PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (26)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
Document Types
1.  Genomics of Loa loa, a Wolbachia-free filarial parasite of humans 
Nature genetics  2013;45(5):495-500.
Loa loa, the African eyeworm, is a major filarial pathogen of humans. Unlike most filariae, Loa loa does not contain the obligate intracellular Wolbachia endosymbiont. We describe the 91.4 Mb genome of Loa loa, and the genome of the related filarial parasite Wuchereria bancrofti, and predict 14,907 Loa loa genes based on microfilarial RNA sequencing. By comparing these genomes to that of another filarial parasite, Brugia malayi, and to several other nematode genomes, we demonstrate synteny among filariae but not with non-parasitic nematodes. The Loa loa genome encodes many immunologically relevant genes, as well as protein kinases targeted by drugs currently approved for humans. Despite lacking Wolbachia, Loa loa shows no new metabolic synthesis or transport capabilities compared to other filariae. These results suggest that the role played by Wolbachia in filarial biology is more subtle than previously thought and reveal marked differences between parasitic and non-parasitic nematodes.
doi:10.1038/ng.2585
PMCID: PMC4238225  PMID: 23525074
2.  The Aspergillus Genome Database: multispecies curation and incorporation of RNA-Seq data to improve structural gene annotations 
Nucleic Acids Research  2013;42(Database issue):D705-D710.
The Aspergillus Genome Database (AspGD; http://www.aspgd.org) is a freely available web-based resource that was designed for Aspergillus researchers and is also a valuable source of information for the entire fungal research community. In addition to being a repository and central point of access to genome, transcriptome and polymorphism data, AspGD hosts a comprehensive comparative genomics toolbox that facilitates the exploration of precomputed orthologs among the 20 currently available Aspergillus genomes. AspGD curators perform gene product annotation based on review of the literature for four key Aspergillus species: Aspergillus nidulans, Aspergillus oryzae, Aspergillus fumigatus and Aspergillus niger. We have iteratively improved the structural annotation of Aspergillus genomes through the analysis of publicly available transcription data, mostly expressed sequenced tags, as described in a previous NAR Database article (Arnaud et al. 2012). In this update, we report substantive structural annotation improvements for A. nidulans, A. oryzae and A. fumigatus genomes based on recently available RNA-Seq data. Over 26 000 loci were updated across these species; although those primarily comprise the addition and extension of untranslated regions (UTRs), the new analysis also enabled over 1000 modifications affecting the coding sequence of genes in each target genome.
doi:10.1093/nar/gkt1029
PMCID: PMC3965050  PMID: 24194595
3.  Kinannote, a computer program to identify and classify members of the eukaryotic protein kinase superfamily 
Bioinformatics  2013;29(19):2387-2394.
Motivation: Kinases of the eukaryotic protein kinase superfamily are key regulators of most aspects eukaryotic cellular behavior and have provided several drug targets including kinases dysregulated in cancers. The rapid increase in the number of genomic sequences has created an acute need to identify and classify members of this important class of enzymes efficiently and accurately.
Results: Kinannote produces a draft kinome and comparative analyses for a predicted proteome using a single line command, and it is currently the only tool that automatically classifies protein kinases using the controlled vocabulary of Hanks and Hunter [Hanks and Hunter (1995)]. A hidden Markov model in combination with a position-specific scoring matrix is used by Kinannote to identify kinases, which are subsequently classified using a BLAST comparison with a local version of KinBase, the curated protein kinase dataset from www.kinase.com. Kinannote was tested on the predicted proteomes from four divergent species. The average sensitivity and precision for kinome retrieval from the test species are 94.4 and 96.8%. The ability of Kinannote to classify identified kinases was also evaluated, and the average sensitivity and precision for full classification of conserved kinases are 71.5 and 82.5%, respectively. Kinannote has had a significant impact on eukaryotic genome annotation, providing protein kinase annotations for 36 genomes made public by the Broad Institute in the period spanning 2009 to the present.
Availability: Kinannote is freely available at http://sourceforge.net/projects/kinannote.
Contact: jmgold@broadinstitute.org
Supplementary information: Supplementary data are available at Bioinformatics online.
doi:10.1093/bioinformatics/btt419
PMCID: PMC3777111  PMID: 23904509
4.  Comprehensive annotation of secondary metabolite biosynthetic genes and gene clusters of Aspergillus nidulans, A. fumigatus, A. niger and A. oryzae 
BMC Microbiology  2013;13:91.
Background
Secondary metabolite production, a hallmark of filamentous fungi, is an expanding area of research for the Aspergilli. These compounds are potent chemicals, ranging from deadly toxins to therapeutic antibiotics to potential anti-cancer drugs. The genome sequences for multiple Aspergilli have been determined, and provide a wealth of predictive information about secondary metabolite production. Sequence analysis and gene overexpression strategies have enabled the discovery of novel secondary metabolites and the genes involved in their biosynthesis. The Aspergillus Genome Database (AspGD) provides a central repository for gene annotation and protein information for Aspergillus species. These annotations include Gene Ontology (GO) terms, phenotype data, gene names and descriptions and they are crucial for interpreting both small- and large-scale data and for aiding in the design of new experiments that further Aspergillus research.
Results
We have manually curated Biological Process GO annotations for all genes in AspGD with recorded functions in secondary metabolite production, adding new GO terms that specifically describe each secondary metabolite. We then leveraged these new annotations to predict roles in secondary metabolism for genes lacking experimental characterization. As a starting point for manually annotating Aspergillus secondary metabolite gene clusters, we used antiSMASH (antibiotics and Secondary Metabolite Analysis SHell) and SMURF (Secondary Metabolite Unknown Regions Finder) algorithms to identify potential clusters in A. nidulans, A. fumigatus, A. niger and A. oryzae, which we subsequently refined through manual curation.
Conclusions
This set of 266 manually curated secondary metabolite gene clusters will facilitate the investigation of novel Aspergillus secondary metabolites.
doi:10.1186/1471-2180-13-91
PMCID: PMC3689640  PMID: 23617571
Aspergillus; Gene clusters; Gene Ontology; Genome annotation; Secondary metabolism; Sybil
5.  Comparative Genomics of Recent Shiga Toxin-Producing Escherichia coli O104:H4: Short-Term Evolution of an Emerging Pathogen 
mBio  2013;4(1):e00452-12.
ABSTRACT
The large outbreak of diarrhea and hemolytic uremic syndrome (HUS) caused by Shiga toxin-producing Escherichia coli O104:H4 in Europe from May to July 2011 highlighted the potential of a rarely identified E. coli serogroup to cause severe disease. Prior to the outbreak, there were very few reports of disease caused by this pathogen and thus little known of its diversity and evolution. The identification of cases of HUS caused by E. coli O104:H4 in France and Turkey after the outbreak and with no clear epidemiological links raises questions about whether these sporadic cases are derived from the outbreak. Here, we report genome sequences of five independent isolates from these cases and results of a comparative analysis with historical and 2011 outbreak isolates. These analyses revealed that the five isolates are not derived from the outbreak strain; however, they are more closely related to the outbreak strain and each other than to isolates identified prior to the 2011 outbreak. Over the short time scale represented by these closely related organisms, the majority of genome variation is found within their mobile genetic elements: none of the nine O104:H4 isolates compared here contain the same set of plasmids, and their prophages and genomic islands also differ. Moreover, the presence of closely related HUS-associated E. coli O104:H4 isolates supports the contention that fully virulent O104:H4 isolates are widespread and emphasizes the possibility of future food-borne E. coli O104:H4 outbreaks.
IMPORTANCE
In the summer of 2011, a large outbreak of bloody diarrhea with a high rate of severe complications took place in Europe, caused by a previously rarely seen Escherichia coli strain of serogroup O104:H4. Identification of subsequent infections caused by E. coli O104:H4 raised questions about whether these new cases represented ongoing transmission of the outbreak strain. In this study, we sequenced the genomes of isolates from five recent cases and compared them with historical isolates. The analyses reveal that, in the very short term, evolution of the bacterial genome takes place in parts of the genome that are exchanged among bacteria, and these regions contain genes involved in adaptation to local environments. We show that these recent isolates are not derived from the outbreak strain but are very closely related and share many of the same disease-causing genes, emphasizing the concern that these bacteria may cause future severe outbreaks.
doi:10.1128/mBio.00452-12
PMCID: PMC3551546  PMID: 23341549
6.  A framework for human microbiome research 
Methé, Barbara A. | Nelson, Karen E. | Pop, Mihai | Creasy, Heather H. | Giglio, Michelle G. | Huttenhower, Curtis | Gevers, Dirk | Petrosino, Joseph F. | Abubucker, Sahar | Badger, Jonathan H. | Chinwalla, Asif T. | Earl, Ashlee M. | FitzGerald, Michael G. | Fulton, Robert S. | Hallsworth-Pepin, Kymberlie | Lobos, Elizabeth A. | Madupu, Ramana | Magrini, Vincent | Martin, John C. | Mitreva, Makedonka | Muzny, Donna M. | Sodergren, Erica J. | Versalovic, James | Wollam, Aye M. | Worley, Kim C. | Wortman, Jennifer R. | Young, Sarah K. | Zeng, Qiandong | Aagaard, Kjersti M. | Abolude, Olukemi O. | Allen-Vercoe, Emma | Alm, Eric J. | Alvarado, Lucia | Andersen, Gary L. | Anderson, Scott | Appelbaum, Elizabeth | Arachchi, Harindra M. | Armitage, Gary | Arze, Cesar A. | Ayvaz, Tulin | Baker, Carl C. | Begg, Lisa | Belachew, Tsegahiwot | Bhonagiri, Veena | Bihan, Monika | Blaser, Martin J. | Bloom, Toby | Vivien Bonazzi, J. | Brooks, Paul | Buck, Gregory A. | Buhay, Christian J. | Busam, Dana A. | Campbell, Joseph L. | Canon, Shane R. | Cantarel, Brandi L. | Chain, Patrick S. | Chen, I-Min A. | Chen, Lei | Chhibba, Shaila | Chu, Ken | Ciulla, Dawn M. | Clemente, Jose C. | Clifton, Sandra W. | Conlan, Sean | Crabtree, Jonathan | Cutting, Mary A. | Davidovics, Noam J. | Davis, Catherine C. | DeSantis, Todd Z. | Deal, Carolyn | Delehaunty, Kimberley D. | Dewhirst, Floyd E. | Deych, Elena | Ding, Yan | Dooling, David J. | Dugan, Shannon P. | Dunne, Wm. Michael | Durkin, A. Scott | Edgar, Robert C. | Erlich, Rachel L. | Farmer, Candace N. | Farrell, Ruth M. | Faust, Karoline | Feldgarden, Michael | Felix, Victor M. | Fisher, Sheila | Fodor, Anthony A. | Forney, Larry | Foster, Leslie | Di Francesco, Valentina | Friedman, Jonathan | Friedrich, Dennis C. | Fronick, Catrina C. | Fulton, Lucinda L. | Gao, Hongyu | Garcia, Nathalia | Giannoukos, Georgia | Giblin, Christina | Giovanni, Maria Y. | Goldberg, Jonathan M. | Goll, Johannes | Gonzalez, Antonio | Griggs, Allison | Gujja, Sharvari | Haas, Brian J. | Hamilton, Holli A. | Harris, Emily L. | Hepburn, Theresa A. | Herter, Brandi | Hoffmann, Diane E. | Holder, Michael E. | Howarth, Clinton | Huang, Katherine H. | Huse, Susan M. | Izard, Jacques | Jansson, Janet K. | Jiang, Huaiyang | Jordan, Catherine | Joshi, Vandita | Katancik, James A. | Keitel, Wendy A. | Kelley, Scott T. | Kells, Cristyn | Kinder-Haake, Susan | King, Nicholas B. | Knight, Rob | Knights, Dan | Kong, Heidi H. | Koren, Omry | Koren, Sergey | Kota, Karthik C. | Kovar, Christie L. | Kyrpides, Nikos C. | La Rosa, Patricio S. | Lee, Sandra L. | Lemon, Katherine P. | Lennon, Niall | Lewis, Cecil M. | Lewis, Lora | Ley, Ruth E. | Li, Kelvin | Liolios, Konstantinos | Liu, Bo | Liu, Yue | Lo, Chien-Chi | Lozupone, Catherine A. | Lunsford, R. Dwayne | Madden, Tessa | Mahurkar, Anup A. | Mannon, Peter J. | Mardis, Elaine R. | Markowitz, Victor M. | Mavrommatis, Konstantinos | McCorrison, Jamison M. | McDonald, Daniel | McEwen, Jean | McGuire, Amy L. | McInnes, Pamela | Mehta, Teena | Mihindukulasuriya, Kathie A. | Miller, Jason R. | Minx, Patrick J. | Newsham, Irene | Nusbaum, Chad | O’Laughlin, Michelle | Orvis, Joshua | Pagani, Ioanna | Palaniappan, Krishna | Patel, Shital M. | Pearson, Matthew | Peterson, Jane | Podar, Mircea | Pohl, Craig | Pollard, Katherine S. | Priest, Margaret E. | Proctor, Lita M. | Qin, Xiang | Raes, Jeroen | Ravel, Jacques | Reid, Jeffrey G. | Rho, Mina | Rhodes, Rosamond | Riehle, Kevin P. | Rivera, Maria C. | Rodriguez-Mueller, Beltran | Rogers, Yu-Hui | Ross, Matthew C. | Russ, Carsten | Sanka, Ravi K. | Pamela Sankar, J. | Sathirapongsasuti, Fah | Schloss, Jeffery A. | Schloss, Patrick D. | Schmidt, Thomas M. | Scholz, Matthew | Schriml, Lynn | Schubert, Alyxandria M. | Segata, Nicola | Segre, Julia A. | Shannon, William D. | Sharp, Richard R. | Sharpton, Thomas J. | Shenoy, Narmada | Sheth, Nihar U. | Simone, Gina A. | Singh, Indresh | Smillie, Chris S. | Sobel, Jack D. | Sommer, Daniel D. | Spicer, Paul | Sutton, Granger G. | Sykes, Sean M. | Tabbaa, Diana G. | Thiagarajan, Mathangi | Tomlinson, Chad M. | Torralba, Manolito | Treangen, Todd J. | Truty, Rebecca M. | Vishnivetskaya, Tatiana A. | Walker, Jason | Wang, Lu | Wang, Zhengyuan | Ward, Doyle V. | Warren, Wesley | Watson, Mark A. | Wellington, Christopher | Wetterstrand, Kris A. | White, James R. | Wilczek-Boney, Katarzyna | Wu, Yuan Qing | Wylie, Kristine M. | Wylie, Todd | Yandava, Chandri | Ye, Liang | Ye, Yuzhen | Yooseph, Shibu | Youmans, Bonnie P. | Zhang, Lan | Zhou, Yanjiao | Zhu, Yiming | Zoloth, Laurie | Zucker, Jeremy D. | Birren, Bruce W. | Gibbs, Richard A. | Highlander, Sarah K. | Weinstock, George M. | Wilson, Richard K. | White, Owen
Nature  2012;486(7402):215-221.
A variety of microbial communities and their genes (microbiome) exist throughout the human body, playing fundamental roles in human health and disease. The NIH funded Human Microbiome Project (HMP) Consortium has established a population-scale framework which catalyzed significant development of metagenomic protocols resulting in a broad range of quality-controlled resources and data including standardized methods for creating, processing and interpreting distinct types of high-throughput metagenomic data available to the scientific community. Here we present resources from a population of 242 healthy adults sampled at 15 to 18 body sites up to three times, which to date, have generated 5,177 microbial taxonomic profiles from 16S rRNA genes and over 3.5 Tb of metagenomic sequence. In parallel, approximately 800 human-associated reference genomes have been sequenced. Collectively, these data represent the largest resource to date describing the abundance and variety of the human microbiome, while providing a platform for current and future studies.
doi:10.1038/nature11209
PMCID: PMC3377744  PMID: 22699610
7.  The Genome of the Basidiomycetous Yeast and Human Pathogen Cryptococcus neoformans 
Science (New York, N.Y.)  2005;307(5713):1321-1324.
Cryptococcus neoformans is a basidiomycetous yeast ubiquitous in the environment, a model for fungal pathogenesis, and an opportunistic human pathogen of global importance. We have sequenced its ~20-megabase genome, which contains ~6500 intron-rich gene structures and encodes a transcriptome abundant in alternatively spliced and antisense messages. The genome is rich in transposons, many of which cluster at candidate centromeric regions. The presence of these transposons may drive karyotype instability and phenotypic variation. C. neoformans encodes unique genes that may contribute to its unusual virulence properties, and comparison of two phenotypically distinct strains reveals variation in gene content in addition to sequence polymorphisms between the genomes.
doi:10.1126/science.1103773
PMCID: PMC3520129  PMID: 15653466
8.  Approaches to Fungal Genome Annotation 
Mycology  2011;2(3):118-141.
Fungal genome annotation is the starting point for analysis of genome content. This generally involves the application of diverse methods to identify features on a genome assembly such as protein-coding and non-coding genes, repeats and transposable elements, and pseudogenes. Here we describe tools and methods leveraged for eukaryotic genome annotation with a focus on the annotation of fungal nuclear and mitochondrial genomes. We highlight the application of the latest technologies and tools to improve the quality of predicted gene sets. The Broad Institute eukaryotic genome annotation pipeline is described as one example of how such methods and tools are integrated into a sequencing center’s production genome annotation environment.
doi:10.1080/21501203.2011.606851
PMCID: PMC3207268  PMID: 22059117
9.  Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications 
Yilmaz, Pelin | Kottmann, Renzo | Field, Dawn | Knight, Rob | Cole, James R | Amaral-Zettler, Linda | Gilbert, Jack A | Karsch-Mizrachi, Ilene | Johnston, Anjanette | Cochrane, Guy | Vaughan, Robert | Hunter, Christopher | Park, Joonhong | Morrison, Norman | Rocca-Serra, Philippe | Sterk, Peter | Arumugam, Manimozhiyan | Bailey, Mark | Baumgartner, Laura | Birren, Bruce W | Blaser, Martin J | Bonazzi, Vivien | Booth, Tim | Bork, Peer | Bushman, Frederic D | Buttigieg, Pier Luigi | Chain, Patrick S G | Charlson, Emily | Costello, Elizabeth K | Huot-Creasy, Heather | Dawyndt, Peter | DeSantis, Todd | Fierer, Noah | Fuhrman, Jed A | Gallery, Rachel E | Gevers, Dirk | Gibbs, Richard A | Gil, Inigo San | Gonzalez, Antonio | Gordon, Jeffrey I | Guralnick, Robert | Hankeln, Wolfgang | Highlander, Sarah | Hugenholtz, Philip | Jansson, Janet | Kau, Andrew L | Kelley, Scott T | Kennedy, Jerry | Knights, Dan | Koren, Omry | Kuczynski, Justin | Kyrpides, Nikos | Larsen, Robert | Lauber, Christian L | Legg, Teresa | Ley, Ruth E | Lozupone, Catherine A | Ludwig, Wolfgang | Lyons, Donna | Maguire, Eamonn | Methé, Barbara A | Meyer, Folker | Muegge, Brian | Nakielny, Sara | Nelson, Karen E | Nemergut, Diana | Neufeld, Josh D | Newbold, Lindsay K | Oliver, Anna E | Pace, Norman R | Palanisamy, Giriprakash | Peplies, Jörg | Petrosino, Joseph | Proctor, Lita | Pruesse, Elmar | Quast, Christian | Raes, Jeroen | Ratnasingham, Sujeevan | Ravel, Jacques | Relman, David A | Assunta-Sansone, Susanna | Schloss, Patrick D | Schriml, Lynn | Sinha, Rohini | Smith, Michelle I | Sodergren, Erica | Spor, Aymé | Stombaugh, Jesse | Tiedje, James M | Ward, Doyle V | Weinstock, George M | Wendel, Doug | White, Owen | Whiteley, Andrew | Wilke, Andreas | Wortman, Jennifer R | Yatsunenko, Tanya | Glöckner, Frank Oliver
Nature Biotechnology  2011;29(5):415-420.
Here we present a standard developed by the Genomic Standards Consortium (GSC) for reporting marker gene sequences—the minimum information about a marker gene sequence (MIMARKS). We also introduce a system for describing the environment from which a biological sample originates. The ‘environmental packages’ apply to any genome sequence of known origin and can be used in combination with MIMARKS and other GSC checklists. Finally, to establish a unified standard for describing sequence data and to provide a single point of entry for the scientific community to access and learn about GSC checklists, we present the minimum information about any (x) sequence (MIxS). Adoption of MIxS will enhance our ability to analyze natural genetic diversity documented by massive DNA sequencing efforts from myriad ecosystems in our ever-changing biosphere.
doi:10.1038/nbt.1823
PMCID: PMC3367316  PMID: 21552244
10.  The Aspergillus Genome Database (AspGD): recent developments in comprehensive multispecies curation, comparative genomics and community resources 
Nucleic Acids Research  2011;40(Database issue):D653-D659.
The Aspergillus Genome Database (AspGD; http://www.aspgd.org) is a freely available, web-based resource for researchers studying fungi of the genus Aspergillus, which includes organisms of clinical, agricultural and industrial importance. AspGD curators have now completed comprehensive review of the entire published literature about Aspergillus nidulans and Aspergillus fumigatus, and this annotation is provided with streamlined, ortholog-based navigation of the multispecies information. AspGD facilitates comparative genomics by providing a full-featured genomics viewer, as well as matched and standardized sets of genomic information for the sequenced aspergilli. AspGD also provides resources to foster interaction and dissemination of community information and resources. We welcome and encourage feedback at aspergillus-curator@lists.stanford.edu.
doi:10.1093/nar/gkr875
PMCID: PMC3245136  PMID: 22080559
11.  New resources for functional analysis of omics data for the genus Aspergillus 
BMC Genomics  2011;12:486.
Background
Detailed and comprehensive genome annotation can be considered a prerequisite for effective analysis and interpretation of omics data. As such, Gene Ontology (GO) annotation has become a well accepted framework for functional annotation. The genus Aspergillus comprises fungal species that are important model organisms, plant and human pathogens as well as industrial workhorses. However, GO annotation based on both computational predictions and extended manual curation has so far only been available for one of its species, namely A. nidulans.
Results
Based on protein homology, we mapped 97% of the 3,498 GO annotated A. nidulans genes to at least one of seven other Aspergillus species: A. niger, A. fumigatus, A. flavus, A. clavatus, A. terreus, A. oryzae and Neosartorya fischeri. GO annotation files compatible with diverse publicly available tools have been generated and deposited online. To further improve their accessibility, we developed a web application for GO enrichment analysis named FetGOat and integrated GO annotations for all Aspergillus species with public genome sequences. Both the annotation files and the web application FetGOat are accessible via the Broad Institute's website (http://www.broadinstitute.org/fetgoat/index.html). To demonstrate the value of those new resources for functional analysis of omics data for the genus Aspergillus, we performed two case studies analyzing microarray data recently published for A. nidulans, A. niger and A. oryzae.
Conclusions
We mapped A. nidulans GO annotation to seven other Aspergilli. By depositing the newly mapped GO annotation online as well as integrating it into the web tool FetGOat, we provide new, valuable and easily accessible resources for omics data analysis and interpretation for the genus Aspergillus. Furthermore, we have given a general example of how a well annotated genome can help improving GO annotation of related species to subsequently facilitate the interpretation of omics data.
doi:10.1186/1471-2164-12-486
PMCID: PMC3217955  PMID: 21974739
12.  Draft genome sequence of the ricin-producing oilseed castor bean 
Nature biotechnology  2010;28(9):951-956.
Castor bean (Ricinus communis) is an oil crop that belongs to the spurge (Euphorbiaceae) family. Its seeds are the source of castor oil, used for the production of high-quality lubricants due to its high proportion of the unusual fatty acid ricinoleic acid. Castor bean seeds also produce ricin, a highly toxic ribosome inactivating protein, making castor bean relevant for biosafety. We report here the 4.6X draft genome sequence of castor bean, representing the first reported Euphorbiaceae genome sequence. Our analysis shows that most key castor oil metabolism genes are single-copy while the ricin gene family is larger than previously thought. Comparative genomics analysis suggests the presence of an ancient hexaploidization event that is conserved across the dicotyledonous lineage.
doi:10.1038/nbt.1674
PMCID: PMC2945230  PMID: 20729833
13.  Comparative genomics of the neglected human malaria parasite Plasmodium vivax 
Nature  2008;455(7214):757-763.
The human malaria parasite Plasmodium vivax is responsible for 25-40% of the ~515 million annual cases of malaria worldwide. Although seldom fatal, the parasite elicits severe and incapacitating clinical symptoms and often relapses months after a primary infection has cleared. Despite its importance as a major human pathogen, P. vivax is little studied because it cannot be propagated in the laboratory except in non-human primates. We determined the genome sequence of P. vivax in order to shed light on its distinctive biologic features, and as a means to drive development of new drugs and vaccines. Here we describe the synteny and isochore structure of P. vivax chromosomes, and show that the parasite resembles other malaria parasites in gene content and metabolic potential, but possesses novel gene families and potential alternate invasion pathways not recognized previously. Completion of the P. vivax genome provides the scientific community with a valuable resource that can be used to advance scientific investigation into this neglected species.
doi:10.1038/nature07327
PMCID: PMC2651158  PMID: 18843361
14.  Comparative Genomics of the Eukaryotes 
Science (New York, N.Y.)  2000;287(5461):2204-2215.
A comparative analysis of the genomes of Drosophila melanogaster, Caenorhabditis elegans, and Saccharomyces cerevisiae—and the proteins they are predicted to encode—was undertaken in the context of cellular, developmental, and evolutionary processes. The nonredundant protein sets of flies and worms are similar in size and are only twice that of yeast, but different gene families are expanded in each genome, and the multidomain proteins and signaling pathways of the fly and worm are far more complex than those of yeast. The fly has orthologs to 177 of the 289 human disease genes examined and provides the foundation for rapid analysis of some of the basic processes involved in human disease.
PMCID: PMC2754258  PMID: 10731134
15.  The Aspergillus Genome Database, a curated comparative genomics resource for gene, protein and sequence information for the Aspergillus research community 
Nucleic Acids Research  2009;38(Database issue):D420-D427.
The Aspergillus Genome Database (AspGD) is an online genomics resource for researchers studying the genetics and molecular biology of the Aspergilli. AspGD combines high-quality manual curation of the experimental scientific literature examining the genetics and molecular biology of Aspergilli, cutting-edge comparative genomics approaches to iteratively refine and improve structural gene annotations across multiple Aspergillus species, and web-based research tools for accessing and exploring the data. All of these data are freely available at http://www.aspgd.org. We welcome feedback from users and the research community at aspergillus-curator@genome.stanford.edu.
doi:10.1093/nar/gkp751
PMCID: PMC2808984  PMID: 19773420
16.  Draft Genome of the Filarial Nematode Parasite Brugia malayi 
Science (New York, N.Y.)  2007;317(5845):1756-1760.
Parasitic nematodes that cause elephantiasis and river blindness threaten hundreds of millions of people in the developing world. We have sequenced the ~90 megabase (Mb) genome of the human filarial parasite Brugia malayi and predict ~11,500 protein coding genes in 71 Mb of robustly assembled sequence. Comparative analysis with the free-living, model nematode Caenorhabditis elegans revealed that, despite these genes having maintained little conservation of local synteny during ~350 million years of evolution, they largely remain in linkage on chromosomal units. More than 100 conserved operons were identified. Analysis of the predicted proteome provides evidence for adaptations of B. malayi to niches in its human and vector hosts and insights into the molecular basis of a mutualistic relationship with its Wolbachia endosymbiont. These findings offer a foundation for rational drug design.
doi:10.1126/science.1145406
PMCID: PMC2613796  PMID: 17885136
17.  Refined annotation and assembly of the Tetrahymena thermophila genome sequence through EST analysis, comparative genomic hybridization, and targeted gap closure 
BMC Genomics  2008;9:562.
Background
Tetrahymena thermophila, a widely studied model for cellular and molecular biology, is a binucleated single-celled organism with a germline micronucleus (MIC) and somatic macronucleus (MAC). The recent draft MAC genome assembly revealed low sequence repetitiveness, a result of the epigenetic removal of invasive DNA elements found only in the MIC genome. Such low repetitiveness makes complete closure of the MAC genome a feasible goal, which to achieve would require standard closure methods as well as removal of minor MIC contamination of the MAC genome assembly. Highly accurate preliminary annotation of Tetrahymena's coding potential was hindered by the lack of both comparative genomic sequence information from close relatives and significant amounts of cDNA evidence, thus limiting the value of the genomic information and also leaving unanswered certain questions, such as the frequency of alternative splicing.
Results
We addressed the problem of MIC contamination using comparative genomic hybridization with purified MIC and MAC DNA probes against a whole genome oligonucleotide microarray, allowing the identification of 763 genome scaffolds likely to contain MIC-limited DNA sequences. We also employed standard genome closure methods to essentially finish over 60% of the MAC genome. For the improvement of annotation, we have sequenced and analyzed over 60,000 verified EST reads from a variety of cellular growth and development conditions. Using this EST evidence, a combination of automated and manual reannotation efforts led to updates that affect 16% of the current protein-coding gene models. By comparing EST abundance, many genes showing apparent differential expression between these conditions were identified. Rare instances of alternative splicing and uses of the non-standard amino acid selenocysteine were also identified.
Conclusion
We report here significant progress in genome closure and reannotation of Tetrahymena thermophila. Our experience to date suggests that complete closure of the MAC genome is attainable. Using the new EST evidence, automated and manual curation has resulted in substantial improvements to the over 24,000 gene models, which will be valuable to researchers studying this model organism as well as for comparative genomics purposes.
doi:10.1186/1471-2164-9-562
PMCID: PMC2612030  PMID: 19036158
18.  Genomic Islands in the Pathogenic Filamentous Fungus Aspergillus fumigatus 
PLoS Genetics  2008;4(4):e1000046.
We present the genome sequences of a new clinical isolate of the important human pathogen, Aspergillus fumigatus, A1163, and two closely related but rarely pathogenic species, Neosartorya fischeri NRRL181 and Aspergillus clavatus NRRL1. Comparative genomic analysis of A1163 with the recently sequenced A. fumigatus isolate Af293 has identified core, variable and up to 2% unique genes in each genome. While the core genes are 99.8% identical at the nucleotide level, identity for variable genes can be as low 40%. The most divergent loci appear to contain heterokaryon incompatibility (het) genes associated with fungal programmed cell death such as developmental regulator rosA. Cross-species comparison has revealed that 8.5%, 13.5% and 12.6%, respectively, of A. fumigatus, N. fischeri and A. clavatus genes are species-specific. These genes are significantly smaller in size than core genes, contain fewer exons and exhibit a subtelomeric bias. Most of them cluster together in 13 chromosomal islands, which are enriched for pseudogenes, transposons and other repetitive elements. At least 20% of A. fumigatus-specific genes appear to be functional and involved in carbohydrate and chitin catabolism, transport, detoxification, secondary metabolism and other functions that may facilitate the adaptation to heterogeneous environments such as soil or a mammalian host. Contrary to what was suggested previously, their origin cannot be attributed to horizontal gene transfer (HGT), but instead is likely to involve duplication, diversification and differential gene loss (DDL). The role of duplication in the origin of lineage-specific genes is further underlined by the discovery of genomic islands that seem to function as designated “gene dumps” and, perhaps, simultaneously, as “gene factories”.
Author Summary
Aspergillus is an extremely diverse genus of filamentous ascomycetous fungi (molds) found ubiquitously in soil and decomposing vegetation. Being supreme opportunists, aspergilli have adapted to overcome various chemical, physical, and biological stresses found in heterogeneous environments. While most species in the genus are saprophytes, a surprising number are able to infect wounded plants and animals. Remarkably, the allergic human host also responds abnormally to the aspergilli with lung and sinus disease. The advent of immunosuppressive agents and other medical advances have created a large worldwide pool of human hosts susceptible to some Aspergillus species, including the world's most harmful mold and the causative agent of invasive aspergillosis, Aspergillus fumigatus. In this study, we have used the power of comparative genomics to gain insight into genetic mechanisms that may contribute to the metabolic versatility and pathogenicity of this important human pathogen. Comparison of the genomes of two A. fumigatus clinical isolates and two closely related, but rarely pathogenic species showed that their genomes contain several large isolate- and species-specific chromosomal islands. The metabolic capabilities encoded by these highly labile regions are likely to contribute to their rapid adaptation to heterogeneous environments such as soil or a living host.
doi:10.1371/journal.pgen.1000046
PMCID: PMC2289846  PMID: 18404212
19.  Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments 
Genome Biology  2008;9(1):R7.
EVidenceModeler (EVM) is an automated annotation tool that predicts protein-coding regions, alternatively spliced transcripts and untranslated regions of eukaryotic genes.
EVidenceModeler (EVM) is presented as an automated eukaryotic gene structure annotation tool that reports eukaryotic gene structures as a weighted consensus of all available evidence. EVM, when combined with the Program to Assemble Spliced Alignments (PASA), yields a comprehensive, configurable annotation system that predicts protein-coding genes and alternatively spliced isoforms. Our experiments on both rice and human genome sequences demonstrate that EVM produces automated gene structure annotation approaching the quality of manual curation.
doi:10.1186/gb-2008-9-1-r7
PMCID: PMC2395244  PMID: 18190707
20.  Draft Genome Sequence of the Sexually Transmitted Pathogen Trichomonas vaginalis 
Science (New York, N.Y.)  2007;315(5809):207-212.
We describe the genome sequence of the protist Trichomonas vaginalis, a sexually transmitted human pathogen. Repeats and transposable elements comprise about two-thirds of the ~160-megabase genome, reflecting a recent massive expansion of genetic material. This expansion, in conjunction with the shaping of metabolic pathways that likely transpired through lateral gene transfer from bacteria, and amplification of specific gene families implicated in pathogenesis and phagocytosis of host proteins may exemplify adaptations of the parasite during its transition to a urogenital environment. The genome sequence predicts previously unknown functions for the hydrogenosome, which support a common evolutionary origin of this unusual organelle with mitochondria.
doi:10.1126/science.1132894
PMCID: PMC2080659  PMID: 17218520
21.  Genome Sequence of Babesia bovis and Comparative Analysis of Apicomplexan Hemoprotozoa 
PLoS Pathogens  2007;3(10):e148.
Babesia bovis is an apicomplexan tick-transmitted pathogen of cattle imposing a global risk and severe constraints to livestock health and economic development. The complete genome sequence was undertaken to facilitate vaccine antigen discovery, and to allow for comparative analysis with the related apicomplexan hemoprotozoa Theileria parva and Plasmodium falciparum. At 8.2 Mbp, the B. bovis genome is similar in size to that of Theileria spp. Structural features of the B. bovis and T. parva genomes are remarkably similar, and extensive synteny is present despite several chromosomal rearrangements. In contrast, B. bovis and P. falciparum, which have similar clinical and pathological features, have major differences in genome size, chromosome number, and gene complement. Chromosomal synteny with P. falciparum is limited to microregions. The B. bovis genome sequence has allowed wide scale analyses of the polymorphic variant erythrocyte surface antigen protein (ves1 gene) family that, similar to the P. falciparum var genes, is postulated to play a role in cytoadhesion, sequestration, and immune evasion. The ∼150 ves1 genes are found in clusters that are distributed throughout each chromosome, with an increased concentration adjacent to a physical gap on chromosome 1 that contains multiple ves1-like sequences. ves1 clusters are frequently linked to a novel family of variant genes termed smorfs that may themselves contribute to immune evasion, may play a role in variant erythrocyte surface antigen protein biology, or both. Initial expression analysis of ves1 and smorf genes indicates coincident transcription of multiple variants. B. bovis displays a limited metabolic potential, with numerous missing pathways, including two pathways previously described for the P. falciparum apicoplast. This reduced metabolic potential is reflected in the B. bovis apicoplast, which appears to have fewer nuclear genes targeted to it than other apicoplast containing organisms. Finally, comparative analyses have identified several novel vaccine candidates including a positional homolog of p67 and SPAG-1, Theileria sporozoite antigens targeted for vaccine development. The genome sequence provides a greater understanding of B. bovis metabolism and potential avenues for drug therapies and vaccine development.
Author Summary
Vector-transmitted blood parasites cause some of the most widely distributed, serious, and poorly controlled diseases globally, including the most severe form of human malaria caused by Plasmodium falciparum. In livestock, tick-transmitted blood parasites include the protozoa Theileria parva, the cause of East Coast fever and Babesia bovis, the cause of tick fever, to which well over half of the world's cattle population are at risk. There is a critical need to better understand the mechanisms by which these parasites are transmitted, persist, and cause disease in order to optimize methods for control, including development of vaccines. This manuscript presents the genome sequence of B. bovis, and provides a whole genome comparative analysis with P. falciparum and T. parva. Genome-wide characterization of the B. bovis antigenically variable ves1 family reveals interesting differences in organization and expression from the related P. falciparum var genes. The second largest gene family (smorf) in B. bovis was newly discovered and may itself be involved in persistence, highlighting the utility of this approach in gene discovery. Organization and structure of the B. bovis genome is most similar to that of Theileria, and despite common features in clinical outcome is limited to microregional similarity with P. falciparum. Comparative gene analysis identifies several previously unknown proteins as homologs of vaccine candidates in one or more of these parasites, and candidate genes whose expression might account for unique properties such as the ability of Theileria to reversibly transform leukocytes.
doi:10.1371/journal.ppat.0030148
PMCID: PMC2034396  PMID: 17953480
22.  Transcriptional Regulation of Chemical Diversity in Aspergillus fumigatus by LaeA 
PLoS Pathogens  2007;3(4):e50.
Secondary metabolites, including toxins and melanins, have been implicated as virulence attributes in invasive aspergillosis. Although not definitively proved, this supposition is supported by the decreased virulence of an Aspergillus fumigatus strain, ΔlaeA, that is crippled in the production of numerous secondary metabolites. However, loss of a single LaeA-regulated toxin, gliotoxin, did not recapitulate the hypovirulent ΔlaeA pathotype, thus implicating other toxins whose production is governed by LaeA. Toward this end, a whole-genome comparison of the transcriptional profile of wild-type, ΔlaeA, and complemented control strains showed that genes in 13 of 22 secondary metabolite gene clusters, including several A. fumigatus–specific mycotoxin clusters, were expressed at significantly lower levels in the ΔlaeA mutant. LaeA influences the expression of at least 9.5% of the genome (943 of 9,626 genes in A. fumigatus) but positively controls expression of 20% to 40% of major classes of secondary metabolite biosynthesis genes such as nonribosomal peptide synthetases (NRPSs), polyketide synthases, and P450 monooxygenases. Tight regulation of NRPS-encoding genes was highlighted by quantitative real-time reverse-transcription PCR analysis. In addition, expression of a putative siderophore biosynthesis NRPS (NRPS2/sidE) was greatly reduced in the ΔlaeA mutant in comparison to controls under inducing iron-deficient conditions. Comparative genomic analysis showed that A. fumigatus secondary metabolite gene clusters constitute evolutionarily diverse regions that may be important for niche adaptation and virulence attributes. Our findings suggest that LaeA is a novel target for comprehensive modification of chemical diversity and pathogenicity.
Author Summary
Patients with suppressed immune systems due to cancer treatments, HIV/AIDS, or organ transplantation are at high risk of infection from microbes. Some of the most deadly infections for such patients arise from a fungal pathogen, Aspergillus fumigatus. This species, like several of its close relatives, can produce an array of small chemical compounds that influences both the infection process and its environmental niche outside of the host. The genes dedicated to production of each compound are clustered adjacent to each other in the genome. One protein named LaeA is a master regulator of such clustered small molecule genes, and removal of the gene encoding LaeA cripples the organism's ability to infect. We conducted a genome-wide microarray experiment to identify small molecule gene clusters controlled by the presence of LaeA in A. fumigatus. In doing so, we identified actively expressed gene clusters critical for small molecule production and potentially involved in disease progression. These results also provide insight into evolutionary events shaping the organism's collection of chemical compounds.
doi:10.1371/journal.ppat.0030050
PMCID: PMC1851976  PMID: 17432932
23.  Macronuclear Genome Sequence of the Ciliate Tetrahymena thermophila, a Model Eukaryote 
PLoS Biology  2006;4(9):e286.
The ciliate Tetrahymena thermophila is a model organism for molecular and cellular biology. Like other ciliates, this species has separate germline and soma functions that are embodied by distinct nuclei within a single cell. The germline-like micronucleus (MIC) has its genome held in reserve for sexual reproduction. The soma-like macronucleus (MAC), which possesses a genome processed from that of the MIC, is the center of gene expression and does not directly contribute DNA to sexual progeny. We report here the shotgun sequencing, assembly, and analysis of the MAC genome of T. thermophila, which is approximately 104 Mb in length and composed of approximately 225 chromosomes. Overall, the gene set is robust, with more than 27,000 predicted protein-coding genes, 15,000 of which have strong matches to genes in other organisms. The functional diversity encoded by these genes is substantial and reflects the complexity of processes required for a free-living, predatory, single-celled organism. This is highlighted by the abundance of lineage-specific duplications of genes with predicted roles in sensing and responding to environmental conditions (e.g., kinases), using diverse resources (e.g., proteases and transporters), and generating structural complexity (e.g., kinesins and dyneins). In contrast to the other lineages of alveolates (apicomplexans and dinoflagellates), no compelling evidence could be found for plastid-derived genes in the genome. UGA, the only T. thermophila stop codon, is used in some genes to encode selenocysteine, thus making this organism the first known with the potential to translate all 64 codons in nuclear genes into amino acids. We present genomic evidence supporting the hypothesis that the excision of DNA from the MIC to generate the MAC specifically targets foreign DNA as a form of genome self-defense. The combination of the genome sequence, the functional diversity encoded therein, and the presence of some pathways missing from other model organisms makes T. thermophila an ideal model for functional genomic studies to address biological, biomedical, and biotechnological questions of fundamental importance.
The macronuclear genome ofTetrahymena thermophila is sequenced and analyzed. Conservation in this single-celled ciliate of some features normally observed in only multicellular organisms sheds light on early eukaryotic evolution.
doi:10.1371/journal.pbio.0040286
PMCID: PMC1557398  PMID: 16933976
24.  Comparative analysis of programmed cell death pathways in filamentous fungi 
BMC Genomics  2005;6:177.
Background
Fungi can undergo autophagic- or apoptotic-type programmed cell death (PCD) on exposure to antifungal agents, developmental signals, and stress factors. Filamentous fungi can also exhibit a form of cell death called heterokaryon incompatibility (HI) triggered by fusion between two genetically incompatible individuals. With the availability of recently sequenced genomes of Aspergillus fumigatus and several related species, we were able to define putative components of fungi-specific death pathways and the ancestral core apoptotic machinery shared by all fungi and metazoa.
Results
Phylogenetic profiling of HI-associated proteins from four Aspergilli and seven other fungal species revealed lineage-specific protein families, orphan genes, and core genes conserved across all fungi and metazoa. The Aspergilli-specific domain architectures include NACHT family NTPases, which may function as key integrators of stress and nutrient availability signals. They are often found fused to putative effector domains such as Pfs, SesB/LipA, and a newly identified domain, HET-s/LopB. Many putative HI inducers and mediators are specific to filamentous fungi and not found in unicellular yeasts. In addition to their role in HI, several of them appear to be involved in regulation of cell cycle, development and sexual differentiation. Finally, the Aspergilli possess many putative downstream components of the mammalian apoptotic machinery including several proteins not found in the model yeast, Saccharomyces cerevisiae.
Conclusion
Our analysis identified more than 100 putative PCD associated genes in the Aspergilli, which may help expand the range of currently available treatments for aspergillosis and other invasive fungal diseases. The list includes species-specific protein families as well as conserved core components of the ancestral PCD machinery shared by fungi and metazoa.
doi:10.1186/1471-2164-6-177
PMCID: PMC1325252  PMID: 16336669
25.  Complete reannotation of the Arabidopsis genome: methods, tools, protocols and the final release 
BMC Biology  2005;3:7.
Background
Since the initial publication of its complete genome sequence, Arabidopsis thaliana has become more important than ever as a model for plant research. However, the initial genome annotation was submitted by multiple centers using inconsistent methods, making the data difficult to use for many applications.
Results
Over the course of three years, TIGR has completed its effort to standardize the structural and functional annotation of the Arabidopsis genome. Using both manual and automated methods, Arabidopsis gene structures were refined and gene products were renamed and assigned to Gene Ontology categories. We present an overview of the methods employed, tools developed, and protocols followed, summarizing the contents of each data release with special emphasis on our final annotation release (version 5).
Conclusion
Over the entire period, several thousand new genes and pseudogenes were added to the annotation. Approximately one third of the originally annotated gene models were significantly refined yielding improved gene structure annotations, and every protein-coding gene was manually inspected and classified using Gene Ontology terms.
doi:10.1186/1741-7007-3-7
PMCID: PMC1082884  PMID: 15784138

Results 1-25 (26)