PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
1.  Photo-Crosslinked Poly(ε-caprolactone fumarate) Networks: Roles of Crystallinity and Crosslinking Density in Determining Mechanical Properties 
Polymer  2008;49(26):5692-5699.
We present a material design strategy of combining crystallinity and crosslinking to control the mechanical properties of polymeric biomaterials. Three polycaprolactone fumarates (PCLF530, PCLF1250, and PCLF2000) synthesized from the precursor polycaprolactone (PCL) diols with nominal molecular weights of 530, 1250, and 2000 g.mol-1, respectively, were employed to fabricate polymer networks via photo-crosslinking process. Five different amounts of photo-crosslinking initiator were applied during fabrication in order to understand the role of photoinitiator in modulating the crosslinking characteristics and physical properties of PCLF networks. Thermal properties such as glass transition temperature (Tg), melting temperature (Tm), and degradation temperature (Td) of photo-crosslinked PCLFs were examined and correlated with their rheological and mechanical properties.
doi:10.1016/j.polymer.2008.10.021
PMCID: PMC2951835  PMID: 20936057
Polycaprolactone fumarate; Photo-crosslinking; Mechanical Properties
2.  Photo-Crosslinked Poly(ε-caprolactone fumarate) Networks for Peripheral Nerve Regeneration: Physical Properties and Preliminary Biological Evaluations 
Acta biomaterialia  2009;5(5):1531-1542.
In an effort of achieving suitable biomaterials for peripheral nerve regeneration, we present a material design strategy of combining a crystallite-based physical network and a crosslink-based chemical network. Biodegradable polymer disks and conduits have been fabricated by photo-crosslinking three poly(ε-caprolactone fumarate)s (PCLF530, PCLF1250, and PCLF2000), which were synthesized from the precursor poly(ε-caprolactone) (PCL) diols with nominal molecular weights of 530, 1250, and 2000 g.mol−1, respectively. Thermal properties such as glass transition temperature (Tg), melting temperature (Tm), and crystallinity of photo-crosslinked PCLFs were examined and correlated with their rheological and mechanical properties. Furthermore, in vitro degradation of uncrosslinked and crosslinked PCLFs in PBS crosslinked PCLFs in 1 N NaOH aqueous solution at 37 °C was studied. In vitro cytocompatibility, attachment, and proliferation of Schwann cell precursor line SPL201 cells on three PCLF networks were investigated. Crosslinked PCLF2000 with the highest crystallinity and mechanical properties was found to best support cell attachment and proliferation. Using a new photo-crosslinking method, single-lumen crosslinked PCLF nerve conduits without defects were fabricated in a glass mold. Crosslinked PCLF2000 nerve conduits were selected for evaluation in a 1-cm gap rat sciatic nerve model. Histological evaluation demonstrated that the material was biocompatible with sufficient strength to hold sutures in place after 6 and 17 weeks of implantation. Nerve cable with myelinated axons was found in the crosslinked PCLF2000 nerve conduit.
doi:10.1016/j.actbio.2008.12.015
PMCID: PMC2869216  PMID: 19171506
Poly(ε-caprolactone fumarate); Photo-crosslinking; Peripheral nerve regeneration; Cell responses
3.  Synthesis, Material Properties and Biocompatibility of a Novel Self-Crosslinkable Poly(caprolactone fumarate) as an Injectable Tissue Engineering Scaffold 
Biomacromolecules  2005;6(5):2503-2511.
A novel self-crosslinkable and biodegradable macromer poly(caprolactone fumarate) (PCLF) has been developed for guided bone regeneration. This macromer is a copolymer of fumaryl chloride, which contains double bonds for in-situ crosslinking, and poly(ε-caprolactone) that has a flexible chain to facilitate self-crosslinkability. PCLF was characterized with Fourier transform infrared (FTIR) spectroscopy, 1H and 13C nuclear magnetic resonance (NMR) spectroscopy, and gel permeation chromatography (GPC). Porous scaffolds were fabricated with sodium chloride particles as the porogen and a chemical initiation system. The PCLF scaffolds were characterized with scanning electron microscopy (SEM) and micro-computed tomography (micro-CT). The cytotoxicity and in vivo biocompatibility of PCLF were also assessed. Our results suggest that this novel copolymer, PCLF, is an injectable, self-crosslinkable, and biocompatible macromer that may be potentially used as a scaffold for tissue engineering applications.
doi:10.1021/bm050206y
PMCID: PMC2530909  PMID: 16153086

Results 1-3 (3)