PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-7 (7)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Gene Expression-Based Dosimetry by Dose and Time in Mice Following Acute Radiation Exposure 
PLoS ONE  2013;8(12):e83390.
Rapid and reliable methods for performing biological dosimetry are of paramount importance in the event of a large-scale nuclear event. Traditional dosimetry approaches lack the requisite rapid assessment capability, ease of use, portability and low cost, which are factors needed for triaging a large number of victims. Here we describe the results of experiments in which mice were acutely exposed to 60Co gamma rays at doses of 0 (control) to 10 Gy. Blood was obtained from irradiated mice 0.5, 1, 2, 3, 5, and 7 days after exposure. mRNA expression levels of 106 selected genes were obtained by reverse-transcription real time PCR. Stepwise regression of dose received against individual gene transcript expression levels provided optimal dosimetry at each time point. The results indicate that only 4–7 different gene transcripts are needed to explain ≥ 0.69 of the variance (R2), and that receiver-operator characteristics, a measure of sensitivity and specificity, of ≥ 0.93 for these statistical models were achieved at each time point. These models provide an excellent description of the relationship between the actual and predicted doses up to 6 Gy. At doses of 8 and 10 Gy there appears to be saturation of the radiation-response signals with a corresponding diminution of accuracy. These results suggest that similar analyses in humans may be advantageous for use in a field-portable device designed to assess exposures in mass casualty situations.
doi:10.1371/journal.pone.0083390
PMCID: PMC3865163  PMID: 24358280
2.  Cigarette smoking during pregnancy: chromosome translocations and phenotypic susceptibility in mothers and newborns 
Mutation research  2010;696(1):81-88.
The effects of maternal cigarette smoking during pregnancy on structural chromosome aberrations were evaluated in peripheral lymphocytes from 239 mothers and their 241 newborns to determine whether smoking during pregnancy, genetic susceptibility, and race are associated with chromosome aberrations including translocations. Demographic information and cigarette smoking data were obtained via questionnaire. There were 119 Caucasian Americans, 118 African Americans, and 2 Asian Americans. The average maternal age was 24.9 ± 5.8 (mean ± S.D.) years. Thirty-nine percent of the Caucasian Americans and 45.4% of the African Americans self-reported that they were active smokers during the index pregnancy. The average number of cigarettes smoked per day was 2.65 ± 5.75 and 1.37 ± 3.17 for Caucasian and African American mothers, respectively. Peripheral blood lymphocytes from the mother and from the fetal side of the placenta were evaluated for chromosome aberrations by whole chromosome painting and for genetic susceptibility using an in vitro bleomycin challenge assay. Spontaneous translocation frequencies in both maternal and newborn lymphocytes were not associated with cigarette smoking, socio-economic status, or education. The absence of a smoking effect may be attributable to the low level of cigarette usage in these subjects. The average bleomycin-induced damage in the maternal and newborn populations was 0.37 ± 0.27 and 0.15 ± 0.14 breaks per cell, respectively, a difference that was highly significant (p < 0.0001). In newborns there was a positive association between bleomycin sensitivity and the frequencies of aberrations as measured by chromosome painting: p ≤ 0.0007 for dicentrics and fragments, and p ≤ 0.002 for translocations. Caucasian American newborns demonstrated a significant association between dicentrics and fragments as measured by painting, and bleomycin sensitivity (p ≤ 0.0002), but no such association was observed for African American newborns. The results of this study indicate that while differences were observed between African Americans and Caucasian Americans, race does not appear to be a major contributor to chromosome damage in newborns or their mothers. However, peripheral lymphocytes in pregnant women are more susceptible to genetic damage than peripheral lymphocytes in newborns.
doi:10.1016/j.mrgentox.2009.12.015
PMCID: PMC3519101  PMID: 20060061
cigarette smoking; pregnancy; newborns; mothers; chromosome translocations; genomic susceptibility
3.  Cytogenetic analysis of an exposed-referent study: perchloroethylene-exposed dry cleaners compared to unexposed laundry workers 
Environmental Health  2011;10:16.
Background
Significant numbers of people are exposed to tetrachloroethylene (perchloroethylene, PCE) every year, including workers in the dry cleaning industry. Adverse health effects have been associated with PCE exposure. However, investigations of possible cumulative cytogenetic damage resulting from PCE exposure are lacking.
Methods
Eighteen dry cleaning workers and 18 laundry workers (unexposed controls) provided a peripheral blood sample for cytogenetic analysis by whole chromosome painting. Pre-shift exhaled air on these same participants was collected and analyzed for PCE levels. The laundry workers were matched to the dry cleaners on race, age, and smoking status. The relationships between levels of cytological damage and exposures (including PCE levels in the shop and in workers' blood, packyears, cumulative alcohol consumption, and age) were compared with correlation coefficients and t-tests. Multiple linear regressions considered blood PCE, packyears, alcohol, and age.
Results
There were no significant differences between the PCE-exposed dry cleaners and the laundry workers for chromosome translocation frequencies, but PCE levels were significantly correlated with percentage of cells with acentric fragments (R2 = 0.488, p < 0.026).
Conclusions
There does not appear to be a strong effect in these dry cleaning workers of PCE exposure on persistent chromosome damage as measured by translocations. However, the correlation between frequencies of acentric fragments and PCE exposure level suggests that recent exposures to PCE may induce transient genetic damage. More heavily exposed participants and a larger sample size will be needed to determine whether PCE exposure induces significant levels of persistent chromosome damage.
doi:10.1186/1476-069X-10-16
PMCID: PMC3062579  PMID: 21392400
4.  Use of Miniaturized Protein Arrays for Escherichia coli O Serotyping 
Clinical and Vaccine Immunology  2006;13(5):561-567.
Serological typing of Escherichia coli O antigens is a well-established method used for differentiation and identification of O serotypes commonly associated with disease. In this feasibility study, we have developed a novel somatic antibody-based miniaturized microarray chip, using 17 antisera, which can be used to detect bound whole-cell E. coli antigen with its corresponding immobilized antibody, to assess the feasibility of this approach. The chip was tested using the related 17 control strains, and the O types found by the microarray chip showed 100% correlation with the O types found by conventional typing. A blind trial was performed in which 100 E. coli isolates that had been O serotyped previously by the conventional assay were tested by the array approach. Overall, the O serotypes of 88% of isolates were correctly identified by the microarray method. For several isolates, ambiguity of O-type designation by microarray arose due to increased sensitivity of this method, allowing signal intensities of cross-reactions to be quantified. Investigation of discrepancies between conventional and microarray O serotyping indicated that some isolates upon storage had become untypeable and, therefore, gave poor signal intensity when tested by the microarray or retested by conventional means. For all 20 serotype O26 and O157 isolates, the apparent discrepancy in O serotyping was analyzed further by a third independent test, which confirmed the microarray results. Therefore, the use of miniaturized protein arrays increases the speed and efficiency of O serotyping in a cost-effective manner, and these preliminary findings suggest the microarray approach may have a higher accuracy than those of traditional O-serotyping methods.
doi:10.1128/CVI.13.5.561-567.2006
PMCID: PMC1459650  PMID: 16682477
5.  Diagnostic X-ray examinations and increased chromosome translocations: evidence from three studies 
Controversy regarding potential health risks from increased use of medical diagnostic radiologic examinations has come to public attention. We evaluated whether chromosome damage, specifically translocations, which are a potentially intermediate biomarker for cancer risk, was increased after exposure to diagnostic X-rays, with particular interest in the ionizing radiation dose–response below the level of approximately 50 mGy. Chromosome translocation frequency data from three separately conducted occupational studies of ionizing radiation were pooled together. Studies 1 and 2 included 79 and 150 medical radiologic technologists, respectively, and study 3 included 83 airline pilots and 50 university faculty members (total = 155 women and 207 men; mean age = 62 years, range 34–90). Information on personal history of radiographic examinations was collected from a detailed questionnaire. We computed a cumulative red bone marrow (RBM) dose score based on the numbers and types of X-ray examinations reported with 1 unit approximating 1 mGy. Poisson regression analyses were adjusted for age and laboratory method. Mean RBM dose scores were 49, 42, and 11 for Studies 1–3, respectively (overall mean = 33.5, range 0–303). Translocation frequencies significantly increased with increasing dose score (P < 0.001). Restricting the analysis to the lowest dose scores of under 50 did not materially change these results. We conclude that chromosome damage is associated with low levels of radiation exposure from diagnostic X-ray examinations, including dose scores of approximately 50 and lower, suggesting the possibility of long-term adverse health effects.
doi:10.1007/s00411-010-0307-z
PMCID: PMC3075914  PMID: 20602108
6.  ROUTINE DIAGNOSTIC X-RAY EXAMINATIONS AND INCREASED FREQUENCY OF CHROMOSOME TRANSLOCATIONS AMONG U. S. RADIOLOGIC TECHNOLOGISTS 
Cancer research  2008;68(21):8825-8831.
The U.S. population has nearly one radiographic examination per person per year and concern about cancer risks associated with medical radiation has increased. Radiologic technologists were surveyed to determine whether their personal cumulative exposure to diagnostic x-rays was associated with increased frequencies of chromosome translocations, an established radiation biomarker and possible intermediary suggesting increased cancer risk. Within a large cohort of U. S. radiologic technologists, 150 provided a blood sample for whole chromosome painting and were interviewed about past x-ray examinations. The number and types of examinations reported were converted to a red bone marrow (RBM) dose score with units that approximated 1 mGy. The relationship between dose score and chromosome translocation frequency was assessed using Poisson regression. The estimated mean cumulative RBM radiation dose score was 49 (range 0 – 303). After adjustment for age, translocation frequencies significantly increased with increasing RBM dose score with an estimate of 0.004 translocations per 100 cell equivalents per score unit (95% confidence interval 0.002 to 0.007; P < 0.001). Removing extreme values or adjustment for gender, cigarette smoking, occupational radiation dose, allowing practice x-rays while training, work with radioisotopes, and radiotherapy for benign conditions did not affect the estimate. Cumulative radiation exposure from routine x-ray examinations was associated independently with increased chromosome damage, suggesting the possibility of elevated long-term health risks, including cancer. The slope estimate was consistent with expectation based on cytogenetic experience and atomic bomb survivor data.
doi:10.1158/0008-5472.CAN-08-1691
PMCID: PMC2586176  PMID: 18974125
Radiation exposure; diagnostic x-rays; chromosome translocations; FISH; risk factors
7.  International study of factors affecting human chromosome translocations 
Mutation research  2008;652(2):112-121.
Chromosome translocations in peripheral blood lymphocytes of normal, healthy humans increase with age, but the effects of gender, race, and cigarette smoking on background translocation yields have not been examined systematically. Further, the shape of the relationship between age and translocation frequency (TF) has not been definitively determined. We collected existing data from sixteen laboratories in North America, Europe, and Asia on TFs measured in peripheral blood lymphocytes by fluorescence in situ hybridization whole chromosome painting among 1933 individuals. In Poisson regression models, age, ranging from newborns (cord blood) to 85 years, was strongly associated with TF and this relationship showed significant upward curvature at older ages vs. a linear relationship (p <0.001). Ever smokers had significantly higher TFs than non-smokers (rate ratio (RR) = 1.19, 95% confidence interval (CI), 1.09–1.30) and smoking modified the effect of age on TFs with a steeper age-related increase among ever smokers compared to non-smokers (p<0.001). TFs did not differ by gender. Interpreting an independent effect of race was difficult owing to laboratory variation. Our study is three times larger than any pooled effort to date, confirming a suspected curvilinear relationship of TF with age. The significant effect of cigarette smoking has not been observed with previous pooled studies of TF in humans. Our data provide stable estimates of background TF by age, gender, race, and smoking status and suggest an acceleration of chromosome damage above age 60 and among those with a history of smoking cigarettes.
doi:10.1016/j.mrgentox.2008.01.005
PMCID: PMC2696320  PMID: 18337160
chromosome translocations; background frequency; controls; fluorescence in situ hybridization

Results 1-7 (7)