly reduced hazard of diabetes.
CONCLUSIONS
Prospective findings in this large European cohort demonstrate inverse associations between flavonoids, particularly flavanols and flavonols, and incident type 2 diabetes. This suggests a potential protective role of eating a diet rich in flavonoids, a dietary pattern based on plant-based foods, in the prevention of type 2 diabetes.
doi:10.2337/dc13-0877
PMCID: PMC3836159  PMID: 24130345
4.  Variety more than quantity of fruit and vegetable intake varies by socioeconomic status and financial hardship. Findings from older adults in the EPIC cohort☆ 
Appetite  2014;83:248-255.
Highlights
•Eating a variety of many fruits and vegetables is critical for healthy aging.•Variety is as important as quantity of fruits and vegetables for disease prevention.•Fruit and vegetable consumption is strongly graded by socioeconomic status.•Variety was strongly patterned by socioeconomic status and by financial hardships.•Economic inequalities were greater in women for fruit and men for vegetable variety.
Background: Beyond quantity, variety of fruit and vegetable (FV) intake prevents chronic conditions and is widely recommended as critical to healthful eating. FV consumption is socially patterned, especially for women, but little is known about multiple economic determinants of variety or whether they differ from those of quantity. Objective: To examine socioeconomic status and financial hardships in relation to variety and quantity of FV intakes among older British women and men. Methods: Cross-sectional study of 9580 adults (50–79 years) in the nationally representative EPIC cohort who responded to a postal Health and Life Experiences Questionnaire (1996–2000) and Food Frequency Questionnaire (1998–2002). Variety counted unique items consumed (items/month) and quantity measured total intake (g/day). Results: No consistent differences by any economic factor were observed for quantity of fruits or vegetables, except education in men. Lower education, lower social class and renting were independently associated with lower fruit variety and vegetable variety (p-trend < 0.001), with differences stronger in men. Mean vegetable variety differed between top and bottom social classes by 2.9 items/month for men and 2.5 for women. Greater financial hardships were also independently associated with lower variety, with differences stronger in women for fruits and in men for vegetables. Conclusions: British older adults reporting greater economic disadvantage consistently consumed fewer different fruits or vegetables, but not lower amounts. Further nutrition studies of the protective effects, and underlying mechanisms, of FV variety are warranted for addressing social inequalities in older adults' diet quality. Dietary guidance should separately emphasise variety, and interventions should aim to address financial barriers to older adults' consumption of diverse FV.
doi:10.1016/j.appet.2014.08.038
PMCID: PMC4217146  PMID: 25195083
Healthy eating; Variety; Socioeconomic inequality; Financial hardship; Aging; UK
5.  Common genetic variants highlight the role of insulin resistance and body fat distribution in type 2 diabetes, independently of obesity 
Diabetes  2014;63(12):4378-4387.
We aimed to validate genetic variants as instruments for insulin resistance and secretion, to characterise their association with intermediate phenotypes, and to investigate their role in T2D risk among normal-weight, overweight and obese individuals.We investigated the association of genetic scores with euglycaemic-hyperinsulinaemic clamp- and OGTT-based measures of insulin resistance and secretion, and a range of metabolic measures in up to 18,565 individuals. We also studied their association with T2D risk among normal-weight, overweight and obese individuals in up to 8,124 incident T2D cases. The insulin resistance score was associated with lower insulin sensitivity measured by M/I value (β in SDs-per-allele [95%CI]:−0.03[−0.04,−0.01];p=0.004). This score was associated with lower BMI (−0.01[−0.01,−0.0;p=0.02) and gluteofemoral fat-mass (−0.03[−0.05,−0.02;p=1.4×10−6), and with higher ALT (0.02[0.01,0.03];p=0.002) and gamma-GT (0.02[0.01,0.03];p=0.001). While the secretion score had a stronger association with T2D in leaner individuals (pinteraction=0.001), we saw no difference in the association of the insulin resistance score with T2D among BMI- or waist-strata(pinteraction>0.31). While insulin resistance is often considered secondary to obesity, the association of the insulin resistance score with lower BMI and adiposity and with incident T2D even among individuals of normal weight highlights the role of insulin resistance and ectopic fat distribution in T2D, independently of body size.
doi:10.2337/db14-0319
PMCID: PMC4241116  PMID: 24947364
Genetics; type 2 diabetes; insulin resistance; insulin secretion; adipose expandability
6.  Epidemiology of diabetes 
The disease burden related to diabetes is high and rising in every country, fuelled by the global rise in the prevalence of obesity and unhealthy lifestyles. The latest estimates show a global prevalence of 382 million people with diabetes in 2013, expected to rise to 592 million by 2035. The aetiological classification of diabetes has now been widely accepted. Type 1 and type 2 diabetes are the two main types, with type 2 diabetes accounting for the majority (>85%) of total diabetes prevalence. Both forms of diabetes can lead to multisystem complications of microvascular endpoints, including retinopathy, nephropathy and neuropathy, and macrovascular endpoints including ischaemic heart disease, stroke and peripheral vascular disease. The premature morbidity, mortality, reduced life expectancy and financial and other costs of diabetes make it an important public health condition.
doi:10.1016/j.mpmed.2014.09.007
PMCID: PMC4282306  PMID: 25568613
Aetiology; diagnosis; epidemiology; prevention; screening; type 1 diabetes; type 2 diabetes
7.  The association between circulating lipoprotein(a) and type 2 diabetes: is it causal? 
Diabetes  2013;63(1):332-342.
Epidemiological evidence supports a direct and causal association between lipoprotein(a) [Lp(a)] levels and coronary risk, but the nature of the association between Lp(a) levels and risk of type 2 diabetes (T2D) is unclear. In this study, we assessed the association of Lp(a) levels with risk of incident T2D, and tested whether Lp(a) levels are causally linked to T2D. We analysed data on 18,490 participants from the EPIC-Norfolk cohort that included adults aged 40-79 years at baseline 1993-1997. During average 10 years of follow-up, 593 participants developed incident T2D. Cox regression models were used to estimate the association between Lp(a) levels and T2D. In Mendelian randomisation analyses, based on EPIC-Norfolk combined with DIAGRAM data involving a total of 10,088 diabetes cases and 68,346 controls, we used a genetic variant (rs10455872) as an instrument to test whether the association between Lp(a) levels and T2D is causal. In adjusted analyses there was an inverse association between Lp(a) levels and T2D: hazard ratio (HR) was 0.63 (95% confidence interval 0.49-0.81; p-trend=0.003) comparing the top versus bottom quintile of Lp(a). In EPIC-Norfolk, a 1-SD increase in logLp(a) was associated with a lower risk of T2D (OR=0.88, 95%CI: 0.80-0.95). However, in Mendelian randomisation analyses, a 1-SD increase in logLp(a) due to rs10455872, which explained 26.8% of the variability in Lp(a) levels, was not associated with risk of T2D (OR=1.03, 95%CI: 0.96-1.10, p = 0.41). These prospective findings demonstrate a strong inverse association of Lp(a) levels with risk of T2D. However, a genetic variant that elevated Lp(a) levels was not associated with risk of T2D, suggesting that elevated Lp(a) levels are not causally associated with a lower risk of T2D.
doi:10.2337/db13-1144
PMCID: PMC4246060  PMID: 24089516
lipoprotein(a); type 2 diabetes; causal association; coronary heart disease; hazard ratio; Mendelian randomisation; prospective study
8.  Age trajectories of glycaemic traits in non-diabetic South Asian and white individuals: the Whitehall II cohort study 
Diabetologia  2014;58:534-542.
Aims/hypothesis
South Asian individuals have an increased prevalence of type 2 diabetes, but little is known about the development of glycaemic traits in this ethnic group. We compared age-related changes in glycaemic traits between non-diabetic South Asian and white participants.
Methods
In a prospective British occupational cohort with 5-yearly clinical examinations (n = 230/5,749 South Asian/white participants, age 39–79 years at baseline), age-related trajectories of fasting glucose (FG) and 2 h post-load glucose (PLG), log-transformed fasting insulin (FINS) and 2 h post-load insulin (PLINS), HOMA insulin sensitivity (HOMA2-%S) and HOMA insulin secretion (HOMA2-%B) were fitted for South Asian and white individuals who remained free of diabetes between 1991 and 2009.
Results
In sex-adjusted multilevel models, FG was stable in white participants but increased with age in South Asians (0.12 [SE = 0.04] mmol/l per decade). PLG, FINS and PLINS levels were lower among white participants (by 0.271 [SE = 0.092] mmol/l, 0.306 [SE = 0.046] log pmol/l, 0.707 [SE = 0.059] log pmol/l at age 50, respectively) compared with South Asians, although their age-related trajectories were parallel. HOMA2-%S was higher (0.226 [SE = 0.038] at age 50) and HOMA2-%B lower (by 0.189 [SE = 0.026] at age 50) among white than South Asian participants. The age-related decline in HOMA2-%S was similar in these groups, but the age-related increase in HOMA2-%B was greater in white participants (0.04 [SE = 0.02] per decade). This difference was explained by obesity, lifestyle and social status.
Conclusions/interpretation
Findings from a diabetes-free population suggest an inadequate pancreatic beta cell reserve in South Asians, as a significantly steeper age-related increase in FG was observed in this ethnic group compared with white individuals.
doi:10.1007/s00125-014-3448-9
PMCID: PMC4320303  PMID: 25431266
Cohort study; Ethnicity; Fasting glucose; Fasting insulin; Glycaemic trajectory; Insulin resistance; Insulin secretion; Insulin sensitivity; Post-load glucose; South Asian
9.  Variation in the SLC23A1 gene does not influence cardiometabolic outcomes to the extent expected given its association with l-ascorbic acid1234 
Background: Observational studies showed that circulating l-ascorbic acid (vitamin C) is inversely associated with cardiometabolic traits. However, these studies were susceptible to confounding and reverse causation.
Objectives: We assessed the relation between l-ascorbic acid and 10 cardiometabolic traits by using a single nucleotide polymorphism in the solute carrier family 23 member 1 (SLC23A1) gene (rs33972313) associated with circulating l-ascorbic acid concentrations. The observed association between rs33972313 and cardiometabolic outcomes was compared with that expected given the rs33972313-l-ascorbic acid and l-ascorbic acid–outcome associations.
Design: A meta-analysis was performed in the following 5 independent studies: the British Women's Heart and Health Study (n = 1833), the MIDSPAN study (n = 1138), the Ten Towns study (n = 1324), the British Regional Heart Study (n = 2521), and the European Prospective Investigation into Cancer (n = 3737).
Results: With the use of a meta-analysis of observational estimates, inverse associations were shown between l-ascorbic acid and systolic blood pressure, triglycerides, and the waist-hip ratio [the strongest of which was the waist-hip ratio (−0.13-SD change; 95% CI: −0.20-, −0.07-SD change; P = 0.0001) per SD increase in l-ascorbic acid], and a positive association was shown with high-density lipoprotein (HDL) cholesterol. The variation at rs33972313 was associated with a 0.18-SD (95% CI: 0.10-, 0.25-SD; P = 3.34 × 10−6) increase in l-ascorbic acid per effect allele. There was no evidence of a relation between the variation at rs33972313 and any cardiometabolic outcome. Although observed estimates were not statistically different from expected associations between rs33972313 and cardiometabolic outcomes, estimates for low-density lipoprotein cholesterol, HDL cholesterol, triglycerides, glucose, and body mass index were in the opposite direction to those expected.
Conclusions: The nature of the genetic association exploited in this study led to limited statistical application, but despite this, when all cardiometabolic traits were assessed, there was no evidence of any trend supporting a protective role of l-ascorbic acid. In the context of existing work, these results add to the suggestion that observational relations between l-ascorbic acid and cardiometabolic health may be attributable to confounding and reverse causation.
doi:10.3945/ajcn.114.092981
PMCID: PMC4266888  PMID: 25527764
l-ascorbic acid; cardiometabolic traits; confounding; genetic variants; reverse causation
10.  Dietary vitamin D intake and risk of type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition – the EPIC-InterAct study 
Background
Prospective cohort studies have indicated that serum vitamin D levels are inversely related to risk of type 2 diabetes. However, such studies cannot determine the source of vitamin D. Therefore, we examined the association of dietary vitamin D intake with incident type 2 diabetes within the European Prospective Investigation into Cancer and Nutrition (EPIC)-InterAct study in a heterogeneous European population including 8 countries with large geographical variation.
Methods
Using a case-cohort design, 11,245 incident cases of type 2 diabetes and a representative subcohort (N=15,798) were included in the analyses. Hazard ratios (HR) and 95% confidence intervals (CIs) for type 2 diabetes were calculated using a Prentice-weighted Cox regression adjusted for potential confounders. 24-h diet recall data from a subsample (N=2347) were used to calibrate habitual intake data derived from dietary questionnaires.
Results
Median follow-up time was 10.8 years. Dietary vitamin D intake was not significantly associated with the risk of type 2 diabetes. HR and 95 % CIs for the highest compared to the lowest quintile of uncalibrated vitamin D intake was 1.09 (0.97-1.22), (ptrend=0.17). No associations were observed in a sex-specific analysis. The overall pooled effect [HR (95% CI)] using the continuous calibrated variable was 1.00 (0.97-1.03) per increase of 1 μg/day dietary vitamin D.
Conclusion
This observational study does not support an association between higher dietary vitamin D intake and type-2 diabetes incidence. This result has to be interpreted in light of the limited contribution of dietary vitamin D on the overall vitamin D status of a person.
doi:10.1038/ejcn.2013.235
PMCID: PMC4234029  PMID: 24253760
vitamin D; type-2 diabetes; dietary intake; observational study; EPIC
11.  Age at Menarche and Type 2 Diabetes Risk 
Diabetes Care  2013;36(11):3526-3534.
OBJECTIVE
Younger age at menarche, a marker of pubertal timing in girls, is associated with higher risk of later type 2 diabetes. We aimed to confirm this association and to examine whether it is explained by adiposity.
RESEARCH DESIGN AND METHODS
The prospective European Prospective Investigation into Cancer and Nutrition (EPIC)-InterAct case-cohort study consists of 12,403 incident type 2 diabetes cases and a stratified subcohort of 16,154 individuals from 26 research centers across eight European countries. We tested the association between age at menarche and incident type 2 diabetes using Prentice-weighted Cox regression in 15,168 women (n = 5,995 cases). Models were adjusted in a sequential manner for potential confounding and mediating factors, including adult BMI.
RESULTS
Mean menarcheal age ranged from 12.6 to 13.6 years across InterAct countries. Each year later menarche was associated with 0.32 kg/m2 lower adult BMI. Women in the earliest menarche quintile (8–11 years, n = 2,418) had 70% higher incidence of type 2 diabetes compared with those in the middle quintile (13 years, n = 3,634), adjusting for age at recruitment, research center, and a range of lifestyle and reproductive factors (hazard ratio [HR], 1.70; 95% CI, 1.49–1.94; P < 0.001). Adjustment for BMI partially attenuated this association (HR, 1.42; 95% CI, 1.18–1.71; P < 0.001). Later menarche beyond the median age was not protective against type 2 diabetes.
CONCLUSIONS
Women with history of early menarche have higher risk of type 2 diabetes in adulthood. Less than half of this association appears to be mediated by higher adult BMI, suggesting that early pubertal development also may directly increase type 2 diabetes risk.
doi:10.2337/dc13-0446
PMCID: PMC3816901  PMID: 24159179
12.  The EPIC-InterAct Study: A Study of the Interplay between Genetic and Lifestyle Behavioral Factors on the Risk of Type 2 Diabetes in European Populations 
Current Nutrition Reports  2014;3(4):355-363.
The rising prevalence of type 2 diabetes around the world and the global pattern of variation in risk between countries have been widely attributed to an interplay between rising rates of obesity and poor lifestyles, and genetic or developmental susceptibility to disease. Although this general hypothesis has been in existence for more than 50 years, the precise mechanisms that may explain it have remained uncertain. Advances in technology and the application of new methods in large scale population studies have made it possible to study these mechanisms. The InterAct project, funded by the European Commission, is a large case-cohort study which has verified 12,403 incident cases of type 2 diabetes, facilitating the study of genetic and lifestyle factors on the risk of type 2 diabetes among European populations.
doi:10.1007/s13668-014-0098-y
PMCID: PMC4218968  PMID: 25383255
Type 2 diabetes; Prevalence; Diet; Physical activity; Nutritional biomarker; Aetiology; Prevention; Genetic factors; Gene-lifestyle interaction
13.  Mendelian Randomization Studies Do Not Support a Causal Role for Reduced Circulating Adiponectin Levels in Insulin Resistance and Type 2 Diabetes 
Yaghootkar, Hanieh | Lamina, Claudia | Scott, Robert A. | Dastani, Zari | Hivert, Marie-France | Warren, Liling L. | Stancáková, Alena | Buxbaum, Sarah G. | Lyytikäinen, Leo-Pekka | Henneman, Peter | Wu, Ying | Cheung, Chloe Y.Y. | Pankow, James S. | Jackson, Anne U. | Gustafsson, Stefan | Zhao, Jing Hua | Ballantyne, Christie M. | Xie, Weijia | Bergman, Richard N. | Boehnke, Michael | el Bouazzaoui, Fatiha | Collins, Francis S. | Dunn, Sandra H. | Dupuis, Josee | Forouhi, Nita G. | Gillson, Christopher | Hattersley, Andrew T. | Hong, Jaeyoung | Kähönen, Mika | Kuusisto, Johanna | Kedenko, Lyudmyla | Kronenberg, Florian | Doria, Alessandro | Assimes, Themistocles L. | Ferrannini, Ele | Hansen, Torben | Hao, Ke | Häring, Hans | Knowles, Joshua W. | Lindgren, Cecilia M. | Nolan, John J. | Paananen, Jussi | Pedersen, Oluf | Quertermous, Thomas | Smith, Ulf | Lehtimäki, Terho | Liu, Ching-Ti | Loos, Ruth J.F. | McCarthy, Mark I. | Morris, Andrew D. | Vasan, Ramachandran S. | Spector, Tim D. | Teslovich, Tanya M. | Tuomilehto, Jaakko | van Dijk, Ko Willems | Viikari, Jorma S. | Zhu, Na | Langenberg, Claudia | Ingelsson, Erik | Semple, Robert K. | Sinaiko, Alan R. | Palmer, Colin N.A. | Walker, Mark | Lam, Karen S.L. | Paulweber, Bernhard | Mohlke, Karen L. | van Duijn, Cornelia | Raitakari, Olli T. | Bidulescu, Aurelian | Wareham, Nick J. | Laakso, Markku | Waterworth, Dawn M. | Lawlor, Debbie A. | Meigs, James B. | Richards, J. Brent | Frayling, Timothy M.
Diabetes  2013;62(10):3589-3598.
Adiponectin is strongly inversely associated with insulin resistance and type 2 diabetes, but its causal role remains controversial. We used a Mendelian randomization approach to test the hypothesis that adiponectin causally influences insulin resistance and type 2 diabetes. We used genetic variants at the ADIPOQ gene as instruments to calculate a regression slope between adiponectin levels and metabolic traits (up to 31,000 individuals) and a combination of instrumental variables and summary statistics–based genetic risk scores to test the associations with gold-standard measures of insulin sensitivity (2,969 individuals) and type 2 diabetes (15,960 case subjects and 64,731 control subjects). In conventional regression analyses, a 1-SD decrease in adiponectin levels was correlated with a 0.31-SD (95% CI 0.26–0.35) increase in fasting insulin, a 0.34-SD (0.30–0.38) decrease in insulin sensitivity, and a type 2 diabetes odds ratio (OR) of 1.75 (1.47–2.13). The instrumental variable analysis revealed no evidence of a causal association between genetically lower circulating adiponectin and higher fasting insulin (0.02 SD; 95% CI −0.07 to 0.11; N = 29,771), nominal evidence of a causal relationship with lower insulin sensitivity (−0.20 SD; 95% CI −0.38 to −0.02; N = 1,860), and no evidence of a relationship with type 2 diabetes (OR 0.94; 95% CI 0.75–1.19; N = 2,777 case subjects and 13,011 control subjects). Using the ADIPOQ summary statistics genetic risk scores, we found no evidence of an association between adiponectin-lowering alleles and insulin sensitivity (effect per weighted adiponectin-lowering allele: −0.03 SD; 95% CI −0.07 to 0.01; N = 2,969) or type 2 diabetes (OR per weighted adiponectin-lowering allele: 0.99; 95% CI 0.95–1.04; 15,960 case subjects vs. 64,731 control subjects). These results do not provide any consistent evidence that interventions aimed at increasing adiponectin levels will improve insulin sensitivity or risk of type 2 diabetes.
doi:10.2337/db13-0128
PMCID: PMC3781444  PMID: 23835345
14.  Differences in the prospective association between individual plasma phospholipid saturated fatty acids and incident type 2 diabetes: the EPIC-InterAct case-cohort study 
Summary
Background
Conflicting evidence exists regarding the association between saturated fatty acids (SFAs) and type 2 diabetes. In this longitudinal case-cohort study, we aimed to investigate the prospective associations between objectively measured individual plasma phospholipid SFAs and incident type 2 diabetes in EPIC-InterAct participants.
Methods
The EPIC-InterAct case-cohort study includes 12 403 people with incident type 2 diabetes and a representative subcohort of 16 154 individuals who were selected from a cohort of 340 234 European participants with 3·99 million person-years of follow-up (the EPIC study). Incident type 2 diabetes was ascertained until Dec 31, 2007, by a review of several sources of evidence. Gas chromatography was used to measure the distribution of fatty acids in plasma phospholipids (mol%); samples from people with type 2 diabetes and subcohort participants were processed in a random order by centre, and laboratory staff were masked to participant characteristics. We estimated country-specific hazard ratios (HRs) for associations per SD of each SFA with incident type 2 diabetes using Prentice-weighted Cox regression, which is weighted for case-cohort sampling, and pooled our findings using random-effects meta-analysis.
Findings
SFAs accounted for 46% of total plasma phospholipid fatty acids. In adjusted analyses, different individual SFAs were associated with incident type 2 diabetes in opposing directions. Even-chain SFAs that were measured (14:0 [myristic acid], 16:0 [palmitic acid], and 18:0 [stearic acid]) were positively associated with incident type 2 diabetes (HR [95% CI] per SD difference: myristic acid 1·15 [95% CI 1·09–1·22], palmitic acid 1·26 [1·15–1·37], and stearic acid 1·06 [1·00–1·13]). By contrast, measured odd-chain SFAs (15:0 [pentadecanoic acid] and 17:0 [heptadecanoic acid]) were inversely associated with incident type 2 diabetes (HR [95% CI] per 1 SD difference: 0·79 [0·73–0·85] for pentadecanoic acid and 0·67 [0·63–0·71] for heptadecanoic acid), as were measured longer-chain SFAs (20:0 [arachidic acid], 22:0 [behenic acid], 23:0 [tricosanoic acid], and 24:0 [lignoceric acid]), with HRs ranging from 0·72 to 0·81 (95% CIs ranging between 0·61 and 0·92). Our findings were robust to a range of sensitivity analyses.
Interpretation
Different individual plasma phospholipid SFAs were associated with incident type 2 diabetes in opposite directions, which suggests that SFAs are not homogeneous in their effects. Our findings emphasise the importance of the recognition of subtypes of these fatty acids. An improved understanding of differences in sources of individual SFAs from dietary intake versus endogenous metabolism is needed.
Funding
EU FP6 programme, Medical Research Council Epidemiology Unit, Medical Research Council Human Nutrition Research, and Cambridge Lipidomics Biomarker Research Initiative.
doi:10.1016/S2213-8587(14)70146-9
PMCID: PMC4196248  PMID: 25107467
15.  Definitions and potential health benefits of the Mediterranean diet: views from experts around the world 
BMC Medicine  2014;12:112.
The Mediterranean diet has been linked to a number of health benefits, including reduced mortality risk and lower incidence of cardiovascular disease. Definitions of the Mediterranean diet vary across some settings, and scores are increasingly being employed to define Mediterranean diet adherence in epidemiological studies. Some components of the Mediterranean diet overlap with other healthy dietary patterns, whereas other aspects are unique to the Mediterranean diet. In this forum article, we asked clinicians and researchers with an interest in the effect of diet on health to describe what constitutes a Mediterranean diet in different geographical settings, and how we can study the health benefits of this dietary pattern.
doi:10.1186/1741-7015-12-112
PMCID: PMC4222885  PMID: 25055810
16.  Serum carbon and nitrogen stable isotopes as potential biomarkers of dietary intake and their relation with incident type 2 diabetes: the EPIC-Norfolk study123 
Background: Stable-isotope ratios of carbon (13C/12C, expressed as δ13C) and nitrogen (15N/14N, or δ15N) have been proposed as potential nutritional biomarkers to distinguish between meat, fish, and plant-based foods.
Objective: The objective was to investigate dietary correlates of δ13C and δ15N and examine the association of these biomarkers with incident type 2 diabetes in a prospective study.
Design: Serum δ13C and δ15N (‰) were measured by using isotope ratio mass spectrometry in a case-cohort study (n = 476 diabetes cases; n = 718 subcohort) nested within the European Prospective Investigation into Cancer and Nutrition (EPIC)–Norfolk population-based cohort. We examined dietary (food-frequency questionnaire) correlates of δ13C and δ15N in the subcohort. HRs and 95% CIs were estimated by using Prentice-weighted Cox regression.
Results: Mean (±SD) δ13C and δ15N were −22.8 ± 0.4‰ and 10.2 ± 0.4‰, respectively, and δ13C (r = 0.22) and δ15N (r = 0.20) were positively correlated (P < 0.001) with fish protein intake. Animal protein was not correlated with δ13C but was significantly correlated with δ15N (dairy protein: r = 0.11; meat protein: r = 0.09; terrestrial animal protein: r = 0.12, P ≤ 0.013). δ13C was inversely associated with diabetes in adjusted analyses (HR per tertile: 0.74; 95% CI: 0.65, 0.83; P-trend < 0.001], whereas δ15N was positively associated (HR: 1.23; 95% CI: 1.09, 1.38; P-trend = 0.001).
Conclusions: The isotope ratios δ13C and δ15N may both serve as potential biomarkers of fish protein intake, whereas only δ15N may reflect broader animal-source protein intake in a European population. The inverse association of δ13C but a positive association of δ15N with incident diabetes should be interpreted in the light of knowledge of dietary intake and may assist in identifying dietary components that are associated with health risks and benefits.
doi:10.3945/ajcn.113.068577
PMCID: PMC4095667  PMID: 24990425
17.  Identification of heart rate–associated loci and their effects on cardiac conduction and rhythm disorders 
den Hoed, Marcel | Eijgelsheim, Mark | Esko, Tõnu | Brundel, Bianca J J M | Peal, David S | Evans, David M | Nolte, Ilja M | Segrè, Ayellet V | Holm, Hilma | Handsaker, Robert E | Westra, Harm-Jan | Johnson, Toby | Isaacs, Aaron | Yang, Jian | Lundby, Alicia | Zhao, Jing Hua | Kim, Young Jin | Go, Min Jin | Almgren, Peter | Bochud, Murielle | Boucher, Gabrielle | Cornelis, Marilyn C | Gudbjartsson, Daniel | Hadley, David | Van Der Harst, Pim | Hayward, Caroline | Heijer, Martin Den | Igl, Wilmar | Jackson, Anne U | Kutalik, Zoltán | Luan, Jian’an | Kemp, John P | Kristiansson, Kati | Ladenvall, Claes | Lorentzon, Mattias | Montasser, May E | Njajou, Omer T | O’Reilly, Paul F | Padmanabhan, Sandosh | Pourcain, Beate St. | Rankinen, Tuomo | Salo, Perttu | Tanaka, Toshiko | Timpson, Nicholas J | Vitart, Veronique | Waite, Lindsay | Wheeler, William | Zhang, Weihua | Draisma, Harmen H M | Feitosa, Mary F | Kerr, Kathleen F | Lind, Penelope A | Mihailov, Evelin | Onland-Moret, N Charlotte | Song, Ci | Weedon, Michael N | Xie, Weijia | Yengo, Loic | Absher, Devin | Albert, Christine M | Alonso, Alvaro | Arking, Dan E | de Bakker, Paul I W | Balkau, Beverley | Barlassina, Cristina | Benaglio, Paola | Bis, Joshua C | Bouatia-Naji, Nabila | Brage, Søren | Chanock, Stephen J | Chines, Peter S | Chung, Mina | Darbar, Dawood | Dina, Christian | Dörr, Marcus | Elliott, Paul | Felix, Stephan B | Fischer, Krista | Fuchsberger, Christian | de Geus, Eco J C | Goyette, Philippe | Gudnason, Vilmundur | Harris, Tamara B | Hartikainen, Anna-liisa | Havulinna, Aki S | Heckbert, Susan R | Hicks, Andrew A | Hofman, Albert | Holewijn, Suzanne | Hoogstra-Berends, Femke | Hottenga, Jouke-Jan | Jensen, Majken K | Johansson, Åsa | Junttila, Juhani | Kääb, Stefan | Kanon, Bart | Ketkar, Shamika | Khaw, Kay-Tee | Knowles, Joshua W | Kooner, Angrad S | Kors, Jan A | Kumari, Meena | Milani, Lili | Laiho, Päivi | Lakatta, Edward G | Langenberg, Claudia | Leusink, Maarten | Liu, Yongmei | Luben, Robert N | Lunetta, Kathryn L | Lynch, Stacey N | Markus, Marcello R P | Marques-Vidal, Pedro | Leach, Irene Mateo | McArdle, Wendy L | McCarroll, Steven A | Medland, Sarah E | Miller, Kathryn A | Montgomery, Grant W | Morrison, Alanna C | Müller-Nurasyid, Martina | Navarro, Pau | Nelis, Mari | O’Connell, Jeffrey R | O’Donnell, Christopher J | Ong, Ken K | Newman, Anne B | Peters, Annette | Polasek, Ozren | Pouta, Anneli | Pramstaller, Peter P | Psaty, Bruce M | Rao, Dabeeru C | Ring, Susan M | Rossin, Elizabeth J | Rudan, Diana | Sanna, Serena | Scott, Robert A | Sehmi, Jaban S | Sharp, Stephen | Shin, Jordan T | Singleton, Andrew B | Smith, Albert V | Soranzo, Nicole | Spector, Tim D | Stewart, Chip | Stringham, Heather M | Tarasov, Kirill V | Uitterlinden, André G | Vandenput, Liesbeth | Hwang, Shih-Jen | Whitfield, John B | Wijmenga, Cisca | Wild, Sarah H | Willemsen, Gonneke | Wilson, James F | Witteman, Jacqueline C M | Wong, Andrew | Wong, Quenna | Jamshidi, Yalda | Zitting, Paavo | Boer, Jolanda M A | Boomsma, Dorret I | Borecki, Ingrid B | Van Duijn, Cornelia M | Ekelund, Ulf | Forouhi, Nita G | Froguel, Philippe | Hingorani, Aroon | Ingelsson, Erik | Kivimaki, Mika | Kronmal, Richard A | Kuh, Diana | Lind, Lars | Martin, Nicholas G | Oostra, Ben A | Pedersen, Nancy L | Quertermous, Thomas | Rotter, Jerome I | van der Schouw, Yvonne T | Verschuren, W M Monique | Walker, Mark | Albanes, Demetrius | Arnar, David O | Assimes, Themistocles L | Bandinelli, Stefania | Boehnke, Michael | de Boer, Rudolf A | Bouchard, Claude | Caulfield, W L Mark | Chambers, John C | Curhan, Gary | Cusi, Daniele | Eriksson, Johan | Ferrucci, Luigi | van Gilst, Wiek H | Glorioso, Nicola | de Graaf, Jacqueline | Groop, Leif | Gyllensten, Ulf | Hsueh, Wen-Chi | Hu, Frank B | Huikuri, Heikki V | Hunter, David J | Iribarren, Carlos | Isomaa, Bo | Jarvelin, Marjo-Riitta | Jula, Antti | Kähönen, Mika | Kiemeney, Lambertus A | van der Klauw, Melanie M | Kooner, Jaspal S | Kraft, Peter | Iacoviello, Licia | Lehtimäki, Terho | Lokki, Marja-Liisa L | Mitchell, Braxton D | Navis, Gerjan | Nieminen, Markku S | Ohlsson, Claes | Poulter, Neil R | Qi, Lu | Raitakari, Olli T | Rimm, Eric B | Rioux, John D | Rizzi, Federica | Rudan, Igor | Salomaa, Veikko | Sever, Peter S | Shields, Denis C | Shuldiner, Alan R | Sinisalo, Juha | Stanton, Alice V | Stolk, Ronald P | Strachan, David P | Tardif, Jean-Claude | Thorsteinsdottir, Unnur | Tuomilehto, Jaako | van Veldhuisen, Dirk J | Virtamo, Jarmo | Viikari, Jorma | Vollenweider, Peter | Waeber, Gérard | Widen, Elisabeth | Cho, Yoon Shin | Olsen, Jesper V | Visscher, Peter M | Willer, Cristen | Franke, Lude | Erdmann, Jeanette | Thompson, John R | Pfeufer, Arne | Sotoodehnia, Nona | Newton-Cheh, Christopher | Ellinor, Patrick T | Stricker, Bruno H Ch | Metspalu, Andres | Perola, Markus | Beckmann, Jacques S | Smith, George Davey | Stefansson, Kari | Wareham, Nicholas J | Munroe, Patricia B | Sibon, Ody C M | Milan, David J | Snieder, Harold | Samani, Nilesh J | Loos, Ruth J F
Nature genetics  2013;45(6):621-631.
Elevated resting heart rate is associated with greater risk of cardiovascular disease and mortality. In a 2-stage meta-analysis of genome-wide association studies in up to 181,171 individuals, we identified 14 new loci associated with heart rate and confirmed associations with all 7 previously established loci. Experimental downregulation of gene expression in Drosophila melanogaster and Danio rerio identified 20 genes at 11 loci that are relevant for heart rate regulation and highlight a role for genes involved in signal transmission, embryonic cardiac development and the pathophysiology of dilated cardiomyopathy, congenital heart failure and/or sudden cardiac death. In addition, genetic susceptibility to increased heart rate is associated with altered cardiac conduction and reduced risk of sick sinus syndrome, and both heart rate–increasing and heart rate–decreasing variants associate with risk of atrial fibrillation. Our findings provide fresh insights into the mechanisms regulating heart rate and identify new therapeutic targets.
doi:10.1038/ng.2610
PMCID: PMC3696959  PMID: 23583979
18.  Genome-wide meta-analysis of observational studies shows common genetic variants associated with macronutrient intake1234 
Background: Macronutrient intake varies substantially between individuals, and there is evidence that this variation is partly accounted for by genetic variants.
Objective: The objective of the study was to identify common genetic variants that are associated with macronutrient intake.
Design: We performed 2-stage genome-wide association (GWA) meta-analysis of macronutrient intake in populations of European descent. Macronutrients were assessed by using food-frequency questionnaires and analyzed as percentages of total energy consumption from total fat, protein, and carbohydrate. From the discovery GWA (n = 38,360), 35 independent loci associated with macronutrient intake at P < 5 × 10−6 were identified and taken forward to replication in 3 additional cohorts (n = 33,533) from the DietGen Consortium. For one locus, fat mass obesity-associated protein (FTO), cohorts with Illumina MetaboChip genotype data (n = 7724) provided additional replication data.
Results: A variant in the chromosome 19 locus (rs838145) was associated with higher carbohydrate (β ± SE: 0.25 ± 0.04%; P = 1.68 × 10−8) and lower fat (β ± SE: −0.21 ± 0.04%; P = 1.57 × 10−9) consumption. A candidate gene in this region, fibroblast growth factor 21 (FGF21), encodes a fibroblast growth factor involved in glucose and lipid metabolism. The variants in this locus were associated with circulating FGF21 protein concentrations (P < 0.05) but not mRNA concentrations in blood or brain. The body mass index (BMI)–increasing allele of the FTO variant (rs1421085) was associated with higher protein intake (β ± SE: 0.10 ± 0.02%; P = 9.96 × 10−10), independent of BMI (after adjustment for BMI, β ± SE: 0.08 ± 0.02%; P = 3.15 × 10−7).
Conclusion: Our results indicate that variants in genes involved in nutrient metabolism and obesity are associated with macronutrient consumption in humans. Trials related to this study were registered at clinicaltrials.gov as NCT00005131 (Atherosclerosis Risk in Communities), NCT00005133 (Cardiovascular Health Study), NCT00005136 (Family Heart Study), NCT00005121 (Framingham Heart Study), NCT00083369 (Genetic and Environmental Determinants of Triglycerides), NCT01331512 (InCHIANTI Study), and NCT00005487 (Multi-Ethnic Study of Atherosclerosis).
doi:10.3945/ajcn.112.052183
PMCID: PMC3652928  PMID: 23636237
19.  Gene-Lifestyle Interaction and Type 2 Diabetes: The EPIC InterAct Case-Cohort Study 
PLoS Medicine  2014;11(5):e1001647.
In this study, Wareham and colleagues quantified the combined effects of genetic and lifestyle factors on risk of T2D in order to inform strategies for prevention. The authors found that the relative effect of a type 2 diabetes genetic risk score is greater in younger and leaner participants, and the high absolute risk associated with obesity at any level of genetic risk highlights the importance of universal rather than targeted approaches to lifestyle intervention.
Please see later in the article for the Editors' Summary
Background
Understanding of the genetic basis of type 2 diabetes (T2D) has progressed rapidly, but the interactions between common genetic variants and lifestyle risk factors have not been systematically investigated in studies with adequate statistical power. Therefore, we aimed to quantify the combined effects of genetic and lifestyle factors on risk of T2D in order to inform strategies for prevention.
Methods and Findings
The InterAct study includes 12,403 incident T2D cases and a representative sub-cohort of 16,154 individuals from a cohort of 340,234 European participants with 3.99 million person-years of follow-up. We studied the combined effects of an additive genetic T2D risk score and modifiable and non-modifiable risk factors using Prentice-weighted Cox regression and random effects meta-analysis methods. The effect of the genetic score was significantly greater in younger individuals (p for interaction  = 1.20×10−4). Relative genetic risk (per standard deviation [4.4 risk alleles]) was also larger in participants who were leaner, both in terms of body mass index (p for interaction  = 1.50×10−3) and waist circumference (p for interaction  = 7.49×10−9). Examination of absolute risks by strata showed the importance of obesity for T2D risk. The 10-y cumulative incidence of T2D rose from 0.25% to 0.89% across extreme quartiles of the genetic score in normal weight individuals, compared to 4.22% to 7.99% in obese individuals. We detected no significant interactions between the genetic score and sex, diabetes family history, physical activity, or dietary habits assessed by a Mediterranean diet score.
Conclusions
The relative effect of a T2D genetic risk score is greater in younger and leaner participants. However, this sub-group is at low absolute risk and would not be a logical target for preventive interventions. The high absolute risk associated with obesity at any level of genetic risk highlights the importance of universal rather than targeted approaches to lifestyle intervention.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Worldwide, more than 380 million people currently have diabetes, and the condition is becoming increasingly common. Diabetes is characterized by high levels of glucose (sugar) in the blood. Blood sugar levels are usually controlled by insulin, a hormone released by the pancreas after meals (digestion of food produces glucose). In people with type 2 diabetes (the commonest type of diabetes), blood sugar control fails because the fat and muscle cells that normally respond to insulin by removing excess sugar from the blood become less responsive to insulin. Type 2 diabetes can often initially be controlled with diet and exercise (lifestyle changes) and with antidiabetic drugs such as metformin and sulfonylureas, but patients may eventually need insulin injections to control their blood sugar levels. Long-term complications of diabetes, which include an increased risk of heart disease and stroke, reduce the life expectancy of people with diabetes by about ten years compared to people without diabetes.
Why Was This Study Done?
Type 2 diabetes is thought to originate from the interplay between genetic and lifestyle factors. But although rapid progress is being made in understanding the genetic basis of type 2 diabetes, it is not known whether the consequences of adverse lifestyles (for example, being overweight and/or physically inactive) differ according to an individual's underlying genetic risk of diabetes. It is important to investigate this question to inform strategies for prevention. If, for example, obese individuals with a high level of genetic risk have a higher risk of developing diabetes than obese individuals with a low level of genetic risk, then preventative strategies that target lifestyle interventions to obese individuals with a high genetic risk would be more effective than strategies that target all obese individuals. In this case-cohort study, researchers from the InterAct consortium quantify the combined effects of genetic and lifestyle factors on the risk of type 2 diabetes. A case-cohort study measures exposure to potential risk factors in a group (cohort) of people and compares the occurrence of these risk factors in people who later develop the disease with those who remain disease free.
What Did the Researchers Do and Find?
The InterAct study involves 12,403 middle-aged individuals who developed type 2 diabetes after enrollment (incident cases) into the European Prospective Investigation into Cancer and Nutrition (EPIC) and a sub-cohort of 16,154 EPIC participants. The researchers calculated a genetic type 2 diabetes risk score for most of these individuals by determining which of 49 gene variants associated with type 2 diabetes each person carried, and collected baseline information about exposure to lifestyle risk factors for type 2 diabetes. They then used various statistical approaches to examine the combined effects of the genetic risk score and lifestyle factors on diabetes development. The effect of the genetic score was greater in younger individuals than in older individuals and greater in leaner participants than in participants with larger amounts of body fat. The absolute risk of type 2 diabetes, expressed as the ten-year cumulative incidence of type 2 diabetes (the percentage of participants who developed diabetes over a ten-year period) increased with increasing genetic score in normal weight individuals from 0.25% in people with the lowest genetic risk scores to 0.89% in those with the highest scores; in obese people, the ten-year cumulative incidence rose from 4.22% to 7.99% with increasing genetic risk score.
What Do These Findings Mean?
These findings show that in this middle-aged cohort, the relative association with type 2 diabetes of a genetic risk score comprised of a large number of gene variants is greatest in individuals who are younger and leaner at baseline. This finding may in part reflect the methods used to originally identify gene variants associated with type 2 diabetes, and future investigations that include other genetic variants, other lifestyle factors, and individuals living in other settings should be undertaken to confirm this finding. Importantly, however, this study shows that young, lean individuals with a high genetic risk score have a low absolute risk of developing type 2 diabetes. Thus, this sub-group of individuals is not a logical target for preventative interventions. Rather, suggest the researchers, the high absolute risk of type 2 diabetes associated with obesity at any level of genetic risk highlights the importance of universal rather than targeted approaches to lifestyle intervention.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001647.
The US National Diabetes Information Clearinghouse provides information about diabetes for patients, health-care professionals and the general public, including detailed information on diabetes prevention (in English and Spanish)
The UK National Health Service Choices website provides information for patients and carers about type 2 diabetes and about living with diabetes; it also provides people's stories about diabetes
The charity Diabetes UK provides detailed information for patients and carers in several languages, including information on healthy lifestyles for people with diabetes
The UK-based non-profit organization Healthtalkonline has interviews with people about their experiences of diabetes
The Genetic Landscape of Diabetes is published by the US National Center for Biotechnology Information
More information on the InterAct study is available
MedlinePlus provides links to further resources and advice about diabetes and diabetes prevention (in English and Spanish)
doi:10.1371/journal.pmed.1001647
PMCID: PMC4028183  PMID: 24845081
20.  Age at Menopause, Reproductive Life Span, and Type 2 Diabetes Risk 
Diabetes Care  2013;36(4):1012-1019.
OBJECTIVE
Age at menopause is an important determinant of future health outcomes, but little is known about its relationship with type 2 diabetes. We examined the associations of menopausal age and reproductive life span (menopausal age minus menarcheal age) with diabetes risk.
RESEARCH DESIGN AND METHODS
Data were obtained from the InterAct study, a prospective case-cohort study nested within the European Prospective Investigation into Cancer and Nutrition. A total of 3,691 postmenopausal type 2 diabetic case subjects and 4,408 subcohort members were included in the analysis, with a median follow-up of 11 years. Prentice weighted Cox proportional hazards models were adjusted for age, known risk factors for diabetes, and reproductive factors, and effect modification by BMI, waist circumference, and smoking was studied.
RESULTS
Mean (SD) age of the subcohort was 59.2 (5.8) years. After multivariable adjustment, hazard ratios (HRs) of type 2 diabetes were 1.32 (95% CI 1.04–1.69), 1.09 (0.90–1.31), 0.97 (0.86–1.10), and 0.85 (0.70–1.03) for women with menopause at ages <40, 40–44, 45–49, and ≥55 years, respectively, relative to those with menopause at age 50–54 years. The HR per SD younger age at menopause was 1.08 (1.02–1.14). Similarly, a shorter reproductive life span was associated with a higher diabetes risk (HR per SD lower reproductive life span 1.06 [1.01–1.12]). No effect modification by BMI, waist circumference, or smoking was observed (P interaction all > 0.05).
CONCLUSIONS
Early menopause is associated with a greater risk of type 2 diabetes.
doi:10.2337/dc12-1020
PMCID: PMC3609516  PMID: 23230098
21.  A new tool for converting food frequency questionnaire data into nutrient and food group values: FETA research methods and availability 
BMJ Open  2014;4(3):e004503.
Objectives
To describe the research methods for the development of a new open source, cross-platform tool which processes data from the European Prospective Investigation into Cancer and Nutrition Norfolk Food Frequency Questionnaire (EPIC-Norfolk FFQ). A further aim was to compare nutrient and food group values derived from the current tool (FETA, FFQ EPIC Tool for Analysis) with the previously validated but less accessible tool, CAFÉ (Compositional Analyses from Frequency Estimates). The effect of text matching on intake data was also investigated.
Design
Cross-sectional analysis of a prospective cohort study—EPIC-Norfolk.
Setting
East England population (city of Norwich and its surrounding small towns and rural areas).
Participants
Complete FFQ data from 11 250 men and 13 602 women (mean age 59 years; range 40–79 years).
Outcome measures
Nutrient and food group intakes derived from FETA and CAFÉ analyses of EPIC-Norfolk FFQ data.
Results
Nutrient outputs from FETA and CAFÉ were similar; mean (SD) energy intake from FETA was 9222 kJ (2633) in men, 8113 kJ (2296) in women, compared with CAFÉ intakes of 9175 kJ (2630) in men, 8091 kJ (2298) in women. The majority of differences resulted in one or less quintile change (98.7%). Only mean daily fruit and vegetable food group intakes were higher in women than in men (278 vs 212 and 284 vs 255 g, respectively). Quintile changes were evident for all nutrients, with the exception of alcohol, when text matching was not executed; however, only the cereals food group was affected.
Conclusions
FETA produces similar nutrient and food group values to the previously validated CAFÉ but has the advantages of being open source, cross-platform and complete with a data-entry form directly compatible with the software. The tool will facilitate research using the EPIC-Norfolk FFQ, and can be customised for different study populations.
doi:10.1136/bmjopen-2013-004503
PMCID: PMC3975761  PMID: 24674997
22.  Dietary dairy product intake and incident type 2 diabetes: a prospective study using dietary data from a 7-day food diary 
Diabetologia  2014;57(5):909-917.
Aim/hypothesis
The aim of this study was to investigate the association between total and types of dairy product intake and risk of developing incident type 2 diabetes, using a food diary.
Methods
A nested case-cohort within the EPIC-Norfolk Study was examined, including a random subcohort (n = 4,000) and cases of incident diabetes (n = 892, including 143 cases in the subcohort) followed-up for 11 years. Diet was assessed using a prospective 7-day food diary. Total dairy intake (g/day) was estimated and categorised into high-fat (≥3.9%) and low-fat (<3.9% fat) dairy, and by subtype into yoghurt, cheese and milk. Combined fermented dairy product intake (yoghurt, cheese, sour cream) was estimated and categorised into high- and low-fat. Prentice-weighted Cox regression HRs were calculated.
Results
Total dairy, high-fat dairy, milk, cheese and high-fat fermented dairy product intakes were not associated with the development of incident diabetes. Low-fat dairy intake was inversely associated with diabetes in age- and sex-adjusted analyses (tertile [T] 3 vs T1, HR 0.81 [95% CI 0.66, 0.98]), but further adjustment for anthropometric, dietary and diabetes risk factors attenuated this association. In addition, an inverse association was found between diabetes and low-fat fermented dairy product intake (T3 vs T1, HR 0.76 [95% CI 0.60, 0.99]; ptrend = 0.049) and specifically with yoghurt intake (HR 0.72 [95% CI 0.55, 0.95]; ptrend = 0.017) in multivariable adjusted analyses.
Conclusions/interpretation
Greater low-fat fermented dairy product intake, largely driven by yoghurt intake, was associated with a decreased risk of type 2 diabetes development in prospective analyses. These findings suggest that the consumption of specific dairy types may be beneficial for the prevention of diabetes, highlighting the importance of food group subtypes for public health messages.
Electronic supplementary material
The online version of this article (doi:10.1007/s00125-014-3176-1) contains peer-reviewed but unedited supplementary material, which is available to authorised users.
doi:10.1007/s00125-014-3176-1
PMCID: PMC3980034  PMID: 24510203
Cheese; Dairy; Fermented dairy; Milk; Type 2 diabetes; Yoghurt
23.  Insulin Resistance and Truncal Obesity as Important Determinants of the Greater Incidence of Diabetes in Indian Asians and African Caribbeans Compared With Europeans 
Diabetes Care  2013;36(2):383-393.
OBJECTIVE
To determine the extent of, and reasons for, ethnic differences in type 2 diabetes incidence in the U.K.
RESEARCH DESIGN AND METHODS
Population-based triethnic cohort. Participants were without diabetes, aged 40–69 at baseline (1989–1991), and followed-up for 20 years. Baseline measurements included fasting and postglucose bloods, anthropometry, and lifestyle questionnaire. Incident diabetes was identified from medical records and participant recall. Ethnic differences in diabetes incidence were examined using competing risks regression.
RESULTS
Incident diabetes was identified in 196 of 1,354 (14%) Europeans, 282 of 839 (34%) Indian Asians, and 100 of 335 (30%) African Caribbeans. All Indian Asians and African Caribbeans were first-generation migrants. Compared with Europeans, age-adjusted subhazard ratios (SHRs [95% CI]) for men and women, respectively, were 2.88 (95%, 2.36–3.53; P < 0.001) and 1.91 (1.18–3.10; P = 0.008) in Indian Asians, and 2.23 (1.64–3.03; P < 0.001) and 2.51 (1.63–3.87; P < 0.001) in African Caribbeans. Differences in baseline insulin resistance and truncal obesity largely attenuated the ethnic minority excess in women (adjusted SHRs: Indian Asians 0.77 [0.49–1.42]; P = 0.3; African Caribbeans 1.48 [0.89–2.45]; P = 0.13), but not in men (adjusted SHRs: Indian Asians 1.98 [1.52–2.58]; P < 0.001 and African Caribbeans, 2.05 [1.46–2.89; P < 0.001]).
CONCLUSIONS
Insulin resistance and truncal obesity account for the twofold excess incidence of diabetes in Indian Asian and African Caribbean women, but not men. Explanations for the excess diabetes risk in ethnic minority men remains unclear. Further study requires more precise measures of conventional risk factors and identification of novel risk factors.
doi:10.2337/dc12-0544
PMCID: PMC3554271  PMID: 22966089
24.  Social relationships and healthful dietary behaviour: Evidence from over-50s in the EPIC cohort, UK☆ 
Social Science & Medicine (1982)  2014;100(100):167-175.
Social relationships are an important aspect of a person's social environment that can protect against a wide range of chronic conditions and facilitate recovery from disease. Social relationships have also been linked to dietary behaviour which may be an important pathway through which social circumstances exert their influence on health. Yet, questions remain about which structural aspects of social relationships most affect healthful dietary behaviours and whether different structural components interact to produce a combined effect. Using data from adults (≥50 years) in the European Prospective Investigation of Cancer-Norfolk study (1996–2002), we examined marital status, living arrangement and social isolation in relation to scores for variety of fruit and vegetable intake as a marker of diet quality associated with adverse health outcomes. Data were analysed with multivariable linear regression models for gender-specific and interaction associations. We found that being single or widowed was associated with a lower variety score, particularly vegetable variety, and associations were enhanced when combined with male gender, living alone or infrequent friend contact. Lower variety scores for lone-living were also observed, especially for men. Infrequent friend contact interacted with living arrangement to amplify negative associations of lone-living with variety, with statistically significant differences in contact frequency for vegetable variety. Lower levels of friend contact were associated with reduced variety of fruits and vegetables in a graded trend for both genders; the trend was more pronounced among men. Family contact appeared to have limited association with vegetable variety in men; among women, weekly contact was significantly and positively associated with vegetable variety compared to daily family contact. Results highlight the importance of considering living arrangement and/or frequency of social contact when assessing whether widowed, single or lone-living older adults are at risk of lower fruit and vegetable variety.
Highlights
•Social relationships affect health and can also influence dietary behaviour.•We examined joint effects of diverse structural components of relationships on diet.•We used data from over-50s in an established epidemiological cohort.•Men fared worse than women in reduced variety from poorer structural social ties.•Social isolation altered dietary effects of marital status and living arrangement.
doi:10.1016/j.socscimed.2013.08.018
PMCID: PMC3969105  PMID: 24035440
Social relationships; Social ties; Gender; Interactions; Diet variety; Health behaviour; Chronic disease; UK
25.  Dietary Intakes of Individual Flavanols and Flavonols Are Inversely Associated with Incident Type 2 Diabetes in European Populations123 
The Journal of Nutrition  2013;144(3):335-343.
Dietary flavanols and flavonols, flavonoid subclasses, have been recently associated with a lower risk of type 2 diabetes (T2D) in Europe. Even within the same subclass, flavonoids may differ considerably in bioavailability and bioactivity. We aimed to examine the association between individual flavanol and flavonol intakes and risk of developing T2D across European countries. The European Prospective Investigation into Cancer and Nutrition (EPIC)–InterAct case-cohort study was conducted in 8 European countries across 26 study centers with 340,234 participants contributing 3.99 million person-years of follow-up, among whom 12,403 incident T2D cases were ascertained and a center-stratified subcohort of 16,154 individuals was defined. We estimated flavonoid intake at baseline from validated dietary questionnaires using a database developed from Phenol-Explorer and USDA databases. We used country-specific Prentice-weighted Cox regression models and random-effects meta-analysis methods to estimate HRs. Among the flavanol subclass, we observed significant inverse trends between intakes of all individual flavan-3-ol monomers and risk of T2D in multivariable models (all P-trend < 0.05). We also observed significant trends for the intakes of proanthocyanidin dimers (HR for the highest vs. the lowest quintile: 0.81; 95% CI: 0.71, 0.92; P-trend = 0.003) and trimers (HR: 0.91; 95% CI: 0.80, 1.04; P-trend = 0.07) but not for proanthocyanidins with a greater polymerization degree. Among the flavonol subclass, myricetin (HR: 0.77; 95% CI: 0.64, 0.93; P-trend = 0.001) was associated with a lower incidence of T2D. This large and heterogeneous European study showed inverse associations between all individual flavan-3-ol monomers, proanthocyanidins with a low polymerization degree, and the flavonol myricetin and incident T2D. These results suggest that individual flavonoids have different roles in the etiology of T2D.
doi:10.3945/jn.113.184945
PMCID: PMC3927546  PMID: 24368432

Results 1-25 (70)