PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Accuracy of Motor Axon Regeneration Across Autograft, Single Lumen, and Multichannel Poly(lactic-co-glycolic Acid) (PLGA) Nerve Tubes 
Neurosurgery  2008;63(1):144-155.
Objective
Accuracy of motor axon regeneration becomes an important issue in the development of a nerve tube for motor nerve repair. Dispersion of regeneration across the nerve tube may lead to misdirection and polyinnervation. In this study, we present a series of methods to investigate the accuracy of regeneration, which we used to compare regeneration across autografts and single lumen poly(lactic-co-glycolic acid) (PLGA) nerve tubes. We also present the concept of the multichannel nerve tube that may limit dispersion by separately guiding groups of regenerating axons.
Methods
Simultaneous tracing of the tibial and peroneal nerves with fast blue (FB) and diamidino yellow (DY), 8 weeks after repair of a 1-cm nerve gap in the rat sciatic nerve, was performed to determine the percentage of double-projecting motoneurons. Sequential tracing of the peroneal nerve with DY 1 week before and FB 8 weeks after repair was performed to determine the percentage of correctly directed peroneal motoneurons.
Results
In the cases in which there was successful regeneration across single lumen nerve tubes, more motoneurons had double projections to both the tibial and peroneal nerve branches after single lumen nerve tube repair (21.4%) than after autograft repair (5.9%). After multichannel nerve tube repair, this percentage was slightly reduced (16.9%), although not significantly. The direction of regeneration was nonspecific after all types of repair.
Conclusion
Retrograde tracing techniques provide new insights into the process of regeneration across nerve tubes. The methods and data presented in this study can be used as a basis in the development of a nerve tube for motor nerve repair.
doi:10.1227/01.NEU.0000335081.47352.78
PMCID: PMC3463233  PMID: 18728579
misdirection; axon targeting; double labeling; peripheral nerve regeneration; rat sciatic nerve model; retrograde tracing
2.  Designing ideal conduits for peripheral nerve repair 
Neurosurgical focus  2009;26(2):E5.
Nerve tubes, guides, or conduits are a promising alternative for autologous nerve graft repair. The first biodegradable empty single lumen or hollow nerve tubes are currently available for clinical use and are being used mostly in the repair of small-diameter nerves with nerve defects of < 3 cm. These nerve tubes are made of different biomaterials using various fabrication techniques. As a result these tubes also differ in physical properties. In addition, several modifications to the common hollow nerve tube (for example, the addition of Schwann cells, growth factors, and internal frameworks) are being investigated that may increase the gap that can be bridged. This combination of chemical, physical, and biological factors has made the design of a nerve conduit into a complex process that demands close collaboration of bioengineers, neuroscientists, and peripheral nerve surgeons. In this article the authors discuss the different steps that are involved in the process of the design of an ideal nerve conduit for peripheral nerve repair.
doi:10.3171/FOC.2009.26.2.E5
PMCID: PMC2978041  PMID: 19435445
biomaterial; growth factor; nerve conduit; nerve guide; nerve tube; polymer; Schwann cell
3.  Misdirection of regenerating motor axons after nerve injury and repair in the rat sciatic nerve model 
Experimental neurology  2008;211(2):339-350.
Misdirection of regenerating axons is one of the factors that can explain the poor results often found after nerve injury and repair. In this study, we quantified the degree of misdirection and the effect on recovery of function after different types of nerve injury and repair in the rat sciatic nerve model; crush injury, direct coaptation, and autograft repair. Sequential tracing with retrograde labeling of the peroneal nerve before and 8 weeks after nerve injury and repair was performed to quantify the accuracy of motor axon regeneration. Digital video analysis of ankle motion was used to investigate the recovery of function. In addition, serial compound action potential recordings and nerve and muscle morphometry were performed. In our study, accuracy of motor axon regeneration was found to be limited; only 71% (±4.9%) of the peroneal motoneurons were correctly directed 2 months after sciatic crush injury, 42% (±4.2%) after direct coaptation, and 25% (±6.6%) after autograft repair. Recovery of ankle motion was incomplete after all types of nerve injury and repair and demonstrated a disturbed balance of ankle plantar and dorsiflexion. The number of motoneurons from which axons had regenerated was not significantly different from normal. The number of myelinated axons was significantly increased distal to the site of injury. Misdirection of regenerating motor axons is a major factor in the poor recovery of nerves that innervate different muscles. The results of this study can be used as basis for developing new nerve repair techniques that may improve the accuracy of regeneration.
doi:10.1016/j.expneurol.2007.12.023
PMCID: PMC2967197  PMID: 18448099
Aberrant reinnervation; Accuracy of regeneration; Ankle motion analysis; Double labeling; Sequential retrograde tracing
4.  Axon Regeneration through Scaffold into Distal Spinal Cord after Transection 
Journal of Neurotrauma  2009;26(10):1759-1771.
Abstract
We employed Fast Blue (FB) axonal tracing to determine the origin of regenerating axons after thoracic spinal cord transection injury in rats. Schwann cell (SC)-loaded, biodegradable, poly(lactic-co-glycolic acid) (PLGA) scaffolds were implanted after transection. Scaffolds loaded with solubilized basement membrane preparation (without SCs) were used for negative controls, and nontransected cords were positive controls. One or 2 months after injury and scaffold implantation, FB was injected 0–15 mm caudal or about 5 mm rostral to the scaffold. One week later, tissue was harvested and the scaffold and cord sectioned longitudinally (30 μm) on a cryostat. Trans-scaffold labeling of neuron cell bodies was identified with confocal microscopy in all cell-transplanted groups. Large (30–50 μm diameter) neuron cell bodies were predominantly labeled in the ventral horn region. Most labeled neurons were seen 1–10 mm rostral to the scaffold, although some neurons were also labeled in the cervical cord. Axonal growth occurred bidirectionally after cord transection, and axons regenerated up to 14 mm beyond the PLGA scaffolds and into distal cord. The extent of FB labeling was negatively correlated with distance from the injection site to the scaffold. Electron microscopy showed myelinated axons in the transverse sections of the implanted scaffold 2 months after implantation. The pattern of myelination, with extracellular collagen and basal lamina, was characteristic of SC myelination. Our results show that FB labeling is an effective way to measure the origin of regenerating axons.
doi:10.1089/neu.2008.0610
PMCID: PMC2763055  PMID: 19413501
axonal tracing; biodegradable polymers; Fast Blue; Schwann cells; spinal cord injury
5.  Axon Regeneration through Scaffold into Distal Spinal Cord after Transection 
Journal of neurotrauma  2009;26(10):1759-1771.
We employed Fast Blue (FB) axonal tracing to determine the origin of regenerating axons after thoracic spinal cord transection injury in rats. Schwann cell (SC)-loaded, biodegradable, poly(lactic-co-glycolic acid) (PLGA) scaffolds were implanted after transection. Scaffolds loaded with solubilized basement membrane preparation (without SCs) were used for negative controls, and nontransected cords were positive controls. One or 2 months after injury and scaffold implantation, FB was injected 0–15 mm caudal or about 5 mm rostral to the scaffold. One week later, tissue was harvested and the scaffold and cord sectioned longitudinally (30 μm) on a cryostat. Trans-scaffold labeling of neuron cell bodies was identified with confocal microscopy in all cell-transplanted groups. Large (30–50 μm diameter) neuron cell bodies were predominantly labeled in the ventral horn region. Most labeled neurons were seen 1–10 mm rostral to the scaffold, although some neurons were also labeled in the cervical cord. Axonal growth occurred bidirectionally after cord transection, and axons regenerated up to 14 mm beyond the PLGA scaffolds and into distal cord. The extent of FB labeling was negatively correlated with distance from the injection site to the scaffold. Electron microscopy showed myelinated axons in the transverse sections of the implanted scaffold 2 months after implantation. The pattern of myelination, with extracellular collagen and basal lamina, was characteristic of SC myelination. Our results show that FB labeling is an effective way to measure the origin of regenerating axons.
doi:10.1089/neu.2008-0610
PMCID: PMC2763055  PMID: 19413501
axonal tracing; biodegradable polymers; Fast Blue; Schwann cells; spinal cord injury

Results 1-5 (5)