PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Importance of the vasculature in cyst formation after spinal cord injury 
Journal of neurosurgery. Spine  2009;11(4):432-437.
Object
Glial scar and cystic formation greatly contribute to the inhibition of axonal regeneration after spinal cord injury (SCI). Attempts to promote axonal regeneration are extremely challenging in this type of hostile environment. The objective of this study was to examine the surgical methods that may be used to assess the factors that influence the level of scar and cystic formation in SCI.
Methods
In the first part of this study, a complete transection was performed at vertebral level T9–10 in adult female Sprague-Dawley rats. The dura mater was either left open (control group) or was closed using sutures or hyaluronic acid. In the second part of the study, complete or subpial transection was performed, with the same dural closure technique applied to both groups. Histological analysis of longitudinal sections of the spinal cord was performed, and the percentage of scar and cyst formation was determined.
Results
Dural closure using sutures resulted in significantly less glial scar formation (p = 0.0248), while incorporation of the subpial transection surgical technique was then shown to significantly decrease cyst formation (p < 0.0001).
Conclusions
In this study, the authors demonstrated the importance of the vasculature in cyst formation after spinal cord trauma and confirmed the importance of dural closure in reducing glial scar formation.
doi:10.3171/2009.4.SPINE08784
PMCID: PMC2981802  PMID: 19929340
traumatic spinal cord injury; vascular injury; glial cell response to injury
2.  Rigid Fixation of the Spinal Column Improves Scaffold Alignment and Prevents Scoliosis in the Transected Rat Spinal Cord 
Spine  2008;33(24):E914-E919.
Study Design
A controlled study to evaluate a new technique for spinal rod fixation after spinal cord injury in rats. Alignment of implanted tissue-engineered scaffolds was assessed radiographically and by magnetic resonance imaging.
Objective
To evaluate the stability of implanted scaffolds and the extent of kyphoscoliotic deformities after spinal fixation.
Summary of Background Data
Biodegradable scaffolds provide an excellent platform for the quantitative assessment of cellular and molecular factors that promote regeneration within the transected cord. Successful delivery of scaffolds to the damaged cord can be hampered by malalignment following transplantation, which in turn, hinders the assessment of neural regeneration.
Methods
Radio-opaque barium sulfate-impregnated poly-lactic-co-glycolic acid scaffolds were implanted into spinal transection injuries in adult rats. Spinal fixation was performed in one group of animals using a metal rod fixed to the spinous processes above and below the site of injury, while the control group received no fixation. Radiographic morphometry was performed after 2 and 4 weeks, and 3-dimensional magnetic resonance microscopy analysis 4 weeks after surgery.
Results
Over the course of 4 weeks, progressive scoliosis was evident in the unfixed group, where a Cobb angle of 8.13 ± 2.03° was measured. The fixed group demonstrated significantly less scoliosis, with a Cobb angle measurement of 1.89 ± 0.75° (P = 0.0004). Similarly, a trend for less kyphosis was evident in the fixed group (7.33 ± 1.68°) compared with the unfixed group (10.13 ± 1.46°). Quantitative measurements of the degree of malalignment of the scaffolds were also significantly less in the fixed group (5 ± 1.23°) compared with the unfixed group (11 ± 2.82°) (P = 0.0143).
Conclusion
Radio-opaque barium sulfate allows for visualization of scaffolds in vivo using radiographic analysis. Spinal fixation was shown to prevent scoliosis, reduce kyphosis, and reduce scaffold malalignment within the transected rat spinal cord. Using a highly optimized model will increase the potential for finding a therapy for restoring function to the injured cord.
doi:10.1097/BRS.0b013e318186b2b1
PMCID: PMC2773001  PMID: 19011531
spine fixation; transection spinal cord injury; scaffold; scoliosis

Results 1-2 (2)