PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (66)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
more »
1.  Characterization of Ten Heterotetrameric NDP-Dependent Acyl-CoA Synthetases of the Hyperthermophilic Archaeon Pyrococcus furiosus 
Archaea  2014;2014:176863.
The hyperthermophilic archaeon Pyrococcus furiosus grows by fermenting peptides and carbohydrates to organic acids. In the terminal step, acyl-CoA synthetase (ACS) isoenzymes convert acyl-CoA derivatives to the corresponding acid and conserve energy in the form of ATP. ACS1 and ACS2 were previously purified from P. furiosus and have α2β2 structures but the genome contains genes encoding three additional α-subunits. The ten possible combinations of α and β genes were expressed in E. coli and each resulted in stable and active α2β2 isoenzymes. The α-subunit of each isoenzyme determined CoA-based substrate specificity and between them they accounted for the CoA derivatives of fourteen amino acids. The β-subunit determined preference for adenine or guanine nucleotides. The GTP-generating isoenzymes are proposed to play a role in gluconeogenesis by producing GTP for GTP-dependent phosphoenolpyruvate carboxykinase and for other GTP-dependent processes. Transcriptional and proteomic data showed that all ten isoenzymes are constitutively expressed indicating that both ATP and GTP are generated from the metabolism of most of the amino acids. A phylogenetic analysis showed that the ACSs of P. furiosus and other members of the Thermococcales are evolutionarily distinct from those found throughout the rest of biology, including those of other hyperthermophilic archaea.
doi:10.1155/2014/176863
PMCID: PMC3942289  PMID: 24669200
2.  Mannosylglycerate and Di-myo-Inositol Phosphate Have Interchangeable Roles during Adaptation of Pyrococcus furiosus to Heat Stress 
Applied and Environmental Microbiology  2014;80(14):4226-4233.
Marine hyperthermophiles accumulate small organic compounds, known as compatible solutes, in response to supraoptimal temperatures or salinities. Pyrococcus furiosus is a hyperthermophilic archaeon that grows optimally at temperatures near 100°C. This organism accumulates mannosylglycerate (MG) and di-myo-inositol phosphate (DIP) in response to osmotic and heat stress, respectively. It has been assumed that MG and DIP are involved in cell protection; however, firm evidence for the roles of these solutes in stress adaptation is still missing, largely due to the lack of genetic tools to produce suitable mutants of hyperthermophiles. Recently, such tools were developed for P. furiosus, making this organism an ideal target for that purpose. In this work, genes coding for the synthases in the biosynthetic pathways of MG and DIP were deleted by double-crossover homologous recombination. The growth profiles and solute patterns of the two mutants and the parent strain were investigated under optimal growth conditions and also at supraoptimal temperatures and NaCl concentrations. DIP was a suitable replacement for MG during heat stress, but substitution of MG for DIP and aspartate led to less efficient growth under conditions of osmotic stress. The results suggest that the cascade of molecular events leading to MG synthesis is tuned for osmotic adjustment, while the machinery for induction of DIP synthesis responds to either stress agent. MG protects cells against heat as effectively as DIP, despite the finding that the amount of DIP consistently increases in response to heat stress in the nine (hyper)thermophiles examined thus far.
doi:10.1128/AEM.00559-14
PMCID: PMC4068688  PMID: 24795373
3.  Regulation of Iron Metabolism by Pyrococcus furiosus 
Journal of Bacteriology  2013;195(10):2400-2407.
Iron is an essential element for the hyperthermophilic archaeon Pyrococcus furiosus, and many of its iron-containing enzymes have been characterized. How iron assimilation is regulated, however, is unknown. The genome sequence contains genes encoding two putative iron-responsive transcription factors, DtxR and Fur. Global transcriptional profiles of the dtxR deletion mutant (ΔDTXR) and the parent strain under iron-sufficient and iron-limited conditions indicated that DtxR represses the expression of the genes encoding two putative iron transporters, Ftr1 and FeoAB, under iron-sufficient conditions. Under iron limitation, DtxR represses expression of the gene encoding the iron-containing enzyme aldehyde ferredoxin oxidoreductase and a putative ABC-type transporter. Analysis of the dtxR gene sequence indicated an incorrectly predicted translation start site, and the corrected full-length DtxR protein, in contrast to the truncated version, specifically bound to the promoters of ftr1 and feoAB, confirming its role as a transcription regulator. Expression of the gene encoding Ftr1 was dramatically upregulated by iron limitation, but no phenotype was observed for the ΔFTR1 deletion mutant under iron-limited conditions. The intracellular iron concentrations of ΔFTR1 and the parent strain were similar, suggesting that under the conditions tested, Ftr1 is not an essential iron transporter despite its response to iron. In contrast to DtxR, the Fur protein appears not to be a functional regulator in P. furiosus, since it did not bind to the promoters of any of the iron-regulated genes and the deletion mutant (ΔFUR) revealed no transcriptional responses to iron availability. DtxR is therefore the key iron-responsive transcriptional regulator in P. furiosus.
doi:10.1128/JB.02280-12
PMCID: PMC3650548  PMID: 23504018
4.  Genome Sequencing of a Genetically Tractable Pyrococcus furiosus Strain Reveals a Highly Dynamic Genome 
Journal of Bacteriology  2012;194(15):4097-4106.
The model archaeon Pyrococcus furiosus grows optimally near 100°C on carbohydrates and peptides. Its genome sequence (NCBI) was determined 12 years ago. A genetically tractable strain, COM1, was very recently reported, and here we describe its genome sequence. Of 1,909,827 bp in size, it is 1,571 bp longer (0.1%) than the reference NCBI sequence. The COM1 genome contains numerous chromosomal rearrangements, deletions, and single base changes. COM1 also has 45 full or partial insertion sequences (ISs) compared to 35 in the reference NCBI strain, and these have resulted in the direct deletion or insertional inactivation of 13 genes. Another seven genes were affected by chromosomal deletions and are predicted to be nonfunctional. In addition, the amino acid sequences of another 102 of the 2,134 predicted gene products are different in COM1. These changes potentially impact various cellular functions, including carbohydrate, peptide, and nucleotide metabolism; DNA repair; CRISPR-associated defense; transcriptional regulation; membrane transport; and growth at 72°C. For example, the IS-mediated inactivation of riboflavin synthase in COM1 resulted in a riboflavin requirement for growth. Nevertheless, COM1 grew on cellobiose, malto-oligosaccharides, and peptides in complex and minimal media at 98 and 72°C to the same extent as did both its parent strain and a new culture collection strain (DSMZ 3638). This was in spite of COM1 lacking several metabolic enzymes, including nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase and beta-glucosidase. The P. furiosus genome is therefore of high plasticity, and the availability of the COM1 sequence will be critical for the future studies of this model hyperthermophile.
doi:10.1128/JB.00439-12
PMCID: PMC3416535  PMID: 22636780
5.  Conversion of 4-Hydroxybutyrate to Acetyl Coenzyme A and Its Anapleurosis in the Metallosphaera sedula 3-Hydroxypropionate/4-Hydroxybutyrate Carbon Fixation Pathway 
The extremely thermoacidophilic archaeon Metallosphaera sedula (optimum growth temperature, 73°C, pH 2.0) grows chemolithoautotrophically on metal sulfides or molecular hydrogen by employing the 3-hydroxypropionate/4-hydroxybutyrate (3HP/4HB) carbon fixation cycle. This cycle adds two CO2 molecules to acetyl coenzyme A (acetyl-CoA) to generate 4HB, which is then rearranged and cleaved to form two acetyl-CoA molecules. Previous metabolic flux analysis showed that two-thirds of central carbon precursor molecules are derived from succinyl-CoA, which is oxidized to malate and oxaloacetate. The remaining one-third is apparently derived from acetyl-CoA. As such, the steps beyond succinyl-CoA are essential for completing the carbon fixation cycle and for anapleurosis of acetyl-CoA. Here, the final four enzymes of the 3HP/4HB cycle, 4-hydroxybutyrate-CoA ligase (AMP forming) (Msed_0406), 4-hydroxybutyryl-CoA dehydratase (Msed_1321), crotonyl-CoA hydratase/(S)-3-hydroxybutyryl-CoA dehydrogenase (Msed_0399), and acetoacetyl-CoA β-ketothiolase (Msed_0656), were produced recombinantly in Escherichia coli, combined in vitro, and shown to convert 4HB to acetyl-CoA. Metabolic pathways connecting CO2 fixation and central metabolism were examined using a gas-intensive bioreactor system in which M. sedula was grown under autotrophic (CO2-limited) and heterotrophic conditions. Transcriptomic analysis revealed the importance of the 3HP/4HB pathway in supplying acetyl-CoA to anabolic pathways generating intermediates in M. sedula metabolism. The results indicated that flux between the succinate and acetyl-CoA branches in the 3HP/4HB pathway is governed by 4-hydroxybutyrate-CoA ligase, possibly regulated posttranslationally by the protein acetyltransferase (Pat)/Sir2-dependent system. Taken together, this work confirms the final four steps of the 3HP/4HB pathway, thereby providing the framework for examining connections between CO2 fixation and central metabolism in M. sedula.
doi:10.1128/AEM.04146-13
PMCID: PMC3993168  PMID: 24532060
6.  Complete Genome Sequence of Pelosinus sp. Strain UFO1 Assembled Using Single-Molecule Real-Time DNA Sequencing Technology 
Genome Announcements  2014;2(5):e00881-14.
Pelosinus species can reduce metals such as Fe(III), U(VI), and Cr(VI) and have been isolated from diverse geographical regions. Five draft genome sequences have been published. We report the complete genome sequence for Pelosinus sp. strain UFO1 using only PacBio DNA sequence data and without manual finishing.
doi:10.1128/genomeA.00881-14
PMCID: PMC4155594  PMID: 25189589
7.  Mutational Analyses of the Enzymes Involved in the Metabolism of Hydrogen by the Hyperthermophilic Archaeon Pyrococcus furiosus 
Pyrococcus furiosus grows optimally near 100°C by fermenting carbohydrates to produce hydrogen (H2) or, if elemental sulfur (S0) is present, hydrogen sulfide instead. It contains two cytoplasmic hydrogenases, SHI and SHII, that use NADP(H) as an electron carrier and a membrane-bound hydrogenase (MBH) that utilizes the redox protein ferredoxin. We previously constructed deletion strains lacking SHI and/or SHII and showed that they exhibited no obvious phenotype. This study has now been extended to include biochemical analyses and growth studies using the ΔSHI and ΔSHII deletion strains together with strains lacking a functional MBH (ΔmbhL). Hydrogenase activity in cytoplasmic extracts of various strains demonstrate that SHI is responsible for most of the cytoplasmic hydrogenase activity. The ΔmbhL strain showed no growth in the absence of S0, confirming the hypothesis that, in the absence of S0, MBH is the only enzyme that can dispose of reductant (in the form of H2) generated during sugar oxidation. Under conditions of limiting sulfur, a small but significant amount of H2 was produced by the ΔmbhL strain, showing that SHI can produce H2 from NADPH in vivo, although this does not enable growth of ΔmbhL in the absence of S0. We propose that the physiological function of SHI is to recycle H2 and provide a link between external H2 and the intracellular pool of NADPH needed for biosynthesis. This likely has a distinct energetic advantage in the environment, but it is clearly not required for growth of the organism under the usual laboratory conditions. The function of SHII, however, remains unknown.
doi:10.3389/fmicb.2012.00163
PMCID: PMC3341082  PMID: 22557999
hydrogenase; energy metabolism; sulfur; ferredoxin; Pyrococcus furiosus; thermophile; anaerobe
8.  Engineering a Hyperthermophilic Archaeon for Temperature-Dependent Product Formation 
mBio  2012;3(2):e00053-12.
ABSTRACT
Microorganisms growing near the boiling point have enormous biotechnological potential but only recently have molecular engineering tools become available for them. We have engineered the hyperthermophilic archaeon Pyrococcus furiosus, which grows optimally at 100°C, to switch its end products of fermentation in a temperature-controlled fashion without the need for chemical inducers. The recombinant strain (LAC) expresses a gene (ldh) encoding lactate dehydrogenase from the moderately thermophilic Caldicellulosiruptor bescii (optimal growth temperature [Topt] of 78°C) controlled by a “cold shock” promoter that is upregulated when cells are transferred from 98°C to 72°C. At 98°C, the LAC strain fermented sugar to produce acetate and hydrogen as end products, and lactate was not detected. When the LAC strain was grown at 72°C, up to 3 mM lactate was produced instead. Expression of a gene from a moderately thermophilic bacterium in a hyperthermophilic archaeon at temperatures at which the hyperthermophile has low metabolic activity provides a new perspective to engineering microorganisms for bioproduct and biofuel formation.
IMPORTANCE Extremely thermostable enzymes from microorganisms that grow near or above the boiling point of water are already used in biotechnology. However, the use of hyperthermophilic microorganisms themselves for biotechnological applications has been limited by the lack of their genetic accessibility. Recently, a genetic system for Pyrococcus furiosus, which grows optimally near 100°C, was developed in our laboratory. In this study, we present the first heterologous protein expression system for a microorganism that grows optimally at 100°C, a first step towards the potential expression of genes involved in biomass degradation or biofuel production in hyperthermophiles. Moreover, we developed the first system for specific gene induction in P. furiosus. As the cold shock promoter for protein expression used in this study is activated at suboptimal growth temperatures of P. furiosus, it is a powerful genetic tool for protein expression with minimal interference of the host’s metabolism and without the need for chemical inducers.
IMPORTANCE
Extremely thermostable enzymes from microorganisms that grow near or above the boiling point of water are already used in biotechnology. However, the use of hyperthermophilic microorganisms themselves for biotechnological applications has been limited by the lack of their genetic accessibility. Recently, a genetic system for Pyrococcus furiosus, which grows optimally near 100°C, was developed in our laboratory. In this study, we present the first heterologous protein expression system for a microorganism that grows optimally at 100°C, a first step towards the potential expression of genes involved in biomass degradation or biofuel production in hyperthermophiles. Moreover, we developed the first system for specific gene induction in P. furiosus. As the cold shock promoter for protein expression used in this study is activated at suboptimal growth temperatures of P. furiosus, it is a powerful genetic tool for protein expression with minimal interference of the host’s metabolism and without the need for chemical inducers.
doi:10.1128/mBio.00053-12
PMCID: PMC3345578  PMID: 22511351
9.  Observation of the Fe—CN and Fe—CO Vibrations in the Active Site of [NiFe] Hydrogenase by Nuclear Resonance Vibrational Spectroscopy** 
Nuclear inelastic scattering of 57Fe labeled [NiFe] hydrogenase is shown to give information on different states of the enzyme. It was thus possible to detect and assign Fe–CO and Fe–CN bending and stretching vibrations of the active site outside the spectral range of the Fe–S cluster normal modes.
doi:10.1002/anie.201204616
PMCID: PMC3535562  PMID: 23136119
FeS clusters; hydrogenases; NiFe acvite site; spectroscopic methods; vibrational spectroscopy
10.  A 1.5 Å resolution X-ray structure of the catalytic module of Caldicellulosiruptor bescii family 3 pectate lyase 
Structural analysis of the catalytic module of Caldicellulosiruptor bescii family 3 pectate lyase shows that this new structure is very similar to the previously solved structure of a family 3 pectate lyase from Bacillus sp. strain KSM-P15.
A 1.5 Å resolution X-ray structure of the catalytic module of Caldicellulosi­ruptor bescii family 3 pectate lyase is reported (PDB entry 3t9g). The resulting structure was refined to an R factor of 0.143 and an R free of 0.178. Structural analysis shows that this new structure is very similar to the previously solved structure of a family 3 pectate lyase from Bacillus sp. strain KSM-P15 (PDB entry 1ee6), with a root-mean-square deviation of 0.93 Å and a sequence identity of 53%. This structural similarity is significant considering that C. bescii is a hyperthermophile and Bacillus sp. is a mesophile.
doi:10.1107/S1744309111038449
PMCID: PMC3232124  PMID: 22139151
pectate lyases; PL3; Caldicellulosiruptor bescii
11.  Epimerase (Msed_0639) and Mutase (Msed_0638 and Msed_2055) Convert (S)-Methylmalonyl-Coenzyme A (CoA) to Succinyl-CoA in the Metallosphaera sedula 3-Hydroxypropionate/4-Hydroxybutyrate Cycle 
Applied and Environmental Microbiology  2012;78(17):6194-6202.
Crenarchaeotal genomes encode the 3-hydroxypropionate/4-hydroxybutyrate (3-HP/4-HB) cycle for carbon dioxide fixation. Of the 13 enzymes putatively comprising the cycle, several of them, including methylmalonyl-coenzyme A (CoA) epimerase (MCE) and methylmalonyl-CoA mutase (MCM), which convert (S)-methylmalonyl-CoA to succinyl-CoA, have not been confirmed and characterized biochemically. In the genome of Metallosphaera sedula (optimal temperature [Topt], 73°C), the gene encoding MCE (Msed_0639) is adjacent to that encoding the catalytic subunit of MCM-α (Msed_0638), while the gene for the coenzyme B12-binding subunit of MCM (MCM-β) is located remotely (Msed_2055). The expression of all three genes was significantly upregulated under autotrophic compared to heterotrophic growth conditions, implying a role in CO2 fixation. Recombinant forms of MCE and MCM were produced in Escherichia coli; soluble, active MCM was produced only if MCM-α and MCM-β were coexpressed. MCE is a homodimer and MCM is a heterotetramer (α2β2) with specific activities of 218 and 2.2 μmol/min/mg, respectively, at 75°C. The heterotetrameric MCM differs from the homo- or heterodimeric orthologs in other organisms. MCE was activated by divalent cations (Ni2+, Co2+, and Mg2+), and the predicted metal binding/active sites were identified through sequence alignments with less-thermophilic MCEs. The conserved coenzyme B12-binding motif (DXHXXG-SXL-GG) was identified in M. sedula MCM-β. The two enzymes together catalyzed the two-step conversion of (S)-methylmalonyl-CoA to succinyl-CoA, consistent with their proposed role in the 3-HP/4-HB cycle. Based on the highly conserved occurrence of single copies of MCE and MCM in Sulfolobaceae genomes, the M. sedula enzymes are likely to be representatives of these enzymes in the 3-HP/4-HB cycle in crenarchaeal thermoacidophiles.
doi:10.1128/AEM.01312-12
PMCID: PMC3416614  PMID: 22752162
12.  Current Opinion in Biotechnology: Analytical Biotech 
The vital nature of metal uptake and balance in biology is evident in the highly evolved strategies to facilitate metal homeostasis in all three domains of life. Several decades of study on metals and metalloproteins have revealed numerous essential bio-metal functions. Recent advances in mass spectrometry, x-ray scattering/absorption, and proteomics have exposed a much broader usage of metals in biology than expected. Even elements such as uranium, arsenic, and lead are implicated in biological processes as part of an emerging and expansive view of bio-metals. Here we discuss opportunities and challenges for established and newer approaches to study metalloproteins with a focus on technologies that promise to rapidly expand our knowledge of metalloproteins and metal functions in biology.
doi:10.1016/j.copbio.2011.11.005
PMCID: PMC3273585  PMID: 22138493
metallomics; metalloproteomics; metalloproteins; biometals
13.  Caldicellulosiruptor Core and Pangenomes Reveal Determinants for Noncellulosomal Thermophilic Deconstruction of Plant Biomass 
Journal of Bacteriology  2012;194(15):4015-4028.
Extremely thermophilic bacteria of the genus Caldicellulosiruptor utilize carbohydrate components of plant cell walls, including cellulose and hemicellulose, facilitated by a diverse set of glycoside hydrolases (GHs). From a biofuel perspective, this capability is crucial for deconstruction of plant biomass into fermentable sugars. While all species from the genus grow on xylan and acid-pretreated switchgrass, growth on crystalline cellulose is variable. The basis for this variability was examined using microbiological, genomic, and proteomic analyses of eight globally diverse Caldicellulosiruptor species. The open Caldicellulosiruptor pangenome (4,009 open reading frames [ORFs]) encodes 106 GHs, representing 43 GH families, but only 26 GHs from 17 families are included in the core (noncellulosic) genome (1,543 ORFs). Differentiating the strongly cellulolytic Caldicellulosiruptor species from the others is a specific genomic locus that encodes multidomain cellulases from GH families 9 and 48, which are associated with cellulose-binding modules. This locus also encodes a novel adhesin associated with type IV pili, which was identified in the exoproteome bound to crystalline cellulose. Taking into account the core genomes, pangenomes, and individual genomes, the ancestral Caldicellulosiruptor was likely cellulolytic and evolved, in some cases, into species that lost the ability to degrade crystalline cellulose while maintaining the capacity to hydrolyze amorphous cellulose and hemicellulose.
doi:10.1128/JB.00266-12
PMCID: PMC3416521  PMID: 22636774
14.  Metallochaperones Regulate Intracellular Copper Levels 
PLoS Computational Biology  2013;9(1):e1002880.
Copper (Cu) is an important enzyme co-factor that is also extremely toxic at high intracellular concentrations, making active efflux mechanisms essential for preventing Cu accumulation. Here, we have investigated the mechanistic role of metallochaperones in regulating Cu efflux. We have constructed a computational model of Cu trafficking and efflux based on systems analysis of the Cu stress response of Halobacterium salinarum. We have validated several model predictions via assays of transcriptional dynamics and intracellular Cu levels, discovering a completely novel function for metallochaperones. We demonstrate that in addition to trafficking Cu ions, metallochaperones also function as buffers to modulate the transcriptional responsiveness and efficacy of Cu efflux. This buffering function of metallochaperones ultimately sets the upper limit for intracellular Cu levels and provides a mechanistic explanation for previously observed Cu metallochaperone mutation phenotypes.
Author Summary
Copper (Cu) toxicity is a problem of medical, agricultural, and environmental significance. Cu toxicity severely inhibits growth of plant roots significantly affecting their morphology; Cu overload also accounts for some of the most common metal-metabolism abnormalities and neuropsychiatric problems including Wilson's and Menkes diseases. There is a large body of literature on how Cu enters and exits the cell; the kinetic and structural details of Cu translocation between trafficking, sensing, metabolic, and pumping proteins; and phenotypes associated with defects in metalloregulatory and efflux functions. Although the role of metallochaperones in Cu-cytotoxicity has been poorly studied, it has been observed that in animals deletion of metallochaperones results in elevated intracellular Cu levels along with overexpression of the P1-type ATPase efflux pump, ultimately causing malformation with high mortality. These observations are mechanistically explained by a predictive model of the Cu circuit in Halobacterium salinarum, which serves as an excellent model system for Cu trafficking and regulation in organisms with multiple chaperones. Constructed through iterative modeling and experimentation, this model accurately recapitulates known dynamical properties of the Cu circuit and predicts that intracellular Cu-buffering emerges as a consequence of the interplay of paralogous metallochaperones that traffic and allocate Cu to distinct targets.
doi:10.1371/journal.pcbi.1002880
PMCID: PMC3551603  PMID: 23349626
15.  Recombinogenic Properties of Pyrococcus furiosus Strain COM1 Enable Rapid Selection of Targeted Mutants 
Applied and Environmental Microbiology  2012;78(13):4669-4676.
We recently reported the isolation of a mutant of Pyrococcus furiosus, COM1, that is naturally and efficiently competent for DNA uptake. While we do not know the exact nature of this mutation, the combined transformation and recombination frequencies of this strain allow marker replacement by direct selection using linear DNA. In testing the limits of its recombination efficiency, we discovered that marker replacement was possible with as few as 40 nucleotides of flanking homology to the target region. We utilized this ability to design a strategy for selection of constructed deletions using PCR products with subsequent excision, or “pop-out,” of the selected marker. We used this method to construct a “markerless” deletion of the trpAB locus in the GLW101 (COM1 ΔpyrF) background to generate a strain (JFW02) that is a tight tryptophan auxotroph, providing a genetic background with two auxotrophic markers for further strain construction. The utility of trpAB as a selectable marker was demonstrated using prototrophic selection of plasmids and genomic DNA containing the wild-type trpAB alleles. A deletion of radB was also constructed that, surprisingly, had no obvious effect on either recombination or transformation, suggesting that its gene product is not involved in the COM1 phenotype. Attempts to construct a radA deletion mutation were unsuccessful, suggesting that this may be an essential gene. The ease and speed of this procedure will facilitate the construction of strains with multiple genetic changes and allow the construction of mutants with deletions of virtually any nonessential gene.
doi:10.1128/AEM.00936-12
PMCID: PMC3370475  PMID: 22544252
16.  Dynamics of the [4Fe-4S] Cluster in Pyrococcus furiosus D14C Ferredoxin via Nuclear Resonance Vibrational and Resonance Raman Spectroscopies, Force Field Simulations, and Density Functional Theory Calculations 
Biochemistry  2011;50(23):5220-5235.
We have used 57Fe nuclear resonance vibrational spectroscopy (NRVS) to study oxidized and reduced forms of the [4Fe-4S] cluster in the D14C variant ferredoxin from Pyrococcus furiosus (Pf D14C Fd). To assist the normal mode assignments, we recorded the NRVS of D14C ferredoxin samples with 36S substituted into the [4Fe-4S] cluster bridging sulfide positions, and a model compound without ligand side chains: (Ph4P)2[Fe4S4Cl4]. Several distinct regions of NRVS intensity are identified, ranging from `protein' and torsional modes below 100 cm−1, through bending and breathing modes near 150 cm−1, to strong bands from Fe-S stretching modes between 250 cm−1 and ~400 cm−1. The oxidized ferredoxin samples were also investigated by resonance Raman (RR) spectroscopy. We found good agreement between NRVS and RR frequencies, but because of different selection rules, the intensities vary dramatically between the two types of spectra.
The 57Fe partial vibrational densities of states (PVDOS) for the oxidized samples were interpreted by normal mode analysis with optimization of Urey-Bradley force fields for local models of the [4Fe-4S] clusters. Full protein model calculations were also conducted using a supplemented CHARMM force field, and these calculations revealed low frequency modes that may be relevant to electron transfer with Pf Fd partners. Density functional theory (DFT) calculations complemented these empirical analyses, and DFT was used to estimate the reorganization energy associated with the [Fe4S4]2+/1+ redox cycle. Overall, the NRVS technique demonstrates great promise for the observation and quantitative interpretation of the dynamical properties of Fe-S proteins.
doi:10.1021/bi200046p
PMCID: PMC3129499  PMID: 21500788
ferredoxin; Pyrococcus furiosus; 57Fe; nuclear resonance vibrational spectroscopy; NRVS; density functional theory; DFT; Mössbauer; synchrotron radiation; resonance Raman; normal mode
17.  Deletion Strains Reveal Metabolic Roles for Key Elemental Sulfur-Responsive Proteins in Pyrococcus furiosus▿† 
Journal of Bacteriology  2011;193(23):6498-6504.
Transcriptional and enzymatic analyses of Pyrococcus furiosus previously indicated that three proteins play key roles in the metabolism of elemental sulfur (S0): a membrane-bound oxidoreductase complex (MBX), a cytoplasmic coenzyme A-dependent NADPH sulfur oxidoreductase (NSR), and sulfur-induced protein A (SipA). Deletion strains, referred to as MBX1, NSR1, and SIP1, respectively, have now been constructed by homologous recombination utilizing the uracil auxotrophic COM1 parent strain (ΔpyrF). The growth of all three mutants on maltose was comparable without S0, but in its presence, the growth of MBX1 was greatly impaired while the growth of NSR1 and SIP1 was largely unaffected. In the presence of S0, MBX1 produced little, if any, sulfide but much more acetate (per unit of protein) than the parent strain, demonstrating that MBX plays a critical role in S0 reduction and energy conservation. In contrast, comparable amounts of sulfide and acetate were produced by NSR1 and the parent strain, indicating that NSR is not essential for energy conservation during S0 reduction. Differences in transcriptional responses to S0 in NSR1 suggest that two sulfide dehydrogenase isoenzymes provide a compensatory NADPH-dependent S0 reduction system. Genes controlled by the S0-responsive regulator SurR were not as highly regulated in MBX1 and NSR1. SIP1 produced the same amount of acetate but more sulfide than the parent strain. That SipA is not essential for growth on S0 indicates that it is not required for detoxification of metal sulfides, as previously suggested. A model is proposed for S0 reduction by P. furiosus with roles for MBX and NSR in bioenergetics and for SipA in iron-sulfur metabolism.
doi:10.1128/JB.05445-11
PMCID: PMC3232869  PMID: 21965560
18.  Defining Components of the Chromosomal Origin of Replication of the Hyperthermophilic Archaeon Pyrococcus furiosus Needed for Construction of a Stable Replicating Shuttle Vector ▿ †  
Applied and Environmental Microbiology  2011;77(18):6343-6349.
We report the construction of a series of replicating shuttle vectors that consist of a low-copy-number cloning vector for Escherichia coli and functional components of the origin of replication (oriC) of the chromosome of the hyperthermophilic archaeon Pyrococcus furiosus. In the process of identifying the minimum replication origin sequence required for autonomous plasmid replication in P. furiosus, we discovered that several features of the origin predicted by bioinformatic analysis and in vitro binding studies were not essential for stable autonomous plasmid replication. A minimum region required to promote plasmid DNA replication was identified, and plasmids based on this sequence readily transformed P. furiosus. The plasmids replicated autonomously and existed in a single copy. In contrast to shuttle vectors based on a plasmid from the closely related hyperthermophile Pyrococcus abyssi for use in P. furiosus, plasmids based on the P. furiosus chromosomal origin were structurally unchanged after transformation and were stable without selection for more than 100 generations.
doi:10.1128/AEM.05057-11
PMCID: PMC3187180  PMID: 21784908
19.  Homologous Expression of a Subcomplex of Pyrococcus furiosus Hydrogenase that Interacts with Pyruvate Ferredoxin Oxidoreductase 
PLoS ONE  2011;6(10):e26569.
Hydrogen gas is an attractive alternative fuel as it is carbon neutral and has higher energy content per unit mass than fossil fuels. The biological enzyme responsible for utilizing molecular hydrogen is hydrogenase, a heteromeric metalloenzyme requiring a complex maturation process to assemble its O2-sensitive dinuclear-catalytic site containing nickel and iron atoms. To facilitate their utility in applied processes, it is essential that tools are available to engineer hydrogenases to tailor catalytic activity and electron carrier specificity, and decrease oxygen sensitivity using standard molecular biology techniques. As a model system we are using hydrogen-producing Pyrococcus furiosus, which grows optimally at 100°C. We have taken advantage of a recently developed genetic system that allows markerless chromosomal integrations via homologous recombination. We have combined a new gene marker system with a highly-expressed constitutive promoter to enable high-level homologous expression of an engineered form of the cytoplasmic NADP-dependent hydrogenase (SHI) of P. furiosus. In a step towards obtaining ‘minimal’ hydrogenases, we have successfully produced the heterodimeric form of SHI that contains only two of the four subunits found in the native heterotetrameric enzyme. The heterodimeric form is highly active (150 units mg−1 in H2 production using the artificial electron donor methyl viologen) and thermostable (t1/2 ∼0.5 hour at 90°C). Moreover, the heterodimer does not use NADPH and instead can directly utilize reductant supplied by pyruvate ferredoxin oxidoreductase from P. furiosus. The SHI heterodimer and POR therefore represent a two-enzyme system that oxidizes pyruvate and produces H2 in vitro without the need for an intermediate electron carrier.
doi:10.1371/journal.pone.0026569
PMCID: PMC3200332  PMID: 22039508
20.  Natural Competence in the Hyperthermophilic Archaeon Pyrococcus furiosus Facilitates Genetic Manipulation: Construction of Markerless Deletions of Genes Encoding the Two Cytoplasmic Hydrogenases ▿ †  
In attempts to develop a method of introducing DNA into Pyrococcus furiosus, we discovered a variant within the wild-type population that is naturally and efficiently competent for DNA uptake. A pyrF gene deletion mutant was constructed in the genome, and the combined transformation and recombination frequencies of this strain allowed marker replacement by direct selection using linear DNA. We have demonstrated the use of this strain, designated COM1, for genetic manipulation. Using genetic selections and counterselections based on uracil biosynthesis, we generated single- and double-deletion mutants of the two gene clusters that encode the two cytoplasmic hydrogenases. The COM1 strain will provide the basis for the development of more sophisticated genetic tools allowing the study and metabolic engineering of this important hyperthermophile.
doi:10.1128/AEM.02624-10
PMCID: PMC3067412  PMID: 21317259
21.  SurR regulates hydrogen production in Pyrococcus furiosus by a sulfur-dependent redox switch 
Molecular microbiology  2010;77(5):1111-1122.
SUMMARY
We present structural and biochemical evidence for a redox switch in the archaeal transcriptional regulator SurR of Pyrococcus furiosus, a hyperthermophilic anaerobe. P. furiosus produces H2 during fermentation, but undergoes a metabolic shift to produce H2S when elemental sulfur (S0) becomes available. Changes in gene expression occur within minutes of S0 addition, and the majority of these S0-responsive genes are regulatory targets of SurR, a key regulator involved in primary S0 response. SurR was shown in vitro to have dual functionality, activating transcription of some of these genes, notably the hydrogenase operons, and repressing others, including a gene encoding sulfur reductase. This work demonstrates via biochemical and structural evidence that the activity of SurR is modulated by cysteine residues in a CxxC motif that constitute a redox switch. Oxidation of the switch with S0 inhibits sequence-specific DNA binding by SurR, leading to deactivation of genes related to H2 production and derepression of genes involved in S0 metabolism.
doi:10.1111/j.1365-2958.2010.07275.x
PMCID: PMC2975895  PMID: 20598080
SurR; Pyrococcus furiosus; regulatory transcription factor; elemental sulfur response; hydrogen production; redox switch
22.  Complete Genome Sequences for the Anaerobic, Extremely Thermophilic Plant Biomass-Degrading Bacteria Caldicellulosiruptor hydrothermalis, Caldicellulosiruptor kristjanssonii, Caldicellulosiruptor kronotskyensis, Caldicellulosiruptor owensensis, and Caldicellulosiruptor lactoaceticus▿  
Journal of Bacteriology  2011;193(6):1483-1484.
The genus Caldicellulosiruptor contains the most thermophilic, plant biomass-degrading bacteria isolated to date. Previously, genome sequences from three cellulolytic members of this genus were reported (C. saccharolyticus, C. bescii, and C. obsidiansis). To further explore the physiological and biochemical basis for polysaccharide degradation within this genus, five additional genomes were sequenced: C. hydrothermalis, C. kristjanssonii, C. kronotskyensis, C. lactoaceticus, and C. owensensis. Taken together, the seven completed and one draft-phase Caldicellulosiruptor genomes suggest that, while central metabolism is highly conserved, significant differences in glycoside hydrolase inventories and numbers of carbohydrate transporters exist, a finding which likely relates to variability observed in plant biomass degradation capacity.
doi:10.1128/JB.01515-10
PMCID: PMC3067630  PMID: 21216991
24.  Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS) 
Nature methods  2009;6(8):606-612.
We present an efficient pipeline enabling high-throughput analysis of protein structure in solution with small angle X-ray scattering (SAXS). Our SAXS pipeline combines automated sample handling of microliter volumes, temperature and anaerobic control, rapid data collection, data analysis, and couples structural analysis with automated archiving. We subjected 50 representative proteins, mostly from Pyrococcus furiosus, to this pipeline, revealing that 30 were multimeric structures in solution. SAXS analysis allowed us to distinguish aggregated and unfolded proteins, define global structural parameters and oligomeric states for most samples, identify shapes and similar structures for 25 unknown structures, and determine envelopes for 41 proteins. We believe that high throughput SAXS is an enabling technology that may change the way that structural genomics research is done.
doi:10.1038/nmeth.1353
PMCID: PMC3094553  PMID: 19620974
25.  The Elemental Sulfur-Responsive Protein (SipA) from the Hyperthermophilic Archaeon Pyrococcus furiosus Is Regulated by Sulfide in an Iron-Dependent Manner ▿  
Journal of Bacteriology  2010;192(21):5841-5843.
The gene (sipA) encoding the sulfur-induced protein A (PF2025) is highly upregulated during growth of Pyrococcus furiosus on elemental sulfur (S0). Expression of sipA is regulated by sulfide, the product of S0 reduction, but in an iron-dependent manner. SipA is proposed to play a role in intracellular iron sulfide detoxification.
doi:10.1128/JB.00660-10
PMCID: PMC2953673  PMID: 20802041

Results 1-25 (66)