PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-12 (12)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Non-invasive monitoring of BMP-2 retention and bone formation in composites for bone tissue engineering using SPECT/CT and scintillation probes 
Non-invasive imaging can provide essential information for the optimization of new drug delivery-based bone regeneration strategies to repair damaged or impaired bone tissue. This study investigates the applicability of nuclear medicine and radiological techniques to monitor growth factor retention profiles and subsequent effects on bone formation. Recombinant human bone morphogenetic protein-2 (BMP-2, 6.5 μg/scaffold) was incorporated into a sustained release vehicle consisting of poly(lactic-co-glycolic acid) microspheres embedded in a poly(propylene fumarate) scaffold surrounded by a gelatin hydrogel and implanted subcutaneously and in 5-mm segmental femoral defects in 9 rats for a period of 56 days. To determine the pharmacokinetic profile, BMP-2 was radiolabeled with 125I and the local retention of 125I-BMP-2 was measured by single photon emission computed tomography (SPECT), scintillation probes and ex vivo scintillation analysis. Bone formation was monitored by micro-computed tomography (μCT). The scaffolds released BMP-2 in a sustained fashion over the 56-day implantation period. A good correlation between the SPECT and scintillation probe measurements was found and there were no significant differences between the non-invasive and ex-vivo counting method after 8 weeks of follow up. SPECT analysis of the total body and thyroid counts showed a limited accumulation of 125I within the body. Ectopic bone formation was induced in the scaffolds and the femur defects healed completely. In vivo μCT imaging detected the first signs of bone formation at days 14 and 28 for the orthotopic and ectopic implants, respectively, and provided a detailed profile of the bone formation rate. Overall, this study clearly demonstrates the benefit of applying non-invasive techniques in drug delivery-based bone regeneration strategies by providing detailed and reliable profiles of the growth factor retention and bone formation at different implantation sites in a limited number of animals.
doi:10.1016/j.jconrel.2008.11.023
PMCID: PMC3974410  PMID: 19105972
Drug delivery; Controlled release; Bone morphogenetic protein-2; Single photon emission computed; tomography; Scintillation probes; Micro-computed tomography
2.  In Vivo Transplantation of Autogenous Marrow-Derived Cells Following Rapid Intraoperative Magnetic Separation Based on Hyaluronan to Augment Bone Regeneration 
Tissue Engineering. Part A  2012;19(1-2):125-134.
Introduction
This project was designed to test the hypothesis that rapid intraoperative processing of bone marrow based on hyaluronan (HA) could be used to improve the outcome of local bone regeneration if the concentration and prevalence of marrow-derived connective tissue progenitors (CTPs) could be increased and nonprogenitors depleted before implantation.
Methods
HA was used as a marker for positive selection of marrow-derived CTPs using magnetic separation (MS) to obtain a population of HA-positive cells with an increased CTP prevalence. Mineralized cancellous allograft (MCA) was used as an osteoconductive carrier scaffold for loading of HA-positive cells. The canine femoral multidefect model was used and four cylindrical defects measuring 10 mm in diameter and 15 mm in length were grafted with MCA combined with unprocessed marrow or with MS processed marrow that was enriched in HA+ CTPs and depleted in red blood cells and nonprogenitors. Outcome was assessed at 4 weeks using quantitative 3D microcomputed tomography (micro-CT) analysis of bone formation and histomorphological assessment.
Results
Histomorphological assessment showed a significant increase in new bone formation and in the vascular sinus area in the MS-processed defects. Robust bone formation was found throughout the defect area in both groups (defects grafted with unprocessed marrow or with MS processed marrow.) Percent bone volume in the defects, as assessed by micro-CT, was greater in defects engrafted with MS processed cells, but the difference was not statistically significant.
Conclusion
Rapid intraoperative MS processing to enrich CTPs based on HA as a surface marker can be used to increase the concentration and prevalence of CTPs. MCA grafts supplemented with heparinized bone marrow or MS processed cells resulted in a robust and advanced stage of bone regeneration at 4 weeks. A greater new bone formation and vascular sinus area was found in defects grafted with MS processed cells. These data suggest that MS processing may be used to enhance the performance of marrow-derived CTPs in clinical bone regeneration procedures. Further assessment in a more stringent bone defect model is proposed.
doi:10.1089/ten.tea.2011.0622
PMCID: PMC3593694  PMID: 23082937
3.  COL1 C-propeptide Cleavage Site Mutations Cause High Bone Mass Osteogenesis Imperfecta 
Human mutation  2011;32(6):598-609.
Osteogenesis imperfecta (OI) is most often caused by mutations in the type I procollagen genes (COL1A1/COL1A2). We identified two children with substitutions in the type I procollagen C-propeptide cleavage site, which disrupt a unique processing step in collagen maturation and define a novel phenotype within OI. The patients have mild OI caused by mutations in COL1A1 (Patient 1: p.Asp1219Asn) or COL1A2 (Patient 2: p.Ala1119Thr), respectively. Patient 1 L1-L4 DXA z-score was +3.9 and pQCT vBMD was +3.1; Patient 2 had L1-L4 DXA z-score of 0.0 and pQCT vBMD of −1.8. Patient BMD contrasts with radiographic osteopenia and histomorphometry without osteosclerosis. Mutant procollagen processing is impaired in pericellular and in vitro assays. Patient dermal collagen fibrils have irregular borders. Incorporation of pC-collagen into matrix leads to increased bone mineralization. FT-IR imaging confirms elevated mineral/matrix ratios in both patients, along with increased collagen maturation in trabecular bone, compared to normal or OI controls. Bone mineralization density distribution revealed a marked shift toward increased mineralization density for both patients. Patient 1 has areas of higher and lower bone mineralization than controls; Patient 2’s bone matrix has a mineral content exceeding even classical OI bone. These patients define a new phenotype of high BMD OI and demonstrate that procollagen C-propeptide cleavage is crucial to normal bone mineralization.
doi:10.1002/humu.21475
PMCID: PMC3103631  PMID: 21344539
Osteogenesis imperfecta; C-propeptide; collagen; C-proteinase; mineralization; high bone mass
4.  The effects of fixed electrical charge on chondrocyte behavior 
Acta biomaterialia  2011;7(5):2080-2090.
In this study, we have compared the effects of negative and positive fixed charge on chondrocyte behavior in vitro. Electrical charges have been incorporated into oligo(poly(ethylene glycol) fumarate) (OPF) using small charged monomers such as sodium methacrylate (SMA) and (2-(methacryloyloxy) ethyl)-trimethyl ammonium chloride (MAETAC) to produce negatively and positively charged hydrogels, respectively. The hydrogel physical and electrical properties were characterized through measuring and calculating the swelling ratio and zeta potential, respectively. Our results revealed that the properties of these OPF modified hydrogels varied according to the concentration of charged monomers. Zeta potential measurements demonstrated that the electrical property of the OPF hydrogel surfaces changed due to incorporation of SMA and MAETAC and that this change in electrical property was dose-dependent. Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy was used to determine the hydrogel surface composition. To assess the effects of surface properties on chondrocyte behavior, primary chondrocytes isolated from rabbit ears were seeded as a monolayer on top of the hydrogels. We demonstrated that the cells remained viable over 7 days and began to proliferate while seeded on top of the hydrogels. Collagen type II staining was positive in all samples; however, the intensity of the stain was higher on negatively charged hydrogels. Similarly, GAG production was significantly higher on negatively charged hydrogels compared to neutral hydrogel. Reverse transcription polymerase chain reaction showed up-regulation of collagen type II and down-regulation of collagen type I on the negatively charged hydrogels. These findings indicate that charge plays an important role in establishing an appropriate environment for chondrocytes and hence in the engineering of cartilage. Thus, further investigation into charged hydrogels for cartilage tissue engineering is merited.
doi:10.1016/j.actbio.2011.01.012
PMCID: PMC3103083  PMID: 21262395
hydrogel; cartilage tissue engineering; OPF; scaffold
5.  Enhanced Bone Morphogenetic Protein-2-Induced Ectopic and Orthotopic Bone Formation by Intermittent Parathyroid Hormone (1–34) Administration 
Tissue Engineering. Part A  2010;16(12):3769-3777.
Bone morphogenetic proteins (BMPs) play a central role in local bone regeneration strategies, whereas the anabolic features of parathyroid hormone (PTH) are particularly appealing for the systemic treatment of generalized bone loss. The aim of the current study was to investigate whether local BMP-2-induced bone regeneration could be enhanced by systemic administration of PTH (1–34). Empty or BMP-2-loaded poly(lactic-co glycolic acid)/poly(propylene fumarate)/gelatin composites were implanted subcutaneously and in femoral defects in rats (n = 9). For the orthotopic site, empty defects were also tested. Each of the conditions was investigated in combination with daily administered subcutaneous PTH (1–34) injections in the neck. After 8 weeks of implantation, bone mineral density (BMD) and bone volume were analyzed using microcomputed tomography and histology. Ectopic bone formation and almost complete healing of the femoral defect were only seen in rats that received BMP-2-loaded composites. Additional treatment of the rats with PTH (1–34) resulted in significantly (p < 0.05) enhanced BMD and bone volume in the BMP-2 composites at both implantation sites. Despite its effect on BMD in the humerus and vertebra, PTH (1–34) treatment had no significant effect on BMD and bone volume in the empty femoral defects and the ectopically or orthotopically implanted empty composites. Histological analysis showed that the newly formed bone had a normal woven and trabecular appearance. Overall, this study suggests that intermittent administration of a low PTH dose alone has limited potential to enhance local bone regeneration in a critical-sized defect in rats. However, when combined with local BMP-2-releasing scaffolds, PTH administration significantly enhanced osteogenesis in both ectopic and orthotopic sites.
doi:10.1089/ten.tea.2010.0173
PMCID: PMC2991197  PMID: 20666615
6.  Collagen type I hydrogel allows migration, proliferation and osteogenic differentiation of rat bone marrow stromal cells 
Hydrogels are potentially useful for many purposes in regenerative medicine including drug and growth factor delivery, as single scaffold for bone repair or as a filler of pores of another biomaterial in which host mesenchymal progenitor cells can migrate in and differentiate into matrix-producing osteoblasts. Collagen type I is of special interest as it is a very important and abundant natural matrix component. The purpose of this study was to investigate whether rat bone marrow stromal cells (rBMSCs) are able to adhere to, to survive, to proliferate and to migrate in collagen type I hydrogels and whether they can adopt an osteoblastic fate. rBMSCs were obtained from rat femora and plated on collagen type I hydrogels. Prior to harvest by day 7, 14, and 21, hydrogels were fluorescently labeled, cryo-cut and analyzed by fluorescent-based and laser scanning confocal microscopy to determine cell proliferation, migration, and viability. Osteogenic differentiation was determined by alkaline phosphatase activity. Collagen type I hydrogels allowed the attachment of rBMSCs to the hydrogel, their proliferation, and migration towards the inner part of the gel. rBMSCs started to differentiate into osteoblasts as determined by an increase in alkaline phosphatase activity after two weeks in culture. This study therefore suggests that collagen type I hydrogels could be useful for musculoskeletal regenerative therapies.
doi:10.1002/jbm.a.32696
PMCID: PMC2891839  PMID: 20186733
Collagen type I hydrogel; bone marrow stromal cells; cell migration; osteogenic differentiation; bone regeneration
7.  Potential of Hydrogels Based on Poly(Ethylene Glycol) and Sebacic Acid as Orthopedic Tissue Engineering Scaffolds 
Tissue Engineering. Part A  2009;15(8):2299-2307.
In this study, the bioactive effects of poly(ethylene glycol) (PEG) sebacic acid diacrylate (PEGSDA) hydrogels with or without RGD peptide modification on osteogenic differentiation and mineralization of marrow stromal cells (MSCs) were examined. In a separate experiment, the ability of PEGSDA hydrogel to serve as a delivery vehicle for bone morphogenetic protein 2 (BMP-2) was also investigated. As a scaffold, the attachment and proliferation of MSCs on PEGSDA hydrogel scaffolds with and without RGD peptide modification was similar to the control, tissue culture polystyrene. In contrast, cells were barely seen on unmodified PEG diacrylate (PEGDA) hydrogel throughout the culture period for up to 21 days. Osteogenic phenotypic expression such as alkaline phosphatase (ALP) of MSCs as well as mineralized calcium content were significantly higher on PEGSDA-based hydrogels than those on the control or PEGDA hydrogels. Potential use of PEGSDA scaffold as a delivery vehicle of osteogenic molecules such as BMP-2 was also evaluated. Initial burst release of BMP-2 from PEGSDA hydrogel scaffold (14.7%) was significantly reduced compared to PEGDA hydrogel scaffold (84.2%) during the first 3 days of a 21-day release period. ALP activity of an osteoblast was significantly higher in the presence of BMP-2 released from PEGSDA hydrogel scaffolds compared to that in the presence of BMP-2 released from PEGDA scaffolds, especially after 6 days of release. Overall, PEGSDA hydrogel scaffolds without further modification may be useful as orthopedic tissue engineering scaffolds as well as local drug carriers for prolonged sustained release of osteoinductive molecules.
doi:10.1089/ten.tea.2008.0326
PMCID: PMC2792107  PMID: 19292677
8.  Severe Osteogenesis Imperfecta in Cyclophilin B–Deficient Mice 
PLoS Genetics  2009;5(12):e1000750.
Osteogenesis Imperfecta (OI) is a human syndrome characterized by exquisitely fragile bones due to osteoporosis. The majority of autosomal dominant OI cases result from point or splice site mutations in the type I collagen genes, which are thought to lead to aberrant osteoid within developing bones. OI also occurs in humans with homozygous mutations in Prolyl-3-Hydroxylase-1 (LEPRE1). Although P3H1 is known to hydroxylate a single residue (pro-986) in type I collagen chains, it is unclear how this modification acts to facilitate collagen fibril formation. P3H1 exists in a complex with CRTAP and the peptidyl-prolyl isomerase cyclophilin B (CypB), encoded by the Ppib gene. Mutations in CRTAP cause OI in mice and humans, through an unknown mechanism, while the role of CypB in this complex has been a complete mystery. To study the role of mammalian CypB, we generated mice lacking this protein. Early in life, Ppib-/- mice developed kyphosis and severe osteoporosis. Collagen fibrils in Ppib-/- mice had abnormal morphology, further consistent with an OI phenotype. In vitro studies revealed that in CypB–deficient fibroblasts, procollagen did not localize properly to the golgi. We found that levels of P3H1 were substantially reduced in Ppib-/- cells, while CRTAP was unaffected by loss of CypB. Conversely, knockdown of either P3H1 or CRTAP did not affect cellular levels of CypB, but prevented its interaction with collagen in vitro. Furthermore, knockdown of CRTAP also caused depletion of cellular P3H1. Consistent with these changes, post translational prolyl-3-hydroxylation of type I collagen by P3H1 was essentially absent in CypB–deficient cells and tissues from CypB–knockout mice. These data provide significant new mechanistic insight into the pathophysiology of OI and reveal how the members of the P3H1/CRTAP/CypB complex interact to direct proper formation of collagen and bone.
Author Summary
Osteogenesis Imperfecta (OI), also known as “brittle bone disease,” is an inherited condition with multiple defects in collagen-containing structures, including the bones, skin, and other connective tissues. Patients with OI suffer from short stature, scoliosis, thin skin, hearing loss, and, most notably, fragile bones that break with little or no trauma. Although many cases are due to dominantly inherited point mutations in the collagen genes, autosomal recessive forms have been described due to defects in the genes for Prolyl-3-Hydroxylase-1 (LEPRE1) and Cartilage-Associated Protein (CRTAP), proteins that modify newly synthesized procollagen. Some patients with OI do not have mutations in any of the known disease-related genes. Here, through the use of newly generated knockout mice, we identify the endoplasmic-reticulum resident prolyl-isomerase cyclophilin B (CypB) as a new autosomal recessive OI gene in mice. CypB, P3H1, and CRTAP were shown to have interrelated effects in maintaining their respective protein levels and ability to bind to collagen. These studies enhance our understanding about how collagen, the most abundant protein in the body, becomes properly assembled to form bones with adequate strength.
doi:10.1371/journal.pgen.1000750
PMCID: PMC2777385  PMID: 19997487
9.  Effects of Estrogen Therapy on Bone Marrow Adipocytes in Postmenopausal Osteoporotic Women 
Introduction
Aging is associated not only with bone loss but also with increases in bone marrow adipocytes. Since osteoblasts and adipocytes are derived from a common precursor, it is possible that with aging, there is a preferential “switch” in commitment of this precursor to the adipocyte over the osteoblast lineage. We tested the hypothesis that the apparent “age-related” increase in marrow adipocytes is due, at least in part, to estrogen (E) deficiency.
Methods
Reanalysis of bone biopsies from a randomized, placebo-controlled trial involving 56 postmenopausal osteoporotic women (mean age, 64 years) treated either with placebo (PL, n = 27) or transdermal estradiol (0.1 mg/d, n = 29) for 1 year.
Results
Adipocyte volume/tissue volume (AV/TV) and adipocyte number (Ad#) increased (by ∼ 20%, P < 0.05) in the PL group, but were unchanged (Ad#) or decreased (AV/TV, by −24%, P < 0.001) in the E group. E treatment also prevented increases in mean adipocyte size over 1 year.
Conclusions
These findings represent the first in vivo demonstration in humans that not only ongoing bone loss, but also the increase in bone marrow adipocyte number and size in postmenopausal osteoporotic women may be due, at least in part, to E deficiency.
doi:10.1007/s00198-008-0574-6
PMCID: PMC2652842  PMID: 18274695
Osteoporosis; adipocytes; bone
10.  Non-invasive screening method for simultaneous evaluation of in vivo growth factor release profiles from multiple ectopic bone tissue engineering implants 
The purpose of this study was to develop and validate a screening method based on scintillation probes for the simultaneous evaluation of in vivo growth factor release profiles of multiple implants in the same animal. First, we characterized the scintillation probes in a series of in vitro experiments to optimize the accuracy of the measurement setup. The scintillation probes were found to have a strong geometric dependence and experience saturation effects at high activities. In vitro simulation of 4 subcutaneous limb implants in a rat showed minimal interference of surrounding implants on local measurements at close to parallel positioning of the probes. These characteristics were taken into consideration for the design of the probe setup and in vivo experiment. The measurement setup was then validated in a rat subcutaneous implantation model using 4 different sustained release carriers loaded with 125I-BMP-2 per animal. The implants were removed after 42 or 84 days of implantation, for comparison of the non-invasive method to ex-vivo radioisotope counting. The non-invasive method demonstrated a good correlation with the ex-vivo counting method at both time-points of all 4 carriers. Overall, this study showed that scintillation probes could be successfully used for paired measurement of 4 release profiles with minimal interference of the surrounding implants, and may find use as non-invasive screening tools for various drug delivery applications.
doi:10.1016/j.jconrel.2008.05.004
PMCID: PMC2601638  PMID: 18554743
Controlled drug delivery; non-invasive screening; scintillation detector; radiolabelled growth factor; method validation
11.  Effect of Hydrogel Porosity on Marrow Stromal Cell Phenotypic Expression 
Biomaterials  2008;29(14):2193-2202.
This study describes investigation of porous photocrosslinked oligo[(polyethylene glycol) fumarate] (OPF) hydrogels as potential matrix for osteoblastic differentiation of marrow stromal cells (MSCs). The porosity and interconnectivity of porous hydrogels were assessed using magnetic resonance microscopy (MRM) as a noninvasive investigative tool that could image the water construct inside the hydrogels at a high spatial resolution. MSCs were cultured onto the porous hydrogels and cell number was assessed using PicoGreen DNA assay. Our results showed 10% of cells initially attached to the surface of scaffolds. However, cells did not show significant proliferation over a time period of 14 days. MSCs cultured on porous hydrogels had increased alkaline phosphatase activity as well as deposition of calcium, suggesting successful differentiation and maturation to the osteoblastic phenotype. Moreover, continued expression of type I collagen and osteonectin over 14 days confirmed osteoblastic differentiation of MSCs. MRM was also applied to monitor osteogenesis of MSCs on porous hydrogels. MRM images showed porous scaffolds became consolidated with osteogenic progression of cell differentiation. These findings indicate that porous OPF scaffolds enhanced MSC differentiation leading to development of bone-like mineralized tissue.
doi:10.1016/j.biomaterials.2008.01.006
PMCID: PMC2386206  PMID: 18262642
Hydrogel; oligo[(polyethylene glycol) fumarate] (OPF); Marrow stromal cells; Magnetic resonance microscopy; Osteogenesis
12.  Synthesis, Material Properties and Biocompatibility of a Novel Self-Crosslinkable Poly(caprolactone fumarate) as an Injectable Tissue Engineering Scaffold 
Biomacromolecules  2005;6(5):2503-2511.
A novel self-crosslinkable and biodegradable macromer poly(caprolactone fumarate) (PCLF) has been developed for guided bone regeneration. This macromer is a copolymer of fumaryl chloride, which contains double bonds for in-situ crosslinking, and poly(ε-caprolactone) that has a flexible chain to facilitate self-crosslinkability. PCLF was characterized with Fourier transform infrared (FTIR) spectroscopy, 1H and 13C nuclear magnetic resonance (NMR) spectroscopy, and gel permeation chromatography (GPC). Porous scaffolds were fabricated with sodium chloride particles as the porogen and a chemical initiation system. The PCLF scaffolds were characterized with scanning electron microscopy (SEM) and micro-computed tomography (micro-CT). The cytotoxicity and in vivo biocompatibility of PCLF were also assessed. Our results suggest that this novel copolymer, PCLF, is an injectable, self-crosslinkable, and biocompatible macromer that may be potentially used as a scaffold for tissue engineering applications.
doi:10.1021/bm050206y
PMCID: PMC2530909  PMID: 16153086

Results 1-12 (12)