Search tips
Search criteria

Results 1-16 (16)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
2.  Role of the Retinal Vascular Endothelial Cell in Ocular Disease 
Retinal endothelial cells line the arborizing microvasculature that supplies and drains the neural retina. The anatomical and physiological characteristics of these endothelial cells are consistent with nutritional requirements and protection of a tissue critical to vision. On the one hand, the endothelium must ensure the supply of oxygen and other nutrients to the metabolically active retina, and allow access to circulating cells that maintain the vasculature or survey the retina for the presence of potential pathogens. On the other hand, the endothelium contributes to the blood-retinal barrier that protects the retina by excluding circulating molecular toxins, microorganisms, and pro-inflammatory leukocytes. Features required to fulfill these functions may also predispose to disease processes, such as retinal vascular leakage and neovascularization, and trafficking of microbes and inflammatory cells. Thus, the retinal endothelial cell is a key participant in retinal ischemic vasculopathies that include diabetic retinopathy and retinopathy of prematurity, and retinal inflammation or infection, as occurs in posterior uveitis. Using gene expression and proteomic profiling, it has been possible to explore the molecular phenotype of the human retinal endothelial cell and contribute to understanding of the pathogenesis of these diseases. In addition to providing support for the involvement of well-characterized endothelial molecules, profiling has the power to identify new players in retinal pathologies. Findings may have implications for the design of new biological therapies. Additional progress in this field is anticipated as other technologies, including epigenetic profiling methods, whole transcriptome shotgun sequencing, and metabolomics, are used to study the human retinal endothelial cell.
PMCID: PMC3679193  PMID: 22982179
retina; endothelial cell; molecular profiling; posterior uveitis; autoimmune uveitis; infectious uveitis; diabetic retinopathy; retinopathy of prematurity
3.  Simultaneous visualization and cell-specific confirmation of RNA and protein in the mouse retina 
Molecular Vision  2014;20:1366-1373.
Simultaneous dual labeling to visualize specific RNA and protein content within the same formalin-fixed paraffin embedded (FFPE) section can be technically challenging and usually impossible, because of variables such as tissue fixation time and pretreatment methods to access the target RNA or protein. Within a specific experiment, ocular tissue sections can be a precious commodity. Thus, the ability to easily and consistently detect and localize cell-specific expression of RNA and protein within a single slide would be advantageous. In this study, we describe a simplified and reliable method for combined in situ hybridization (ISH) and immunohistochemistry (IHC) for detection of mRNA and protein, respectively, within the same FFPE ocular tissue.
Whole mouse eyes were prepared for 5 micron FFPE sections after fixation for 3, 24, 48 or 72 h. Customized probes from Advanced Cell Diagnostics to detect mRNA for vascular endothelial growth factor (VEGF), hypoxia-inducible factor 1-alpha (HIF-1α), and hypoxia-inducible factor 2-alpha (HIF-2α) were used for ISH. Various parameters were tested using the novel RNAscope method for ISH and optimized for compatibility with subsequent IHC for glial fibrillary acidic protein (GFAP) or GS-lectin within the same tissue section. Dual fluorescent visualization of Fast Red ISH and Alexa Fluor 488 IHC signal was observed with confocal microscopy.
A fixation time of 72 h was found to be optimal for ISH and subsequent IHC. The RNAscope probes for VEGF, HIF-1α, and HIF-2α mRNA all gave a strong Fast Red signal with both 48 h and 72 h fixed tissue, but the optimal IHC signal for either GFAP or GS-lectin within a retinal tissue section after ISH processing was observed with 72 h fixation. A pretreatment boiling time of 15 min and a dilution factor of 1:15 for the pretreatment protease solution were found to be optimal and necessary for successful ISH visualization with 72 h FFPE ocular tissue.
The protocol presented here provides a simple and reliable method to simultaneously detect mRNA and protein within the same paraffin-embedded ocular tissue section. The procedure, after preparation of FFPE sections, can be performed over a 2-day or 4-day period. We provide an optimization strategy that may be adapted for any RNAscope probe set and antibody for determining retinal or ocular cell-specific patterns of expression.
PMCID: PMC4169891  PMID: 25352743
4.  Short Communication: Expression and Regulation of Activated Leukocyte Cell Adhesion Molecule in Human Retinal Vascular Endothelial Cells 
Experimental eye research  2012;104:89-93.
Activated leukocyte cell adhesion molecule (ALCAM; CD166) is an immunoglobulin superfamily member that has been described in several non-ocular endothelial populations, but not in relation to endothelium within the eye. Studies in extraocular systems have implicated ALCAM in angiogenesis and leukocyte transendothelial migration, which are key processes in retinal vascular diseases. We investigated the expression of ALCAM in human retinal endothelium, and studied the regulation of expression by established angiogenic and inflammatory stimuli. Retinal endothelial expression of ALCAM was detected in primary retinal endothelial cultures isolated from human cadavers by RT-PCR (n = 4 donors) and Western blot (n = 4 donors), and in intact human retina by immunohistochemistry (n = 3 donors). In the 4 donors studied by RT-PCR, transcript encoding the truncated soluble isoform, sALCAM, was also detected. Quantitative real-time RT-PCR demonstrated significant up-regulation of ALCAM and sALCAM in response to stimulation with master cytokine, tumor necrosis factor (TNF)-α. However, general inflammatory stimulus, lipopolysaccharide (LPS), and the prototype Th1, Th2 and Th17 cytokines, interferon (IFN)-γ, interleukin (IL)-4 and IL-17A, respectively, did not impact ALCAM or sALCAM expression. In contrast, expression of ALCAM was significantly up-regulated by vascular endothelial growth factor (VEGF)165. Up-regulation in the presence of VEGF and TNF-α, but not LPS, IFN-γ, IL-4 and IL-17A, suggests a potential role for ALCAM in human retinal angiogenesis in some settings.
PMCID: PMC3556590  PMID: 22940369
activated leukocyte cell-adhesion molecule; retina; endothelial cell
5.  Toxoplasma gondii Migration within and Infection of Human Retina 
PLoS ONE  2013;8(2):e54358.
Toxoplasmic retinochoroiditis is a common blinding retinal infection caused by the parasite, Toxoplasma gondii. Basic processes relating to establishment of infection in the human eye by T. gondii tachyzoites have not been investigated. To evaluate the ability of tachyzoites to navigate the human retina, we developed an ex vivo assay, in which a suspension containing 1.5×107 parasites replaced vitreous in a posterior eyecup. After 8 hours, the retina was formalin-fixed and paraffin-embedded, and sections were immunostained to identify tachyzoites. To determine the preference of tachyzoites for human retinal neuronal versus glial populations, we infected dissociated retinal cultures, subsequently characterized by neuron-specific enolase or glial fibrillary acidic protein expression, and retinal cell lines, with YFP-expressing tachyzoites. In migration assays, retinas contained 110–250 live tachyzoites; 64.5–95.2% (mean  = 79.6%) were localized to the nerve fiber layer, but some were detected in the outer retina. Epifluorescence imaging of dissociated retinal cultures 24 hours after infection indicated preferential infection of glia. This observation was confirmed in growth assays, with significantly higher (p≤0.005) numbers of tachyzoites measured in glial verus neuronal cell lines. Our translational studies indicate that, after entering retina, tachyzoites may navigate multiple tissue layers. Tachyzoites preferentially infect glial cells, which exist throughout the retina. These properties may contribute to the success of T. gondii as a human pathogen.
PMCID: PMC3578837  PMID: 23437042
6.  Imaging Retinal Vascular Changes in the Mouse Model of Oxygen-Induced Retinopathy 
Oxygen-induced retinopathy in the mouse is the standard experimental model of retinopathy of prematurity. Assessment of the pathology involves in vitro analysis of retinal vaso-obliteration and retinal neovascularization. The authors studied the clinical features of oxygen-induced retinopathy in vivo using topical endoscopy fundus imaging (TEFI), in comparison to standard investigations, and evaluated a system for grading these features.
Postnatal day (P)7 mice were exposed to 75% oxygen for five days to induce retinopathy or maintained in room air as controls. Retinal vascular competence was graded against standard photographs by three masked graders. Retinal photographs were obtained at predetermined ages using TEFI. Postmortem, retinal vaso-obliteration was measured in whole mounts with labeled vasculature, and retinal neovascularization was quantified in hematoxylin- and eosin-stained ocular cross sections.
Fundus photography by TEFI was possible from P15, when retinal vascular incompetence, including dilatation and tortuosity, was significant in mice with oxygen-induced retinopathy in comparison to controls. Vascular incompetence peaked in severity at P17 and persisted through P25. Comparison with in vitro analyses indicated that vascular changes were most severe after retinal avascularity had begun to decrease in area, and coincident with the maximum of retinal neovascularization. A weighted Fleiss-Cohen kappa indicated good intra- and interobserver agreement for a 5-point grading system.
Topical endoscopy fundus imaging demonstrates retinal vascular incompetence in mice with oxygen-induced retinopathy. The technique complements standard postmortem analysis for following the course of the model.
Translational Relevance
Topical endoscopy fundus imaging has application in the evaluation of novel biologic drugs for retinopathy of prematurity.
PMCID: PMC3763879  PMID: 24049705
retinopathy of prematurity; oxygen-induced retinopathy; retina; imaging
7.  The Related Transcriptional Enhancer Factor-1 Isoform, TEAD4216, Can Repress Vascular Endothelial Growth Factor Expression in Mammalian Cells 
PLoS ONE  2012;7(6):e31260.
Increased cellular production of vascular endothelial growth factor (VEGF) is responsible for the development and progression of multiple cancers and other neovascular conditions, and therapies targeting post-translational VEGF products are used in the treatment of these diseases. Development of methods to control and modify the transcription of the VEGF gene is an alternative approach that may have therapeutic potential. We have previously shown that isoforms of the transcriptional enhancer factor 1-related (TEAD4) protein can enhance the production of VEGF. In this study we describe a new TEAD4 isoform, TEAD4216, which represses VEGF promoter activity. The TEAD4216 isoform inhibits human VEGF promoter activity and does not require the presence of the hypoxia responsive element (HRE), which is the sequence critical to hypoxia inducible factor (HIF)-mediated effects. The TEAD4216 protein is localized to the cytoplasm, whereas the enhancer isoforms are found within the nucleus. The TEAD4216 isoform can competitively repress the stimulatory activity of the TEAD4434 and TEAD4148 enhancers. Synthesis of the native VEGF165 protein and cellular proliferation is suppressed by the TEAD4216 isoform. Mutational analysis indicates that nuclear or cytoplasmic localization of any isoform determines whether it acts as an enhancer or repressor, respectively. The TEAD4216 isoform appears to inhibit VEGF production independently of the HRE required activity by HIF, suggesting that this alternatively spliced isoform of TEAD4 may provide a novel approach to treat VEGF-dependent diseases.
PMCID: PMC3382240  PMID: 22761647
8.  Subretinal Transplantation of Forebrain Progenitor Cells in Non-human Primates: Survival and Intact Retinal Function 
Cell-based therapy rescues retinal structure and function in rodent models of retinal disease, but translation to clinic will require more information about consequences of transplantation in an eye closely resembling the human eye. Therefore we explored donor cell behavior using human cortical neural progenitor cells (hNPCctx) introduced into the subretinal space of normal rhesus macaques.
hNPCctx transduced with Green Fluorescent Protein (hNPCctx-GFP) were delivered bilaterally into the subretinal space of six normal adult rhesus macaques under conditions paralleling those of the human operating room. Outcome measures included clinical parameters of surgical success, multifocal electroretinogram (mfERG) and histopathological analyses performed between 3 and 39 days post-engraftment. To test the effects of GFP transduction on cell bioactivity, hNPCctx –GFP from the same batch were also injected into RCS rats and compared with non-labeled hNPCctx.
Studies using RCS rats indicated that GFP transduction did not alter the ability of the cells to rescue vision. After cells were introduced into the monkey subretinal space by a pars plana transvitreal approach, the resulting detachment was rapidly resolved and retinal function showed little or no disturbance in mfERG recordings. Retinal structure was unaffected and no signs of inflammation or rejection were seen. Donor cells survived as a single layer in the subretinal space and no cells migrated into the inner retina.
Human neural progenitor cells can be introduced into a primate eye without complication, using an approach that would be suitable for extrapolation to human patients.
PMCID: PMC2826708  PMID: 19234356
9.  Non-Invasive Stem Cell Therapy in a Rat Model for Retinal Degeneration and Vascular Pathology 
PLoS ONE  2010;5(2):e9200.
Retinitis pigmentosa (RP) is characterized by progressive night blindness, visual field loss, altered vascular permeability and loss of central vision. Currently there is no effective treatment available except gene replacement therapy has shown promise in a few patients with specific gene defects. There is an urgent need to develop therapies that offer generic neuro-and vascular-protective effects with non-invasive intervention. Here we explored the potential of systemic administration of pluripotent bone marrow-derived mesenchymal stem cells (MSCs) to rescue vision and associated vascular pathology in the Royal College Surgeons (RCS) rat, a well-established animal model for RP.
Methodology/Principal Findings
Animals received syngeneic MSCs (1×106 cells) by tail vein at an age before major photoreceptor loss. Principal results: both rod and cone photoreceptors were preserved (5–6 cells thick) at the time when control animal has a single layer of photoreceptors remained; Visual function was significantly preserved compared with controls as determined by visual acuity and luminance threshold recording from the superior colliculus; The number of pathological vascular complexes (abnormal vessels associated with migrating pigment epithelium cells) and area of vascular leakage that would ordinarily develop were dramatically reduced; Semi-quantitative RT-PCR analysis indicated there was upregulation of growth factors and immunohistochemistry revealed that there was an increase in neurotrophic factors within eyes of animals that received MSCs.
These results underscore the potential application of MSCs in treating retinal degeneration. The advantages of this non-invasive cell-based therapy are: cells are easily isolated and can be expanded in large quantity for autologous graft; hypoimmunogenic nature as allogeneic donors; less controversial in nature than other stem cells; can be readministered with minor discomfort. Therefore, MSCs may prove to be the ideal cell source for auto-cell therapy for retinal degeneration and other ocular vascular diseases.
PMCID: PMC2821411  PMID: 20169166
10.  Rhesus monkeys and humans share common susceptibility genes for age-related macular disease 
Human Molecular Genetics  2008;17(17):2673-2680.
Age-related macular degeneration (AMD), a complex multigenic disorder and the most common cause of vision loss in the elderly, is associated with polymorphisms in the LOC387715/ARMS2 and HTRA1 genes on 10q26. Like humans, macaque monkeys possess a macula and develop age-related macular pathologies including drusen, the phenotypic hallmark of AMD. We genotyped a cohort of 137 unrelated rhesus macaques with and without macular drusen. As in humans, one variant within LOC387715/ARMS2 and one in HTRA1 were significantly associated with affected status. HTRA1 and the predicted LOC387715/ARMS2 gene were both transcribed in rhesus and human retina and retinal pigment epithelium. Among several primate species, orthologous exons for the human LOC387715/ARMS2 gene were present only in Old World monkeys and apes. In functional analyses, the disease-associated HTRA1 polymorphism resulted in a 2-fold increase in gene expression, supporting a role in pathogenesis. These results demonstrate that two genes associated with AMD in humans are also associated with macular disease in rhesus macaques and that one of these genes is specific to higher primates. This is the first evidence that humans and macaques share the same genetic susceptibility factors for a common complex disease.
PMCID: PMC2733804  PMID: 18535016
11.  Sequence- and target-independent angiogenesis suppression by siRNA via TLR3 
Nature  2008;452(7187):591-597.
Clinical trials of small interfering RNA (siRNA) targeting vascular endothelial growth factor-A (VEGFA) or its receptor VEGFR1 (also called FLT1), in patients with blinding choroidal neovascularization (CNV) from age-related macular degeneration, are premised on gene silencing by means of intracellular RNA interference (RNAi). We show instead that CNV inhibition is a siRNA-class effect: 21-nucleotide or longer siRNAs targeting non-mammalian genes, non-expressed genes, non-genomic sequences, pro- and anti-angiogenic genes, and RNAi-incompetent siRNAs all suppressed CNV in mice comparably to siRNAs targeting Vegfa or Vegfr1 without off-target RNAi or interferon-α/β activation. Non-targeted (against non-mammalian genes) and targeted (against Vegfa or Vegfr1) siRNA suppressed CNV via cell-surface toll-like receptor 3 (TLR3), its adaptor TRIF, and induction of interferon-γ and interleukin-12. Non-targeted siRNA suppressed dermal neovascularization in mice as effectively as Vegfa siRNA. siRNA-induced inhibition of neovascularization required a minimum length of 21 nucleotides, a bridging necessity in a modelled 2:1 TLR3–RNA complex. Choroidal endothelial cells from people expressing the TLR3 coding variant 412FF were refractory to extracellular siRNA-induced cytotoxicity, facilitating individualized pharmacogenetic therapy. Multiple human endothelial cell types expressed surface TLR3, indicating that generic siRNAs might treat angiogenic disorders that affect 8% of the world’s population, and that siRNAs might induce unanticipated vascular or immune effects.
PMCID: PMC2642938  PMID: 18368052
12.  Human CHN1 mutations hyperactivate α2-chimaerin and cause Duane’s retraction syndrome 
Science (New York, N.Y.)  2008;321(5890):839-843.
The RacGAP molecule α2-chimaerin is implicated in neuronal signaling pathways required for precise guidance of developing corticospinal axons. We now demonstrate that a variant of Duane’s retraction syndrome, a congenital eye movement disorder in which affected individuals show aberrant development of axon projections to the extraocular muscles, can result from gain-of-function heterozygous missense mutations in CHN1 that increase α2-chimaerin RacGAP activity in vitro. A subset of mutations enhances α2-chimaerin membrane translocation and/or α2-chimaerin’s previously unrecognized ability to form a complex with itself. In ovo expression of mutant CHN1 alters the development of ocular motor axons. These data demonstrate that human CHN1 mutations can hyperactivate α2-chimaerin and result in aberrant cranial motor neuron development.
PMCID: PMC2593867  PMID: 18653847
13.  Prediction of Cis-Regulatory Elements Controlling Genes Differentially Expressed by Retinal and Choroidal Vascular Endothelial Cells 
Cultured endothelial cells of the human retina and choroid demonstrate distinct patterns of gene expression. We hypothesized that differential gene expression reflected differences in the interactions of transcription factors and respective cis-regulatory motifs(s) in these two emdothelial cell subpopulations, recognizing that motifs often exist as modules. We tested this hypothesis in silico by using TRANSFAC Professional and CisModule to identify cis-regulatory motifs and modules in genes that were differentially expressed by human retinal versus choroidal endothelial cells, as identified by analysis of a microarray data set. Motifs corresponding to eight transcription factors were significantly (p < 0.05) differentially abundant in genes that were relatively highly expressed in retinal (i.e., GCCR, HMGIY, HSF1, p53, VDR) or choroidal (i.e., E2F, YY1, ZF5) endothelial cells. Predicted cis-regulatory modules were quite different for these two groups of genes. Our findings raise the possibility of exploiting specific cis-regulatory motifs to target therapy at the ocular endothelial cells subtypes responsible for neovascular age-related macular degeneration or proliferative diabetic retinopathy.
PMCID: PMC2573398  PMID: 19122891
endothelial cell; retina; choroid; cis-regulatory motif; cis-regulatory module
15.  Prediction of cis-regulatory elements controlling genes differentially expressed by retinal and choroidal vascular endothelial cells 
Cultured endothelial cells of the human retina and choroid demonstrate distinct patterns of gene expression. We hypothesized that differential gene expression reflected differences in the interactions of transcription factors and respective cis-regulatory motifs(s) in these two endothelial cell subpopulations, recognizing that motifs often exist as modules. We tested this hypothesis in silico by using TRANSFAC Professional and CisModule to identify cis-regulatory motifs and modules in genes that were differentially expressed by human retinal versus choroidal endothelial cells, as identified by analysis of a microarray data set. Motifs corresponding to eight transcription factors were significantly (p < 0.05) differentially abundant in genes that were relatively highly expressed in retinal (i.e., glucocorticoid receptor, high mobility group AT-hook 1, heat shock transcription factor 1, p53, vitamin D receptor) or choroidal (i.e., transcription factor E2F, Yin Yang 1, zinc finger 5) endothelial cells. Predicted cis-regulatory modules were quite different for these two groups of genes. Our findings raise the possibility of exploiting specific cis-regulatory motifs to target therapy at the ocular endothelial cells subtypes responsible for neovascular age-related macular degeneration or proliferative diabetic retinopathy.
Electronic supplementary material
The online version of this article (doi:10.1007/s12177-008-9007-1) contains supplementary material, which is available to authorized users.
PMCID: PMC2573398  PMID: 19122891
Endothelial cell; Retina; Choroid; cis-Regulatory motif; cis-Regulatory module
16.  Internal En Bloc Resection and Genetic Analysis of Retinal Capillary Hemangioblastoma 
Archives of ophthalmology  2007;125(9):1189-1193.
To report the clinical outcomes and molecular genetics of nongermline retinal hemangioblastoma managed by surgical resection.
Retrospective case series of 3 patients aged 16 to 46 years treated at a tertiary care referral center (Casey Eye Institute, Portland, Oregon). Tumors 7 to 9 mm in diameter were removed from 3 consecutive eyes (in 3 patients) via internal en bloc surgical resection using a bimanual technique. Samples of DNA from 2 of 3 tumors were tested for von Hippel-Lindau gene (VHL) mutations as a clue to the molecular basis for spontaneously occurring hemangioblastoma. Main outcome measures were morbidity, visual acuity, resolution of macular exudates, and presence of VHL markers.
Visual acuity improved or remained stable in all patients. All 3 developed cataracts, extracted in 2 instances. Histopathological findings were typical of retinal hemangioblastoma in all cases. The cells from one patient’s DNA sample showed loss of heterozygosity for the VHL gene, while no genetic abnormalities were detected in the other patient’s DNA sample.
Our patients’ favorable outcomes suggest that surgical resection is an option for patients with large retinal hemangioblastomas. In addition, ours may be the first report of retinal hemangioblastoma unassociated with a VHL mutation.
PMCID: PMC2140243  PMID: 17846357

Results 1-16 (16)