Search tips
Search criteria

Results 1-25 (43)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
author:("Wang, chun'an")
1.  Clinical and laboratory features of seven patients with acute myeloid leukemia (AML)-M2/M3 and elevated myeloblasts and abnormal promyelocytes 
Cancer Cell International  2014;14(1):111.
There is limited information on a special subtype of Acute myeloid leukemia (AML) characterized by >20% myeloblasts and >20% abnormal promyelocytes in bone marrow and peripheral blood.
The objective of the present investigation was to explore the clinical and laboratory features of seven patients with AML-M2/M3.
We retrospectively assessed cell morphology, cytochemistry, immunophenotype, cytogenetics, and clinical features of seven patients with this rare subtype of AML.
All seven cases had thrombocytopenia, coagulation abnormalities, >20% myeloblasts and abnormal promyelocytes. The PML/RARα fusion gene was present in six patients and two patients presented a mixed PML/RARα and AML1/ETO genotype. Five cases achieved CR and two cases did not achieve remission and one case transform into AML-M2 after CR1.
The clinical and laboratory features of seven patients with AML-M2/M3 are demonstrated in the present study, providing information on the FAB sub-classification.
PMCID: PMC4325959
Acute myeloid leukemia (AML); AML-M2/M3 subtype; Mixed phenotype; Myeloblasts; Abnormal promyelocytes
2.  The oil palm VIRESCENS gene controls fruit colour and encodes a R2R3-MYB 
Nature communications  2014;5:4106.
Oil palm, a plantation crop of major economic importance in Southeast Asia, is the predominant source of edible oil worldwide. We report the identification of the VIRESCENS (VIR) gene, which controls fruit exocarp colour and is an indicator of ripeness. VIR is a R2R3-MYB transcription factor with homology to Lilium LhMYB12 and similarity to Arabidopsis PRODUCTION OF ANTHOCYANIN PIGMENT 1 (PAP1). We identify five independent mutant alleles of VIR in over 400 accessions from sub-Saharan Africa that account for the dominant negative virescens phenotype. Each mutation results in premature termination of the carboxy-terminal domain of VIR, resembling McClintock’s C1-I allele in maize. The abundance of alleles likely reflects cultural practices, by which fruits were venerated for magical and medicinal properties. The identification of VIR will allow selection of the trait at the seed or early nursery stage, 3-6 years before fruit are produced, greatly advancing introgression into elite breeding material.
PMCID: PMC4078410  PMID: 24978855
3.  Does Airway Surgery Lower Serum Lipid Levels in Obstructive Sleep Apnea Patients? A Retrospective Case Review 
Obstructive sleep apnea (OSA) is tightly linked to increased cardiovascular disease. Surgery is an important method to treat OSA, but its effect on serum lipid levels in OSA patients is unknown. We aimed to evaluate the effect of upper airway surgery on lipid profiles.
We performed a retrospective review of 113 adult patients with OSA who underwent surgery (nasal or uvulopalatopharyngoplasty [UPPP]) at a major, urban, academic hospital in Beijing from 2012 to 2013 who had preoperative and postoperative serum lipid profiles.
Serum TC (4.86±0.74 to 4.69±0.71) and LP(a) (median 18.50 to 10.90) all decreased significantly post-operatively (P<0.01, 0.01, respectively), with no changes in serum HDL, LDL, or TG (P>0.05, all). For UPPP patients (n=51), serum TC, HDL and LP(a) improved (P=0.01, 0.01,<0.01, respectively). For nasal patients (n=62), only the serum LP(a) decreased (P<0.01). In patients with normal serum lipids at baseline, only serum LP(a) decreased (P<0.01). In contrast, in patients with isolated hypertriglyceridemia, the serum HDL, TG and LP(a) showed significant improvements (P=0.02, 0.03, <0.01, respectively). In patients with isolated hypercholesterolemia, the serum LP(a) decreased significantly (P=0.01), with a similar trend for serum TC (P=0.06). In patients with mixed hyperlipidemia, the serum TC and LDL also decreased (P=0.02, 0.03, respectively).
Surgery may improve blood lipid levels in patients with OSA, especially in patients with preoperative dyslipidemia, potentially yielding a major benefit in metabolism and cardiovascular sequelae. Prospective studies should examine this potential metabolic effect of airway surgery for OSA.
PMCID: PMC4271797  PMID: 25503376
Cardiovascular Diseases; Dyslipidemias; Polysomnography; Sleep Apnea, Obstructive
4.  The oil palm Shell gene controls oil yield and encodes a homologue of SEEDSTICK 
Nature  2013;500(7462):340-344.
A key event in the domestication and breeding of the oil palm, Elaeis guineensis, was loss of the thick coconut-like shell surrounding the kernel. Modern E. guineensis has three fruit forms, dura (thick-shelled), pisifera (shell-less) and tenera (thin-shelled), a hybrid between dura and pisifera1–4. The pisifera palm is usually female-sterile but the tenera yields far more oil than dura, and is the basis for commercial palm oil production in all of Southeast Asia5. Here, we describe the mapping and identification of the Shell gene responsible for the different fruit forms. Using homozygosity mapping by sequencing we found two independent mutations in the DNA binding domain of a homologue of the MADS-box gene SEEDSTICK (STK) which controls ovule identity and seed development in Arabidopsis. The Shell gene is responsible for the tenera phenotype in both cultivated and wild palms from sub-Saharan Africa, and our findings provide a genetic explanation for the single gene heterosis attributed to Shell, via heterodimerization. This gene mutation explains the single most important economic trait in oil palm, and has implications for the competing interests of global edible oil production, biofuels and rainforest conservation6.
PMCID: PMC4209285  PMID: 23883930
5.  An novel frequent probability pattern mining algorithm based on circuit simulation method in uncertain biological networks 
BMC Systems Biology  2014;8(Suppl 3):S6.
Motif mining has always been a hot research topic in bioinformatics. Most of current research on biological networks focuses on exact motif mining. However, due to the inevitable experimental error and noisy data, biological network data represented as the probability model could better reflect the authenticity and biological significance, therefore, it is more biological meaningful to discover probability motif in uncertain biological networks. One of the key steps in probability motif mining is frequent pattern discovery which is usually based on the possible world model having a relatively high computational complexity.
In this paper, we present a novel method for detecting frequent probability patterns based on circuit simulation in the uncertain biological networks. First, the partition based efficient search is applied to the non-tree like subgraph mining where the probability of occurrence in random networks is small. Then, an algorithm of probability isomorphic based on circuit simulation is proposed. The probability isomorphic combines the analysis of circuit topology structure with related physical properties of voltage in order to evaluate the probability isomorphism between probability subgraphs. The circuit simulation based probability isomorphic can avoid using traditional possible world model. Finally, based on the algorithm of probability subgraph isomorphism, two-step hierarchical clustering method is used to cluster subgraphs, and discover frequent probability patterns from the clusters.
The experiment results on data sets of the Protein-Protein Interaction (PPI) networks and the transcriptional regulatory networks of E. coli and S. cerevisiae show that the proposed method can efficiently discover the frequent probability subgraphs. The discovered subgraphs in our study contain all probability motifs reported in the experiments published in other related papers.
The algorithm of probability graph isomorphism evaluation based on circuit simulation method excludes most of subgraphs which are not probability isomorphism and reduces the search space of the probability isomorphism subgraphs using the mismatch values in the node voltage set. It is an innovative way to find the frequent probability patterns, which can be efficiently applied to probability motif discovery problems in the further studies.
PMCID: PMC4243085  PMID: 25350277
6.  Proteasome inhibitor lactacystin enhances cisplatin cytotoxicity by increasing endoplasmic reticulum stress-associated apoptosis in HeLa cells 
Molecular Medicine Reports  2014;11(1):189-195.
Cisplatin is commonly used as a therapeutic agent, despite its known adverse side effects and the occurrence of drug resistance. The development of novel methods for combination therapy with cisplatin is required in order to circumvent these limitations of cisplatin alone. The proteasome inhibitor lactacystin (LAC) has been indicated to produce anti-tumor effects, and has previously been used as an antitumor agent in cancer treatment research; however, its effects in combination with cisplatin treatment are unknown. In the current study, the effects of LAC in combination with cisplatin treatment were investigated in HeLa human cervical cancer (HCC) cells. The results demonstrated that cisplatin treatment inhibited cell growth and induced cell apoptosis. HeLa cell exposure to cisplatin induced endoplasmic reticulum (ER) stress-associated apoptosis, and LAC treatment increased levels of cell apoptosis and the activation of caspase-3. Specifically, LAC treatment increased the cisplatin-induced expression of PDI, GRP78, CHOP, cleaved caspase-4 and cleaved caspase-3. Together, these data indicate that LAC is able to enhance cisplatin cytotoxicity by increasing ER stress-associated apoptosis in HeLa cells.
PMCID: PMC4237085  PMID: 25323748
lactacystin; cisplatin; apoptosis; ER stress; cervical cancer
7.  A chitosan-modified graphene nanogel for noninvasive controlled drug release 
A near infrared (NIR) triggered drug delivery platform based on the chitosan-modified chemically reduced graphene oxide (CRGO) incorporated into a thermosensitive nanogel (CGN) was developed. CGN exhibited an NIR-induced thermal effect similar to that of CRGO, reversible thermo-responsive characteristics at 37–42 °C and high doxorubicin hydrochloride (DOX) loading capacity (48 wt%). The DOX loaded CGN (DOX-CGN) released DOX faster at 42 °C than at 37 °C. The fluorescence images revealed DOX expression in the cytoplasm of cancer cells when incubated with DOX-CGN at 37 °C but in the nucleus at 42 °C. Upon irradiation with NIR light (808 nm), a rapid, repetitive DOX release from the DOX-CGN was observed. Furthermore, the cancer cells incubated with DOX-CGN and irradiated with NIR light displayed significantly greater cytotoxicity than without irradiation owing to NIR-triggered increase in temperature leading to nuclear DOX release. These results demonstrate CGN’s promising application for on-demand drug release by NIR light.
PMCID: PMC3783966  PMID: 23352802
NIR; Graphene; Thermosensitive; Drug release; Photothermal; Nanogel
8.  Multifunctional Chitosan Magnetic-Graphene (CMG) Nanoparticles: a Theranostic Platform for Tumor-targeted Co-delivery of Drugs, Genes and MRI Contrast Agents 
Combing chemotherapy with gene therapy has been one of the most promising strategies for the treatment of cancer. The noninvasive MRI with superparamagnetic iron oxide (SPIO) as contrast agent is one of the most effecitve techniques for evaluating the antitumor therapy. However, to construct a single system that can deliver efficiently gene, drug and SPIO to the cancer site remains a challenge. Herein, we report a chitosan functionalized magnetic graphene nanoparticle (CMG) platform for simultaneous gene/drug and SPIO delivery to tumor. The phantom and ex vivo MRI images suggest CMG as a strong T2 contrast-enhancing agent. The CMGs are biocompatible as evaluated by the WST assay and predominantly accumulate in tumors as shown by biodistribution studies and MRI. The anticancer drug doxorubicin (DOX) loaded CMGs (DOX-CMGs) release DOX faster at pH 5.1 than at pH 7.4, and more effective (IC50 = 2 μM) in killing A549 lung cancer cells than free DOX (IC50 = 4 μM). CMGs efficiently deliver DNA into A549 lung cancer cells and C42b prostate cancer cells. In addition, i.v. administration of GFP-plasmid encapsulated within DOX-CMGs into tumor-bearing mice has showed both GFP expression and DOX accumulation at the tumor site at 24 and 48 hrs after administration. These results indicate CMGs provide a robust and safe theranostic platform, which integrates targeted delivery of both gene medicine and chemotherapeutic drug(s), and enhanced MR imaging of tumors. The integrated chemo- and gene- therapeutic and diagnostic design of CMG nanoparticles shows promise for simultaneous targeted imaging, drug delivery and real -time monitoring of therapeutic effect for cancer.
PMCID: PMC4036826  PMID: 24883188
9.  NPRA Signaling Regulates Stem Cell Recruitment and Angiogenesis: A Model to Study Linkage Between Inflammation and Tumorigenesis 
Stem cells (Dayton, Ohio)  2013;31(7):1321-1329.
Natriuretic peptide receptor A (NPRA), the signaling receptor for the cardiac hormone, atrial natriuretic peptide (ANP), is expressed abundantly in inflamed/injured tissues and tumors. NPRA deficiency substantially decreases tissue inflammation and inhibits tumor growth. However, the precise mechanism of NPRA function and whether it links inflammation and tumorigenesis remains unknown. Since both injury repair or tumor growth require stem cell recruitment and angiogenesis, we examined the role of NPRA signaling in tumor angiogenesis as a model of tissue injury repair in this study. In in vitro cultures aortas from NPRA-KO mice show significantly lower angiogenic response compared to wild type counterparts. The NPRA antagonist that decreases NPRA expression, inhibit lipopolysaccharide-induced angiogenesis. The reduction in angiogenesis correlates with decreased expression of vascular endothelial growth factor (VEGF) and chemokine (C-X-C motif) Receptor 4 (CXCR4) implicating a cell recruitment defect. To test whether NPRA regulates migration of cells to tumors, mesenchymal stem cells (MSCs) were administered i.v. and the results showed that MSCs fail to migrate to the tumor microenvironment in NPRA-KO mice. However, co-implanting tumor cells with MSCs, increases angiogenesis and tumorigenesis in NPRA-KO mice, in part by promoting expression of CXCR4 and its ligand, stromal-derived factor 1α (SDF1α). Taken together, these results demonstrate that NPRA signaling regulates stem cell recruitment and angiogenesis leading to tumor growth. Thus, NPRA signaling provides a key linkage between inflammation and tumorigenesis, and NPRA may be a target for drug development against cancers and tissue injury repair.
PMCID: PMC3982194  PMID: 23533187
10.  Characteristics and risk factor analysis of 410 cases of tracheobronchial tuberculosis 
The present study analyzed the characteristics and risk factors associated with tracheobronchial tuberculosis (TBTB) in 410 patients with TBTB. Retrospective analysis was performed on the clinical features, bronchoscopy performance, bacteriological examination, imaging and treatment of 410 patients who were diagnosed with TBTB using bronchoscopy. Among the 410 patients, 10 patients underwent chest X-ray which revealed two cases of atelectasis, eight cases of patch or spot shadows, three cases of cavity, one case of nodule and one case with no abnormalities. The remaining 400 patients underwent computed tomography chest scans and/or airway reconstruction examinations. Among all the lesion types, the cavity type was found to be the most likely to cause bronchial stenosis or obstruction, with statistically significant differences when compared with the congestion, stenosis or scar lesion types (P<0.01). Moreover, for the cavity type, there were 194 sites of obstruction prior to therapy; however, only 23 sites of obstruction remained following therapy. Furthermore, there were 34 sites without stenosis prior to therapy and 205 sites without stenosis following therapy. The number of sites of obstruction was significantly decreased and the number of sites without stenosis was increased upon therapy. These findings suggest that the cavity type is the most sensitive type to therapy among the five types of TBTB lesion.
PMCID: PMC4113521  PMID: 25120599
tuberculosis; trachea; bronchus; bronchoscopy; chest computed tomography; etiology; prognosis
11.  Involvement of multiple phytoene synthase genes in tissue- and cultivar-specific accumulation of carotenoids in loquat 
Journal of Experimental Botany  2014;65(16):4679-4689.
Four phytoene synthase genes and several variants were characterized, and their evolution and function in differential carotenoid accumulation in leaf, peel, and flesh of white- and red-fleshed loquats were established.
Differences in carotenoid accumulation between tissues and cultivars is common in plants. White-fleshed loquat cultivars had low levels of carotenoids in the flesh, but accumulated carotenoids in peel when ripe, and the leaves accumulated similar carotenoids to those in the red-fleshed loquat cultivars. The catalytic activity and expression patterns of four phytoene synthase (PSY) genes, EjPSY1, EjPSY2A, EjPSY2B, and EjPSY3, were analysed to understand their roles in different loquat (Eriobotrya japonica Lindl.) types. EjPSY1 was responsible for carotenoid synthesis in the fruit peel but not the flesh, whereas EjPSY2A was responsible for carotenoid accumulation in flesh of ripening fruit. A mutant EjPSY2A d, with the same tissue specificity and expression level as EjPSY2A, but lacking the C-terminal region and corresponding catalytic activity, was discovered in white-fleshed varieties, explaining the lack of carotenoids in the white flesh. The catalytic role of EjPSY2B was most significant in leaves. The tissue-specific expression of EjPSY1 and EjPSY2B explained well how peel and leaf tissues can still accumulate carotenoids in white-fleshed cultivars, which have lost the functional EjPSY2A. EjPSY3 mRNA abundance was ~1000-fold less than that of other PSY mRNAs in all tissues examined. In addition, neither the normal sized transcript nor two alternatively spliced forms, EjPSY3α in LYQ and EjPSY3β in BS cultivars, encoded functional enzymes, and it is concluded that EjPSY3 plays no role in carotenoid accumulation. In addition, it was noted that recruitment of PSY genes for expression in specific tissues of different plants has occurred independently of gene structure and evolutionary origin.
PMCID: PMC4115255  PMID: 24935622
Carotenoid; function; loquat (Eriobotrya japonica); mutation; phytoene synthase; tissue-specific expression.
12.  The Feature of Distribution and Clonality of TCR γ/δ Subfamilies T Cells in Patients with B-Cell Non-Hodgkin Lymphoma 
Journal of Immunology Research  2014;2014:241246.
Restricted T-cell receptor (TCR) Vα/Vβ repertoire expression and clonal expansion of αβ T cells especially for putative tumor-associated antigens were observed in patients with hematological malignancies. To further characterize the γδ T-cell immune status in B-cell non-Hodgkin lymphoma (B-NHL), we investigated the distribution and clonality of TCR Vγ/Vδ repertoire in peripheral blood (PB), bone marrow (BM), and lymph node (LN) from patients with B-NHL. Four newly diagnosed B-NHL cases, including three with diffuse large B-cell lymphoma (DLBCL) and one with small lymphocytic lymphoma (SLL), were enrolled. The restrictive expression of TCR Vγ/Vδ subfamilies with different distribution patterns could be detected in PB, BM, or LN from all of four patients, and partial subfamily T cells showed clonal proliferation. At least one clonally expanded Vδ subfamily member was found in PB from each patient. However, the expression pattern and clonality of TCR Vγ/Vδ changed in different immune organs and showed individual feature in different patients. The clonally expanded Vδ5, Vδ6, and Vδ8 were detected only in PB but neither in BM nor LN while clonally expanded Vδ2 and Vδ3 could be detected in both PB and BM/LN. In conclusion, the results provide a preliminary profile of distribution and clonality of TCR γ/δ subfamilies T cells in PB, BM, and LN from B-NHL; similar clonally expanded Vδ subfamily T cells in PB and BM may be related to the same B-cell lymphoma-associated antigens, while the different reactive clonally expanded Vγ/Vδ T cells may be due to local immune response.
PMCID: PMC4055414  PMID: 24963496
13.  Abnormal expression of A20 and its regulated genes in peripheral blood from patients with lymphomas 
Cell-mediated immunity is often suppressed in patients with hematological malignancies. Recently, we found that low T cell receptor (TCR)-CD3 signaling was related to abnormal expression of the negative regulator of nuclear factor kappa B (NF-κB) A20 in acute myeloid leukemia. To investigate the characteristics of T cell immunodeficiency in lymphomas, we analyzed the expression features of A20 and its upstream regulating factor mucosa-associated lymphoid tissue lymphoma translocation gene 1 (MALT1) and genes downstream of NF-κB in patients with different lymphoma subtypes, including T cell non-Hodgkin lymphoma (T-NHL), B cell non-Hodgkin lymphoma (B-NHL) and NK/T cell lymphoma (NK/T-CL).
Real-time PCR was used to determine the expression level of the MALT1, MALT-V1 (variant 1), A20 and NF-κB genes in peripheral blood mononuclear cells (PBMCs) from 24 cases with T-NHL, 19 cases with B-NHL and 16 cases with NK/T-CL, and 31 healthy individuals (HI) served as control.
Significantly lower A20 and NF-κB expression was found in patients with all three lymphoma subtypes compared with the healthy controls. Moreover, the MALT1 expression level was downregulated in all three lymphoma subtypes. A significant positive correlation between the expression level of MALT1 and A20, MALT1-V1 and A20, MALT1-V1 and NF-κB, and A20 and NF-κB was found.
An abnormal MALT1-A20-NF-κB expression pattern was found in patients with lymphoma, which may result a lack of A20 and dysfunctional MALT1 and may be related to lower T cell activation, which is a common feature in Chinese patients with lymphoma. This finding may at least partially explain the molecular mechanism of T cell immunodeficiency in lymphomas.
PMCID: PMC4005402  PMID: 24790527
Lymphoma; Gene expression; MALT1; A20; NF-κB; T cell immunodeficiency
14.  Increasing the cytotoxicity of doxorubicin in breast cancer MCF-7 cells with multidrug resistance using a mesoporous silica nanoparticle drug delivery system 
Resistance to cytotoxic chemotherapy is the main cause of therapeutic failure and death in women with breast cancer. Overexpression of various members of the superfamily of adenosine triphosphate binding cassette (ABC)-transporters has been shown to be associated with multidrug resistance (MDR) phenotype in breast cancer cells. MDR1 protein promotes the intracellular efflux of drugs. A novel approach to address cancer drug resistance is to take advantage of the ability of nanocarriers to sidestep drug resistance mechanisms by endosomal delivery of chemotherapeutic agents. Doxorubicin (DOX) is an anthracycline antibiotic commonly used in breast cancer chemotherapy and a substrate for ABC-mediated drug efflux. In the present study, we developed breast cancer MCF-7 cells with overexpression of MDR1 and designed mesoporous silica nanoparticles (MSNs) which were used as a drug delivery system. We tested the efficacy of DOX in the breast cancer cell line MCF-7/MDR1 and in a MCF-7/MDR1 xenograft nude mouse model using the MSNs drug delivery system. Our data show that drug resistance in the human breast cancer cell line MCF-7/MDR1 can be overcome by treatment with DOX encapsulated within mesoporous silica nanoparticles.
PMCID: PMC4014214  PMID: 24817930
Breast cancer; MSNs; MDR; drug delivery system
15.  Intraocular soluble intracellular adhesion molecule-1 correlates with subretinal fluid height of diabetic macular edema 
Indian Journal of Ophthalmology  2014;62(3):295-298.
To investigate the correlations between aqueous concentrations of vascular endothelial growth factor (VEGF), monocyte chemoattractant protein-1 (MCP-1), soluble intracellular adhesion molecule-1 (sICAM-1) and diabetic macular edema (DME).
Materials and Methods:
VEGF, MCP-1 and sICAM-1 concentrations in aqueous humor samples of 22 patients with DME and 23 patients with cataract of a control group were measured with solid-phase chemiluminescence immunoassay.
Aqueous VEGF (89.2 ± 58.5 pg/ml versus 48.5 ± 27.8 pg/ml, P = 0.006), MCP-1 (684.2 ± 423.4 pg/ml versus 432.4 ± 230.4 pg/ml, P = 0.019) and sICAM-1 (3213.8 ± 2581.6 pg/ml versus 260.2 ± 212.2 pg/ml, P < 0.001) all vary significantly between DME group and control group. Maximum height of submacular fluid measured by Optical coherence tomography (OCT) was significantly associated with aqueous sICAM-1 (r = -0.45, P = 0.034). The maximum height of macular thickness measured by OCT was not significantly associated with either VEGF (P = 0.300), MCP-1 (P = 0.320) or sICAM-1 (P = 0.285).
Our results suggest that sICAM-1 may majorly contribute to the formation of subretinal fluid in DME patients and imply that MCP-1 and sICAM-1 may be the potential therapy targets, besides VEGF.
PMCID: PMC4061666  PMID: 23619489
Diabetic macular edema; monocyte chemoattractant protein-1; soluble intracellular adhesion molecule-1; vascular endothelial growth factor
16.  HEV-ORF3 Encoding Phosphoprotein Interacts With Hepsin 
Hepatitis Monthly  2014;14(1):e13902.
Hepatitis E virus (HEV) is a major causative agent of acute clinical hepatitis in adults through much of Asia, the Middle East and Africa. Open reading frame 3 (ORF3) encodes around 120 amino acids of phosphorylation protein that associates with the cytoskeleton, while its precise biological function is still unknown.
In order to understand the function of ORF3 protein (pORF3) in depth, HEV ORF3 interacting proteins were screened in human hepatocytes cDNA library using two-hybrid system techniques and further verification of the interactions were carried out through co-immunoprecipitation (Co-IP).
Materials and Methods:
The Cyto-Trap two-hybrid system technology, a classical method for analyzing protein interactions, was used to screen the pORF3 interacting proteins from human hepatocytes cDNA library.
Through the Cyto-Trap two-hybrid system, eight proteins interacting with pORF3 were winnowed. The Co-IP results confirmed that hepsin which is reported to function as the inhibitor of several tumors reacted with pORF3.
Out of eight screened proteins interacting with pORF3, hepsin was confirmed to have specific interactions with pORF3.
PMCID: PMC3929863  PMID: 24596579
ORF3 protein, Hepatitis E virus; Hepsin; Two-Hybrid System Techniques; Immunoprecipitation
17.  Cell surface receptor FPR2 promotes anti-tumor host defense by limiting M2 polarization of macrophages 
Cancer research  2012;73(2):550-560.
FPR2 (Fpr2 in mouse) is a G protein-coupled receptor interacting with bacterial and host-derived chemotactic agonists. Fpr2 supports innate and adaptive immune responses as illustrated by the reduction in severity of allergic airway inflammation in Fpr2-KO mice, due to impaired trafficking of antigen presenting dendritic cells (DCs). The aim of this study is to examine the role of Fpr2 in host anti-tumor responses. We found that Fpr2-KO mice bearing subcutaneously implanted Lewis lung carcinoma (LLC) cells exhibited significantly shortened survival than normal mice due to more rapidly growing tumors. In contrast, in Fpr2-transgenic mice over-expressing Fpr2, subcutaneously implanted LLC tumors grew more slowly than those in wild type (WT) littermates. Investigation of tumor tissues revealed an increased number of macrophages associated with tumors grown in Fpr2-KO mice. Macrophages derived from Fpr2-KO mice showed a more potent chemotactic response to LLC-derived supernatant (LLC Sup), which could be neutralized by an anti-CCL2 antibody. The increased chemotaxis of Fpr2-KO mouse macrophages in response to LLC Sup was due to their higher level expression of CCR4, a chemokine receptor that also recognizes the ligand CCL2. Furthermore, macrophages from Fpr2-KO mice acquired an M2 phenotype after stimulation with LLC Sup. These results suggest that Fpr2 plays an important role in host defense against implanted LLC by sustaining macrophages in an M1 phenotype with more potent anti-tumor activities.
PMCID: PMC3549056  PMID: 23139214
Fpr2; macrophages; chemotaxis; LLC; supernatant
19.  A new strategy of promoting cisplatin chemotherapeutic efficiency by targeting endoplasmic reticulum stress 
Cisplatin (cis-diamminedichloroplatinum II, CDDP) is one of the most effective chemotherapeutic agents and is widely used in the treatment of solid tumors. However, its side effects and acquired resistance gained during the course of treatment may limit its usage. It is generally considered to be a cytotoxic drug that kills cancer cells by damaging their DNA and inhibiting DNA synthesis to induce apoptosis via the mitochondrial death pathway or through plasma membrane disruption, triggering the Fas death receptor pathway. The endoplasmic reticulum (ER) is one of the most important protein-folding compartments within the cell and an intracellular Ca2+ storage organelle. The ER contains a number of molecular chaperones, which may play an important role in determining cellular sensitivity to ER stress and apoptosis. The aim of this review was to summarize our current understanding regarding the mechanisms of ER stress response by which cisplatin induces cell death and the basis for cisplatin resistance. Various aspects were addressed, including the two-way regulation of ER stress, the involvement of ER stress in cisplatin-induced cell death and drug resistance and the drugs enhancing cisplatin-induced cell death by interfering with ER stress. An understanding of how ER stress signaling pathways regulate cisplatin-induced cell death may enable the development of more effective therapeutic strategies for the treatment of cancer.
PMCID: PMC3916193  PMID: 24649299
cisplatin; chemotherapy; endoplasmic reticulum stress
20.  A 3D Fibrous Scaffold Inducing Tumoroids: A Platform for Anticancer Drug Development 
PLoS ONE  2013;8(10):e75345.
The development of a suitable three dimensional (3D) culture system for anticancer drug development remains an unmet need. Despite progress, a simple, rapid, scalable and inexpensive 3D-tumor model that recapitulates in vivo tumorigenesis is lacking. Herein, we report on the development and characterization of a 3D nanofibrous scaffold produced by electrospinning a mixture of poly(lactic-co-glycolic acid) (PLGA) and a block copolymer of polylactic acid (PLA) and mono-methoxypolyethylene glycol (mPEG) designated as 3P. Cancer cells cultured on the 3P scaffold formed tight irregular aggregates similar to in vivo tumors, referred to as tumoroids that depended on the topography and net charge of the scaffold. 3P scaffolds induced tumor cells to undergo the epithelial-to-mesenchymal transition (EMT) as demonstrated by up-regulation of vimentin and loss of E-cadherin expression. 3P tumoroids showed higher resistance to anticancer drugs than the same tumor cells grown as monolayers. Inhibition of ERK and PI3K signal pathways prevented EMT and reduced tumoroid formation, diameter and number. Fine needle aspirates, collected from tumor cells implanted in mice when cultured on 3P scaffolds formed tumoroids, but showed decreased sensitivity to anticancer drugs, compared to tumoroids formed by direct seeding. These results show that 3P scaffolds provide an excellent platform for producing tumoroids from tumor cell lines and from biopsies and that the platform can be used to culture patient biopsies, test for anticancer compounds and tailor a personalized cancer treatment.
PMCID: PMC3797770  PMID: 24146752
21.  Inhibition of Glycogen Synthase Kinase-3β Prevents Remifentanil-Induced Hyperalgesia via Regulating the Expression and Function of Spinal N-Methyl-D-Aspartate Receptors In Vivo and Vitro 
PLoS ONE  2013;8(10):e77790.
A large number of experimental and clinical studies have confirmed that brief remifentanil exposure can enhance pain sensitivity presenting as opioid-induced hyperalgesia (OIH). N-methyl-D-aspartate (NMDA) receptor antagonists have been reported to inhibit morphine analgesic tolerance in many studies. Recently, we found that glycogen synthase kinase-3β (GSK-3β) modulated NMDA receptor trafficking in a rat model of remifentanil-induced postoperative hyperalgesia. In the current study, it was demonstrated that GSK-3β inhibition prevented remifentanil-induced hyperalgesia via regulating the expression and function of spinal NMDA receptors in vivo and in vitro. We firstly investigated the effects of TDZD-8, a selective GSK-3β inhibitor, on thermal and mechanical hyperalgesia using a rat model of remifentanil-induced hyperalgesia. GSK-3β activity as well as NMDA receptor subunits (NR1, NR2A and NR2B) expression and trafficking in spinal cord L4-L5 segments were measured by Western blot analysis. Furthermore, the effects of GSK-3β inhibition on NMDA-induced current amplitude and frequency were studied in spinal cord slices by whole-cell patch-clamp recording. We found that remifentanil infusion at 1 μg·kg-1·min-1 and 2 μg·kg-1·min-1 caused mechanical and thermal hyperalgesia, up-regulated NMDA receptor subunits NR1 and NR2B expression in both membrane fraction and total lysate of the spinal cord dorsal horn and increased GSK-3β activity in spinal cord dorsal horn. GSK-3β inhibitor TDZD-8 significantly attenuated remifentanil-induced mechanical and thermal hyperalgesia from 2 h to 48 h after infusion, and this was associated with reversal of up-regulated NR1 and NR2B subunits in both membrane fraction and total lysate. Furthermore, remifentanil incubation increased amplitude and frequency of NMDA receptor-induced current in dorsal horn neurons, which was prevented with the application of TDZD-8. These results suggest that inhibition of GSK-3β can significantly ameliorate remifentanil-induced hyperalgesia via modulating the expression and function of NMDA receptors, which present useful insights into the mechanistic action of GSK-3β inhibitor as potential anti-hyperalgesic agents for treating OIH.
PMCID: PMC3797695  PMID: 24147079
22.  Dual-Purpose Magnetic Micelles for MRI and Gene Delivery 
Gene therapy is a promising therapeutic approach for treating disease, but the efficient delivery of genes to desired locations with minimal side effects remains a challenge. In addition to gene therapy, it is also highly desirable to provide sensitive imaging information in patients for disease diagnosis, screening and post-therapy monitoring. Here, we report on the development of dual-purpose chitosan and polyethyleneimine (PEI) coated magnetic micelles (CP-mag-micelles) that can deliver nucleic acid-based therapeutic agents and also provide magnetic resonance imaging (MRI). These ‘theranostic’ CP-mag-micelles are composed of monodisperse hydrophobic superparamagnetic iron oxide nanoparticles (SPIONs) loaded into the cores of micelles that are self-assembled from a block copolymer of poly (D, L-lactide) (PLA) and monomethoxy polyethylene glycol (mPEG). For efficient loading and protection of the nucleic acids the micelles were coated with cationic polymers, such as chitosan and PEI. The morphology and size distribution of the CP-mag-micelles were characterized and their potential for use as an MRI-probe was tested using an MRI scanner. The T2 relaxivity of micelles was similar to CP-mag-micelles confirming that coating with cationic polymers did not alter magnetism. Nanoparticles coated with chitosan:PEI at a weight ratio of 5:5 showed higher transfection efficiency in HEK293, 3T3 and PC3 cells than with weight ratios of 3:7 or 7:3. CP-mag-micelles are biocompatible, can be delivered to various organs and are safe. A single injection of CP-mag-micelles carrying reporter plasmids in vivo expressed genes for at least one week. Collectively, our results demonstrate that a structural reinforcement of SPIONs loaded in the core of an mPEG-PLA micelle coated with cationic polymers provides efficient DNA delivery and enhanced MRI potential, and affords a promising candidate for theranostics in the future.
PMCID: PMC3632302  PMID: 22561339
Chitosan and PEI coated magnetic micelles (CP-mag-micelles); magnetic resonance imaging (MRI); super paramagnetic iron oxide nanoparticles (SPIONs); gene delivery; theranostics
23.  Differences in the Structure of the Gut Bacteria Communities in Development Stages of the Chinese White Pine Beetle (Dendroctonus armandi) 
The Chinese white pine beetle Dendroctonus armandi Tsai and Li, is arguably the most destructive forest insect in the Qinling Mountains in Northern China. Little is known about the structure of the bacterial communities associated with D. armandi even though this wood-boring insect plays important roles in ecosystem and biological invasion processes that result in huge economic losses in pine forests. The aim of this study was to investigate the composition of the bacterial communities present in the guts of D. armandi at different developmental stages using a culture-independent method involving PCR-denaturing gradient gel electrophoresis (DGGE). Analysis of PCR-amplified 16S rRNA gene fragments of bacteria from the guts of larvae, pupae, and male and female adults revealed bacterial communities of low complexity that differed according to the developmental stage. Citrobacter spp. and Pantoea spp. predominated in larvae and adults, whereas Methylobacterium was the dominant genus at the pupal stage. The main difference between the guts of male and female adults was the greater dominance of Citrobacter in females. Previous studies suggest that the bacterial community associated with D. armandi guts may influence insect development. The data obtained in this study regarding the phylogenetic relationships and the community structure of intestinal bacteria at different developmental stages of the D. armandi life cycle contribute to our understanding of D. armandi and could aid the development of new pest control strategies.
PMCID: PMC3821655  PMID: 24145750
bark beetle; bacterial community; symbiosis; DGGE; Dendroctonus armandi
24.  A Novel C-Type Lysozyme from Mytilus galloprovincialis: Insight into Innate Immunity and Molecular Evolution of Invertebrate C-Type Lysozymes 
PLoS ONE  2013;8(6):e67469.
A c-type lysozyme (named as MgCLYZ) gene was cloned from the mussel Mytilus galloprovincialis. Blast analysis indicated that MgCLYZ was a salivary c-type lysozyme which was mainly found in insects. The nucleotide sequence of MgCLYZ was predicted to encode a polypeptide of 154 amino acid residues with the signal peptide comprising the first 24 residues. The deduced mature peptide of MgCLYZ was of a calculated molecular weight of 14.4 kD and a theoretical isoelectric point (pI) of 8.08. Evolution analysis suggested that bivalve branch of the invertebrate c-type lysozymes phylogeny tree underwent positive selection during evolution. By quantitative real-time RT-PCR (qRT-PCR) analysis, MgCLYZ transcript was widely detected in all examined tissues and responded sensitively to bacterial challenge in hemocytes and hepatopancreas. The optimal temperature and pH of recombinant MgCLYZ (rMgCLYZ) were 20°C and 4, respectively. The rMgCLYZ displayed lytic activities against Gram-positive bacteria including Micrococcus luteus and Staphyloccocus aureus, and Gram-negative bacteria including Vibrio anguillarum, Enterobacter cloacae, Pseudomonas putida, Proteus mirabilis and Bacillus aquimaris. These results suggest that MgCLYZ perhaps play an important role in innate immunity of M. galloprovincialis, and invertebrate c-type lysozymes might be under positive selection in a species-specific manner during evolution for undergoing adaptation to different environment and diverse pathogens.
PMCID: PMC3688608  PMID: 23818979
25.  The Early Stage Formation of PI3K-AMPAR GluR2 Subunit Complex Facilitates the Long Term Neuroprotection Induced by Propofol Post-Conditioning in Rats 
PLoS ONE  2013;8(6):e65187.
Previously, we have shown that the phosphoinositide-3-kinase (PI3K) mediated acute (24 h) post-conditioning neuroprotection induced by propofol. We also found that propofol post-conditioning produced long term neuroprotection and inhibited the internalization of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor GluR2 subunit up to 28 days post middle cerebral artery occlusion (MCAO). However, the relationship between PI3K with AMPA receptor GluR2 subunit trafficking in propofol post-conditioning has never been explored. Here we showed that propofol post-conditioning promoted the binding of PI3K to the C-terminal of AMPA receptor GluR2 subunit and formed a complex within 1 day after transient MCAO. Interestingly, the enhanced activity of PI3K was observed in the hippocampus of post-conditioning rats at day 1 post ischemia, whereas the decrease of AMPA receptor GluR2 subunit internalization was found up to 28 days in the same group. Administration of PI3K selective antagonist wortmannin inhibited the improvement of spatial learning memory and the increase of neurogenesis in the dentate gyrus up to 28 days post ischemia. It also reversed the inhibition of AMPA receptor GluR2 internalization induced by propofol post-conditioning. Together, our data indicated the critical role of PI3K in regulating the long term neuroprotection induced by propofol post-conditioning. Moreover, this role was established by first day activation of PI3K and formation of PI3K-AMPA receptor GluR2 complex, thus stabilized the structure of postsnaptic AMPA receptor and inhibited the internalization of GluR2 subunit during the early stage of propofol post-conditioning.
PMCID: PMC3679144  PMID: 23776449

Results 1-25 (43)