Search tips
Search criteria

Results 1-21 (21)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
1.  Accuracy of Motor Axon Regeneration Across Autograft, Single Lumen, and Multichannel Poly(lactic-co-glycolic Acid) (PLGA) Nerve Tubes 
Neurosurgery  2008;63(1):144-155.
Accuracy of motor axon regeneration becomes an important issue in the development of a nerve tube for motor nerve repair. Dispersion of regeneration across the nerve tube may lead to misdirection and polyinnervation. In this study, we present a series of methods to investigate the accuracy of regeneration, which we used to compare regeneration across autografts and single lumen poly(lactic-co-glycolic acid) (PLGA) nerve tubes. We also present the concept of the multichannel nerve tube that may limit dispersion by separately guiding groups of regenerating axons.
Simultaneous tracing of the tibial and peroneal nerves with fast blue (FB) and diamidino yellow (DY), 8 weeks after repair of a 1-cm nerve gap in the rat sciatic nerve, was performed to determine the percentage of double-projecting motoneurons. Sequential tracing of the peroneal nerve with DY 1 week before and FB 8 weeks after repair was performed to determine the percentage of correctly directed peroneal motoneurons.
In the cases in which there was successful regeneration across single lumen nerve tubes, more motoneurons had double projections to both the tibial and peroneal nerve branches after single lumen nerve tube repair (21.4%) than after autograft repair (5.9%). After multichannel nerve tube repair, this percentage was slightly reduced (16.9%), although not significantly. The direction of regeneration was nonspecific after all types of repair.
Retrograde tracing techniques provide new insights into the process of regeneration across nerve tubes. The methods and data presented in this study can be used as a basis in the development of a nerve tube for motor nerve repair.
PMCID: PMC3463233  PMID: 18728579
misdirection; axon targeting; double labeling; peripheral nerve regeneration; rat sciatic nerve model; retrograde tracing
2.  Relationship between Scaffold Channel Diameter and Number of Regenerating Axons in the Transected Rat Spinal Cord 
Acta biomaterialia  2009;5(7):2551-2559.
Regeneration of endogenous axons through a Schwann cell (SC)-seeded scaffold implant has been demonstrated in the transected rat spinal cord. The formation of a cellular lining in the scaffold channel may limit the degree of axonal regeneration. Spinal cords of adult rats were transected and implanted with the SC-loaded polylactic co-glycollic acid (PLGA) scaffold implants containing seven parallel-aligned channels, either 450-μm (n=19) or 660-μm in diameter (n=14). Animals were sacrificed after 1, 2, and 3 months. Immunohistochemistry for neurofilament-expression was performed. The cross-sectional area of fibrous tissue and regenerative core was calculated. We found that the 450-μm scaffolds had significantly greater axon fibers per channel at the one month (186 ± 37) and three month (78 ± 11) endpoints than the 660-μm scaffolds (90 ± 19 and 40 ± 6, respectively) (P=0.0164 & 0.0149, respectively). The difference in the area of fibrous rim between the 450-μm and 660-μm channels was most pronounced at the one month endpoint, at 28,046 μm2 ± 6,551 and 58,633 μm2 ± 7,063, respectively (P=0.0105). Our study suggests that fabricating scaffolds with smaller diameter channels promotes greater regeneration over larger diameter channels. Axonal regeneration was reduced in the larger channels due to the generation of a large fibrous rim. Optimization of this scaffold environment establishes a platform for future studies of the effects of cell types, trophic factors or pharmacological agents on the regenerative capacity of the injured spinal cord.
PMCID: PMC2731813  PMID: 19409869
Biomedical Engineering; Tissue Development and Growth; Central Nervous System; Polymeric Scaffolds
4.  Ontogenetic changes in skeletal muscle fiber type, fiber diameter and myoglobin concentration in the Northern elephant seal (Mirounga angustirostris) 
Northern elephant seals (Mirounga angustirostris) (NES) are known to be deep, long-duration divers and to sustain long-repeated patterns of breath-hold, or apnea. Some phocid dives remain within the bounds of aerobic metabolism, accompanied by physiological responses inducing lung compression, bradycardia, and peripheral vasoconstriction. Current data suggest an absence of type IIb fibers in pinniped locomotory musculature. To date, no fiber type data exist for NES, a consummate deep diver. In this study, NES were biopsied in the wild. Ontogenetic changes in skeletal muscle were revealed through succinate dehydrogenase (SDH) based fiber typing. Results indicated a predominance of uniformly shaped, large type I fibers and elevated myoglobin (Mb) concentrations in the longissimus dorsi (LD) muscle of adults. No type II muscle fibers were detected in any adult sampled. This was in contrast to the juvenile animals that demonstrated type II myosin in Western Blot analysis, indicative of an ontogenetic change in skeletal muscle with maturation. These data support previous hypotheses that the absence of type II fibers indicates reliance on aerobic metabolism during dives, as well as a depressed metabolic rate and low energy locomotion. We also suggest that the lack of type IIb fibers (adults) may provide a protection against ischemia reperfusion (IR) injury in vasoconstricted peripheral skeletal muscle.
PMCID: PMC4050301  PMID: 24959151
elephant seal; fiber typing; myoglobin; diving; ischemia reperfusion injury
5.  Structural and molecular micropatterning of dual hydrogel constructs for neural growth models using photochemical strategies 
Biomedical microdevices  2013;15(1):49-61.
Chemotactic and haptotactic cues guide neurite growth toward appropriate targets by eliciting attractive or repulsive responses from the neurite growth cones. Here we present an integrated system allowing both structural and molecular micropatterning in dual hydrogel 3D tissue culture constructs for directing in vitro neuronal growth via structural, immobilized, and soluble guidance cues. These tissue culture constructs were fabricated into specifiable geometries using UV light reflected from a digital micromirror device acting as a dynamic photomask, resulting in dual hydrogel constructs consisting of a cell growth-restrictive polyethylene glycol (PEG) boundary with a cell growth-permissive interior of photolabile α-carboxy-2-nitrobenzyl cysteine agarose (CNBC-A). This CNBC-A was irradiated in discrete areas and subsequently tagged with maleimide-conjugated biomolecules. Fluorescent microscopy showed biomolecule binding only at the sites of irradiation in CNBC-A, and confocal microscopy confirmed 3D binding through the depth of the construct. Neurite outgrowth studies showed contained growth throughout CNBC-A. The diffusion rate of soluble fluorescein-bovine serum albumin through the dual hydrogel construct was controlled by PEG concentration and the distance between the protein source and the agarose interior; the timescale for a transient protein gradient changed with these parameters. These findings suggest the dual hydrogel system is a usefulplatform for manipulating a 3D in vitro microenvironment with patterned structural and molecular guidance cues for modeling neural growth and guidance.
PMCID: PMC3753039  PMID: 22903647
digital micromirror device; photolithography; nerve guidance; 3D; polyethylene glycol
6.  A long PCR–based approach for DNA enrichment prior to next-generation sequencing for systematic studies1 
Applications in Plant Sciences  2014;2(1):apps.1300063.
• Premise of the study: We present an alternative approach for molecular systematic studies that combines long PCR and next-generation sequencing. Our approach can be used to generate templates from any DNA source for next-generation sequencing. Here we test our approach by amplifying complete chloroplast genomes, and we present a set of 58 potentially universal primers for angiosperms to do so. Additionally, this approach is likely to be particularly useful for nuclear and mitochondrial regions.
• Methods and Results: Chloroplast genomes of 30 species across angiosperms were amplified to test our approach. Amplification success varied depending on whether PCR conditions were optimized for a given taxon. To further test our approach, some amplicons were sequenced on an Illumina HiSeq 2000.
• Conclusions: Although here we tested this approach by sequencing plastomes, long PCR amplicons could be generated using DNA from any genome, expanding the possibilities of this approach for molecular systematic studies.
PMCID: PMC4104715  PMID: 25202592
angiosperms; chloroplast enrichment; long PCR; next-generation sequencing; plastome; universal chloroplast PCR primers
7.  Compositional Discrimination of Decompression and Decomposition Gas Bubbles in Bycaught Seals and Dolphins 
PLoS ONE  2013;8(12):e83994.
Gas bubbles in marine mammals entangled and drowned in gillnets have been previously described by computed tomography, gross examination and histopathology. The absence of bacteria or autolytic changes in the tissues of those animals suggested that the gas was produced peri- or post-mortem by a fast decompression, probably by quickly hauling animals entangled in the net at depth to the surface. Gas composition analysis and gas scoring are two new diagnostic tools available to distinguish gas embolisms from putrefaction gases. With this goal, these methods have been successfully applied to pathological studies of marine mammals. In this study, we characterized the flux and composition of the gas bubbles from bycaught marine mammals in anchored sink gillnets and bottom otter trawls. We compared these data with marine mammals stranded on Cape Cod, MA, USA. Fresh animals or with moderate decomposition (decomposition scores of 2 and 3) were prioritized. Results showed that bycaught animals presented with significantly higher gas scores than stranded animals. Gas composition analyses indicate that gas was formed by decompression, confirming the decompression hypothesis.
PMCID: PMC3868626  PMID: 24367623
8.  Genomic identification of a novel co-trimoxazole resistance genotype and its prevalence amongst Streptococcus pneumoniae in Malawi 
This study aimed to define the molecular basis of co-trimoxazole resistance in Malawian pneumococci under the dual selective pressure of widespread co-trimoxazole and sulfadoxine/pyrimethamine use.
We measured the trimethoprim and sulfamethoxazole MICs and analysed folA and folP nucleotide and translated amino acid sequences for 143 pneumococci isolated from carriage and invasive disease in Malawi (2002–08).
Pneumococci were highly resistant to both trimethoprim and sulfamethoxazole (96%, 137/143). Sulfamethoxazole-resistant isolates showed a 3 or 6 bp insertion in the sulphonamide-binding site of folP. The trimethoprim-resistant isolates fell into three genotypic groups based on dihydrofolate reductase (encoded by folA) mutations: Ile-100-Leu (10%), the Ile-100-Leu substitution together with a residue 92 substitution (56%) and those with a novel uncharacterized resistance genotype (34%). The nucleotide sequence divergence and dN/dS of folA and folP remained stable from 2004 onwards.
S. pneumoniae exhibit almost universal co-trimoxazole resistance in vitro and in silico that we believe is driven by extensive co-trimoxazole and sulfadoxine/pyrimethamine use. More than one-third of pneumococci employ a novel mechanism of co-trimoxazole resistance. Resistance has now reached a point of stabilizing evolution. The use of co-trimoxazole to prevent pneumococcal infection in HIV/AIDS patients in sub-Saharan Africa should be re-evaluated.
PMCID: PMC3886935  PMID: 24080503
trimethoprim; sulfamethoxazole; pneumococcal disease; prophylaxis
9.  Complete Plastid Genome Sequencing of Trochodendraceae Reveals a Significant Expansion of the Inverted Repeat and Suggests a Paleogene Divergence between the Two Extant Species 
PLoS ONE  2013;8(4):e60429.
The early-diverging eudicot order Trochodendrales contains only two monospecific genera, Tetracentron and Trochodendron. Although an extensive fossil record indicates that the clade is perhaps 100 million years old and was widespread throughout the Northern Hemisphere during the Paleogene and Neogene, the two extant genera are both narrowly distributed in eastern Asia. Recent phylogenetic analyses strongly support a clade of Trochodendrales, Buxales, and Gunneridae (core eudicots), but complete plastome analyses do not resolve the relationships among these groups with strong support. However, plastid phylogenomic analyses have not included data for Tetracentron. To better resolve basal eudicot relationships and to clarify when the two extant genera of Trochodendrales diverged, we sequenced the complete plastid genome of Tetracentron sinense using Illumina technology. The Tetracentron and Trochodendron plastomes possess the typical gene content and arrangement that characterize most angiosperm plastid genomes, but both genomes have the same unusual ∼4 kb expansion of the inverted repeat region to include five genes (rpl22, rps3, rpl16, rpl14, and rps8) that are normally found in the large single-copy region. Maximum likelihood analyses of an 83-gene, 88 taxon angiosperm data set yield an identical tree topology as previous plastid-based trees, and moderately support the sister relationship between Buxaceae and Gunneridae. Molecular dating analyses suggest that Tetracentron and Trochodendron diverged between 44-30 million years ago, which is congruent with the fossil record of Trochodendrales and with previous estimates of the divergence time of these two taxa. We also characterize 154 simple sequence repeat loci from the Tetracentron sinense and Trochodendron aralioides plastomes that will be useful in future studies of population genetic structure for these relict species, both of which are of conservation concern.
PMCID: PMC3618518  PMID: 23577110
10.  Fabrication of Micropatterned Hydrogels for Neural Culture Systems using Dynamic Mask Projection Photolithography 
Increasingly, patterned cell culture environments are becoming a relevant technique to study cellular characteristics, and many researchers believe in the need for 3D environments to represent in vitro experiments which better mimic in vivo qualities 1-3. Studies in fields such as cancer research 4, neural engineering 5, cardiac physiology 6, and cell-matrix interaction7,8have shown cell behavior differs substantially between traditional monolayer cultures and 3D constructs.
Hydrogels are used as 3D environments because of their variety, versatility and ability to tailor molecular composition through functionalization 9-12. Numerous techniques exist for creation of constructs as cell-supportive matrices, including electrospinning13, elastomer stamps14, inkjet printing15, additive photopatterning16, static photomask projection-lithography17, and dynamic mask microstereolithography18. Unfortunately, these methods involve multiple production steps and/or equipment not readily adaptable to conventional cell and tissue culture methods. The technique employed in this protocol adapts the latter two methods, using a digital micromirror device (DMD) to create dynamic photomasks for crosslinking geometrically specific poly-(ethylene glycol) (PEG) hydrogels, induced through UV initiated free radical polymerization. The resulting "2.5D" structures provide a constrained 3D environment for neural growth. We employ a dual-hydrogel approach, where PEG serves as a cell-restrictive region supplying structure to an otherwise shapeless but cell-permissive self-assembling gel made from either Puramatrix or agarose. The process is a quick simple one step fabrication which is highly reproducible and easily adapted for use with conventional cell culture methods and substrates.
Whole tissue explants, such as embryonic dorsal root ganglia (DRG), can be incorporated into the dual hydrogel constructs for experimental assays such as neurite outgrowth. Additionally, dissociated cells can be encapsulated in the photocrosslinkable or self polymerizing hydrogel, or selectively adhered to the permeable support membrane using cell-restrictive photopatterning. Using the DMD, we created hydrogel constructs up to ~1mm thick, but thin film (<200 μm) PEG structures were limited by oxygen quenching of the free radical polymerization reaction. We subsequently developed a technique utilizing a layer of oil above the polymerization liquid which allowed thin PEG structure polymerization.
In this protocol, we describe the expeditious creation of 3D hydrogel systems for production of microfabricated neural cell and tissue cultures. The dual hydrogel constructs demonstrated herein represent versatile in vitro models that may prove useful for studies in neuroscience involving cell survival, migration, and/or neurite growth and guidance. Moreover, as the protocol can work for many types of hydrogels and cells, the potential applications are both varied and vast.
PMCID: PMC3197419  PMID: 21372777
11.  A targeted enrichment strategy for massively parallel sequencing of angiosperm plastid genomes1 
Applications in Plant Sciences  2013;1(2):apps.1200497.
• Premise of the study: We explored a targeted enrichment strategy to facilitate rapid and low-cost next-generation sequencing (NGS) of numerous complete plastid genomes from across the phylogenetic breadth of angiosperms.
• Methods and Results: A custom RNA probe set including the complete sequences of 22 previously sequenced eudicot plastomes was designed to facilitate hybridization-based targeted enrichment of eudicot plastid genomes. Using this probe set and an Agilent SureSelect targeted enrichment kit, we conducted an enrichment experiment including 24 angiosperms (22 eudicots, two monocots), which were subsequently sequenced on a single lane of the Illumina GAIIx with single-end, 100-bp reads. This approach yielded nearly complete to complete plastid genomes with exceptionally high coverage (mean coverage: 717×), even for the two monocots.
• Conclusions: Our enrichment experiment was highly successful even though many aspects of the capture process employed were suboptimal. Hence, significant improvements to this methodology are feasible. With this general approach and probe set, it should be possible to sequence more than 300 essentially complete plastid genomes in a single Illumina GAIIx lane (achieving ∼50× mean coverage). However, given the complications of pooling numerous samples for multiplex sequencing and the limited number of barcodes (e.g., 96) available in commercial kits, we recommend 96 samples as a current practical maximum for multiplex plastome sequencing. This high-throughput approach should facilitate large-scale plastid genome sequencing at any level of phylogenetic diversity in angiosperms.
PMCID: PMC4105372  PMID: 25202518
next-generation sequencing; phylogenomics; plastid genomes
13.  An Alternative Splicing Network Links Cell Cycle Control to Apoptosis 
Cell  2010;142(4):625-636.
Alternative splicing is a vast source of biological regulation and diversity that is misregulated in cancer and other diseases. To investigate global control of alternative splicing in human cells, we analyzed splicing of mRNAs encoding Bcl2-family apoptosis factors in a genome-wide siRNA screen. The screen identified many novel regulators of Bcl-x and Mcl1 splicing, notably an extensive network of cell cycle factors linked to aurora kinase A. Drugs or siRNAs that induce mitotic arrest promoted pro-apoptotic splicing of Bcl-x, Mcl1, and caspase-9, and altered splicing of other apoptotic transcripts. This response preceded mitotic arrest, indicating coordinated upregulation of pro-death splice variants that promotes apoptosis in arrested cells. These shifts corresponded to post-translational turnover of splicing regulator ASF/SF2, which directly binds and regulates these target mRNAs and globally regulates apoptosis. Broadly, our results reveal an alternative splicing network linking cell cycle control to apoptosis.
PMCID: PMC2924962  PMID: 20705336
14.  Catalytic and Immunochemical Detection of Hepatic and Extrahepatic Microsomal Cytochrome P450 1A1 (CYP1A1) in White-sided Dolphin (Lagenorhynchus acutus) 
We have characterized microsomal systems and measured the levels of microsomal cytochrome P450 1A1 (CYP1A1) and ethoxyresorufin-O-deethylase activity in multiple internal organs of male and female white-sided dolphin (Lagenorhynchus acutus) from the northwest Atlantic Ocean. Internal organs were sampled within 24 hours of death, sometimes in a period of hours, collection times which are significantly less than usually seen for marine mammals. Tissue autolysis, as assessed by histological analysis of liver, was minimal to none in all individuals. Total P420 did not correlate with time from death to sampling, suggesting that it is a poor indicator of P450 degradation in cetacean tissues where perfusion isn’t practical. The total hepatic microsomal P450 content, cytochrome b5 content, and NADPH-cytochrome c (P450) reductase (CPR) activity averaged 0.29 nmol mg−1, 0.12 nmol mg−1, and 238 nmol mg−1 min−1, respectively. Microsomal CPR activity in liver was higher than that in lung and kidney, and was higher than that reported in liver of most other cetacean species. Immunodetected CYP1A1 content was low in all organs, less than 3 pmoles CYP1A equivalents mg−1. EROD activity ranged from 9 – 376 pmoles mg−1 min−1 and was greater in liver than in other tissues. Hepatic microsomal EROD activity and CYP1A1 content did not correlate. However, hepatic EROD activity, but not CYP1A1 protein content, was well correlated with both total PCB and Σmono-ortho PCB concentrations in blubber. Length, as a proxy for age, did not correlate with hepatic EROD activity or CYP1A1 protein levels, and sex did not influence the relationship between EROD and contaminant concentrations. We cannot easily control for the extent of tissue degradation in cetacean studies nor do we have a complete history of these animals. Therefore, other factors such as degradation or hormonal state may have a role in the observed relationships. Yet, as in other mammals, hepatic tissues appear to be a major site of CYP1A1 expression and probably of biotransformation of CYP1A substrates in white-sided dolphin. The expression of an EROD catalyst in liver likely reflects induction by PCBs, but the P450 enzyme catalyzing hepatic EROD activity in these whales may not be CYP1A1.
PMCID: PMC2815115  PMID: 20005581
cytochrome P450 1A1; CYP1A1; white-sided dolphin; polychlorinated biphenyl; PCB
15.  Diagnostic accuracy and clinical utility of a simplified low cost method of counting CD4 cells with flow cytometry in Malawi: diagnostic accuracy study 
BMJ : British Medical Journal  2007;335(7612):190.
Objectives To assess the diagnostic accuracy and clinical utility of a simplified low cost method for measuring absolute and percentage CD4 counts with flow cytometry.
Design A CD4 counting method (Blantyre count) using a CD4 and CD45 antibody combination with reduced blood and reagent volumes. Diagnostic accuracy was assessed by measuring agreement of the index test with two other assays (TruCount and FACSCount). Clinical utility was investigated by comparing CD4 counts with the new assay with WHO clinical staging in patients with HIV.
Setting Research laboratories and antiretroviral therapy clinic at a medical school and large government hospital in southern Malawi.
Participants Assay comparisons were performed on consecutive blood samples sent for CD4 counting from 129 patients with HIV. Comparison of CD4 count with staging was conducted on 253 consecutive new patients attending the antiretroviral therapy clinic.
Main outcome measures Limits of agreement with 95% confidence intervals between index test and reference standards.
Results The limits of agreement for Blantyre count and TruCount were excellent (cell count −48.9 to 27.0 ×109/l for absolute counts in the CD4 range <400×109/l and −2.42% to 2.37% for CD4 percentage). The assay was affordable with reagent costs per test of $0.44 (£0.22, €0.33) for both absolute count and CD4 percentage, and $0.11 for CD4 percentage alone. Of 193 patients with clinical stage I or II disease, who were ineligible for antiretroviral therapy by clinical staging criteria, 73 (38%) had CD4 counts <200×109/l. By contrast, 12 (20%) of 60 patients with stage III or IV disease had CD4 counts >350×109/l.
Conclusions This simplified method of counting CD4 cells with flow cytometry has good agreement with established commercial assays, is affordable for routine clinical use in Africa, and could improve clinical decision making in patients with HIV.
PMCID: PMC1934500  PMID: 17638858
16.  Rapid and accurate pyrosequencing of angiosperm plastid genomes 
BMC Plant Biology  2006;6:17.
Plastid genome sequence information is vital to several disciplines in plant biology, including phylogenetics and molecular biology. The past five years have witnessed a dramatic increase in the number of completely sequenced plastid genomes, fuelled largely by advances in conventional Sanger sequencing technology. Here we report a further significant reduction in time and cost for plastid genome sequencing through the successful use of a newly available pyrosequencing platform, the Genome Sequencer 20 (GS 20) System (454 Life Sciences Corporation), to rapidly and accurately sequence the whole plastid genomes of the basal eudicot angiosperms Nandina domestica (Berberidaceae) and Platanus occidentalis (Platanaceae).
More than 99.75% of each plastid genome was simultaneously obtained during two GS 20 sequence runs, to an average depth of coverage of 24.6× in Nandina and 17.3× in Platanus. The Nandina and Platanus plastid genomes shared essentially identical gene complements and possessed the typical angiosperm plastid structure and gene arrangement. To assess the accuracy of the GS 20 sequence, over 45 kilobases of sequence were generated for each genome using conventional sequencing. Overall error rates of 0.043% and 0.031% were observed in GS 20 sequence for Nandina and Platanus, respectively. More than 97% of all observed errors were associated with homopolymer runs, with ~60% of all errors associated with homopolymer runs of 5 or more nucleotides and ~50% of all errors associated with regions of extensive homopolymer runs. No substitution errors were present in either genome. Error rates were generally higher in the single-copy and noncoding regions of both plastid genomes relative to the inverted repeat and coding regions.
Highly accurate and essentially complete sequence information was obtained for the Nandina and Platanus plastid genomes using the GS 20 System. More importantly, the high accuracy observed in the GS 20 plastid genome sequence was generated for a significant reduction in time and cost over traditional shotgun-based genome sequencing techniques, although with approximately half the coverage of previously reported GS 20 de novo genome sequence. The GS 20 should be broadly applicable to angiosperm plastid genome sequencing, and therefore promises to expand the scale of plant genetic and phylogenetic research dramatically.
PMCID: PMC1564139  PMID: 16934154
17.  Systemic Effects of Arctic Pollutants in Beluga Whales Indicated by CYP1A1 Expression 
Environmental Health Perspectives  2005;113(11):1594-1599.
Cytochrome P450 1A1 (CYP1A1) is induced by exposure to polycyclic aromatic hydrocarbons (PAHs) and planar halogenated aromatic hydrocarbons (PHAHs) such as non-ortho polychlorinated biphenyls (PCBs). In this study, we examined CYP1A1 protein expression immunohistochemically in multiple organs of beluga whales from two locations in the Arctic and from the St. Lawrence estuary. These beluga populations have some of the lowest (Arctic sites) and highest (St. Lawrence estuary) concentrations of PCBs in blubber of all cetaceans. Samples from these populations might be expected to have different contaminant-induced responses, reflecting their different exposure histories. The pattern and extent of CYP1A1 staining in whales from all three locations were similar to those seen in animal models in which CYP1A has been highly induced, indicating a high-level expression in these whales. CYP1A1 induction has been related to toxic effects of PHAHs or PAHs in some species. In St. Lawrence beluga, the high level of CYP1A1 expression coupled with high levels of contaminants (including CYP1A1 substrates, e.g., PAH procarcinogens potentially activated by CYP1A1) indicates that CYP1A1 could be involved in the development of neoplastic lesions seen in the St. Lawrence beluga population. The systemic high-level expression of CYP1A1 in Arctic beluga suggests that effects of PAHs or PHAHs may be expected in Arctic populations, as well. The high-level expression of CYP1A1 in the Arctic beluga suggests that this species is highly sensitive to CYP1A1 induction by aryl hydrocarbon receptor agonists.
PMCID: PMC1310924  PMID: 16263517
Arctic; beluga whale; CYP1A1; cytochrome P450 1A1; immunohistochemistry; St. Lawrence estuary
18.  Efficient Replication of Severe Acute Respiratory Syndrome Coronavirus in Mouse Cells Is Limited by Murine Angiotensin-Converting Enzyme 2 
Journal of Virology  2004;78(20):11429-11433.
Replication of viruses in species other than their natural hosts is frequently limited by entry and postentry barriers. The coronavirus that causes severe acute respiratory syndrome (SARS-CoV) utilizes the receptor angiotensin-converting enzyme 2 (ACE2) to infect cells. Here we compare human, mouse, and rat ACE2 molecules for their ability to serve as receptors for SARS-CoV. We found that, compared to human ACE2, murine ACE2 less efficiently bound the S1 domain of SARS-CoV and supported less-efficient S protein-mediated infection. Rat ACE2 was even less efficient, at near background levels for both activities. Murine 3T3 cells expressing human ACE2 supported SARS-CoV replication, whereas replication was less than 10% as efficient in the same cells expressing murine ACE2. These data imply that a mouse transgenically expressing human ACE2 may be a useful animal model of SARS.
PMCID: PMC521845  PMID: 15452268
19.  Retroviruses Pseudotyped with the Severe Acute Respiratory Syndrome Coronavirus Spike Protein Efficiently Infect Cells Expressing Angiotensin-Converting Enzyme 2 
Journal of Virology  2004;78(19):10628-10635.
Infection of receptor-bearing cells by coronaviruses is mediated by their spike (S) proteins. The coronavirus (SARS-CoV) that causes severe acute respiratory syndrome (SARS) infects cells expressing the receptor angiotensin-converting enzyme 2 (ACE2). Here we show that codon optimization of the SARS-CoV S-protein gene substantially enhanced S-protein expression. We also found that two retroviruses, simian immunodeficiency virus (SIV) and murine leukemia virus, both expressing green fluorescent protein and pseudotyped with SARS-CoV S protein or S-protein variants, efficiently infected HEK293T cells stably expressing ACE2. Infection mediated by an S-protein variant whose cytoplasmic domain had been truncated and altered to include a fragment of the cytoplasmic tail of the human immunodeficiency virus type 1 envelope glycoprotein was, in both cases, substantially more efficient than that mediated by wild-type S protein. Using S-protein-pseudotyped SIV, we found that the enzymatic activity of ACE2 made no contribution to S-protein-mediated infection. Finally, we show that a soluble and catalytically inactive form of ACE2 potently blocked infection by S-protein-pseudotyped retrovirus and by SARS-CoV. These results permit studies of SARS-CoV entry inhibitors without the use of live virus and suggest a candidate therapy for SARS.
PMCID: PMC516384  PMID: 15367630
Experimental allergic encephalomyelitis (EAE) was induced in rats of various genotypes by injection of 10 µg guinea pig basic protein in complete Freund's adjuvant containing 100 µg H37 RV M. tuberculosis. Histologically verified EAE was present in 20/20 Lewis, 17/17 (Lewis x BN)F1, 9/9 Lewis backcross, and 21/42 BN backcross rats. Among the BN backcross animals, 25/42 were determined to carry the major histocompatibility type characteristic of the Lewis strain and 21 of these had EAE. Separate groups of Lewis, BN, and (Lewis x BN)F1 rats were immunized as described and skin tested on day 13 with 10 µg guinea pig basic protein and rat S basic protein. Animals of each genotype had Arthus and delayed skin reactivity to both antigens. These data are compatible with the hypothesis that susceptibility to EAE in rats is controlled by an autosomal dominant gene linked to the major histocompatibility locus. It is proposed that this is an immune response gene, designated Ir-EAE, which controls T cell reactivity directed against a highly encephalitogenic portion of the basic protein molecule.
PMCID: PMC2180564  PMID: 4126546
21.  Assessment of Management to Mitigate Anthropogenic Effects on Large Whales 
Conservation Biology  2012;27(1):121-133.
United States and Canadian governments have responded to legal requirements to reduce human-induced whale mortality via vessel strikes and entanglement in fishing gear by implementing a suite of regulatory actions. We analyzed the spatial and temporal patterns of mortality of large whales in the Northwest Atlantic (23.5°N to 48.0°N), 1970 through 2009, in the context of management changes. We used a multinomial logistic model fitted by maximum likelihood to detect trends in cause-specific mortalities with time. We compared the number of human-caused mortalities with U.S. federally established levels of potential biological removal (i.e., species-specific sustainable human-caused mortality). From 1970 through 2009, 1762 mortalities (all known) and serious injuries (likely fatal) involved 8 species of large whales. We determined cause of death for 43% of all mortalities; of those, 67% (502) resulted from human interactions. Entanglement in fishing gear was the primary cause of death across all species (n = 323), followed by natural causes (n = 248) and vessel strikes (n = 171). Established sustainable levels of mortality were consistently exceeded in 2 species by up to 650%. Probabilities of entanglement and vessel-strike mortality increased significantly from 1990 through 2009. There was no significant change in the local intensity of all or vessel-strike mortalities before and after 2003, the year after which numerous mitigation efforts were enacted. So far, regulatory efforts have not reduced the lethal effects of human activities to large whales on a population-range basis, although we do not exclude the possibility of success of targeted measures for specific local habitats that were not within the resolution of our analyses. It is unclear how shortfalls in management design or compliance relate to our findings. Analyses such as the one we conducted are crucial in critically evaluating wildlife-management decisions. The results of these analyses can provide managers with direction for modifying regulated measures and can be applied globally to mortality-driven conservation issues.
Evaluación del Manejo para Mitigar Efectos Antropogénicos sobre Ballenas Mayores
Los gobiernos de Estados Unidos y Canadá han respondido a requerimientos legales para reducir la mortalidad de ballenas inducida por humanos por medio de impacto con embarcaciones y enmarañamiento en artes de pesca mediante la implementación de un conjunto de acciones reguladoras. Analizamos los patrones espaciales y temporales de la mortalidad de ballenas mayores en el Atlántico Noroccidental (23.5°N a 48.0°N), de 1970 a 2009, en el contexto de cambios de manejo. Utilizamos un modelo logístico multinomial ajustado por la máxima probabilidad de detección de tendencias en mortalidades por causa específica en el tiempo. Comparamos el número de muertes provocadas por humanos con los niveles de remoción biológica potencial (i.e., mortalidad específica provocada por humanos sustentable). De 1970 a 2009, hubo 1762 muertes (conocidas) y lesiones serias (casi fatales) involucrando 8 especies de ballenas mayores. Determinamos la causa de 43% de todas las muertes; de ellas, 67% (502) resultaron de interacciones humanas. El enmarañamiento en artes de pesca fue la causa principal de muerte en todas las especies (n = 323), seguida de causas naturales (n = 248) e impacto de embarcaciones (n = 171). Los niveles sustentables de mortalidad establecidos fueron excedidos consistentemente hasta en 650% en 2 especies. Las probabilidades de muerte por enmarañamiento y por impacto de embarcaciones incrementaron significativamente de 1990 a 2009. No hubo cambio significativo en la intensidad local de mortalidad por todas las causas o por impacto de embarcaciones antes y después de 2003, año en el que se implementaron numerosos esfuerzos de mitigación. Hasta ahora, los esfuerzos regulatorios no han reducido los efectos letales de las actividades humanas sobre las ballenas a nivel de población, aunque no excluimos la posibilidad de éxito de medidas enfocadas a hábitats locales específicos que no estuvieron dentro de la resolución de nuestro análisis. No es claro como se relacionan con nuestros resultados las deficiencias en el diseño o implementación del manejo. Análisis como el que realizamos son cruciales para la evaluación crítica de decisiones para el manejo de vida silvestre, y los resultados de estos análisis pueden proporcionar directrices a los manejadores para que modifiquen medidas regulatorias y puedan ser aplicadas globalmente en temas de conservación relacionadas con mortalidad.
PMCID: PMC3562480  PMID: 23025354
entanglement; evaluation of management/mitigation efforts; human-interaction; large whales; mortality; necropsy; vessel-strike; Ballenas mayores; enmarañamiento; evaluación de esfuerzos de manejo/mitigación; impacto con embarcaciones; interacción humana; mortalidad; necropsia

Results 1-21 (21)