Search tips
Search criteria

Results 1-25 (27)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
Document Types
author:("taches, Jan")
1.  Novel Functions of an Iron-Sulfur Flavoprotein from Trichomonas vaginalis Hydrogenosomes 
Iron-sulfur flavoproteins (Isf) are flavin mononucleotide (FMN)- and FeS cluster-containing proteins commonly encountered in anaerobic prokaryotes. However, with the exception of Isf from Methanosarcina thermophila, which participates in oxidative stress management by removing oxygen and hydrogen peroxide, none of these proteins has been characterized in terms of function. Trichomonas vaginalis, a sexually transmitted eukaryotic parasite of humans, was found to express several iron-sulfur flavoprotein (TvIsf) homologs in its hydrogenosomes. We show here that in addition to having oxygen-reducing activity, the recombinant TvIsf also functions as a detoxifying reductase of metronidazole and chloramphenicol, both of which are antibiotics effective against a variety of anaerobic microbes. TvIsf can utilize both NADH and reduced ferredoxin as electron donors. Given the prevalence of Isf in anaerobic prokaryotes, we propose that these proteins are central to a novel defense mechanism against xenobiotics.
PMCID: PMC4068489  PMID: 24663020
2.  Giardia intestinalis Incorporates Heme into Cytosolic Cytochrome b5 
Eukaryotic Cell  2014;13(2):231-239.
The anaerobic intestinal pathogen Giardia intestinalis does not possess enzymes for heme synthesis, and it also lacks the typical set of hemoproteins that are involved in mitochondrial respiration and cellular oxygen stress management. Nevertheless, G. intestinalis may require heme for the function of particular hemoproteins, such as cytochrome b5 (cytb5). We have analyzed the sequences of eukaryotic cytb5 proteins and identified three distinct cytb5 groups: group I, which consists of C-tail membrane-anchored cytb5 proteins; group II, which includes soluble cytb5 proteins; and group III, which comprises the fungal cytb5 proteins. The majority of eukaryotes possess both group I and II cytb5 proteins, whereas three Giardia paralogs belong to group II. We have identified a fourth Giardia cytb5 paralog (gCYTb5-IV) that is rather divergent and possesses an unusual 134-residue N-terminal extension. Recombinant Giardia cytb5 proteins, including gCYTb5-IV, were expressed in Escherichia coli and exhibited characteristic UV-visible spectra that corresponded to heme-loaded cytb5 proteins. The expression of the recombinant gCYTb5-IV in G. intestinalis resulted in the increased import of extracellular heme and its incorporation into the protein, whereas this effect was not observed when gCYTb5-IV containing a mutated heme-binding site was expressed. The electrons for Giardia cytb5 proteins may be provided by the NADPH-dependent Tah18-like oxidoreductase GiOR-1. Therefore, GiOR-1 and cytb5 may constitute a novel redox system in G. intestinalis. To our knowledge, G. intestinalis is the first anaerobic eukaryote in which the presence of heme has been directly demonstrated.
PMCID: PMC3910980  PMID: 24297440
3.  A Nonmitochondrial Hydrogen Production in Naegleria gruberi 
Genome Biology and Evolution  2014;6(4):792-799.
Naegleria gruberi is a free-living heterotrophic aerobic amoeba well known for its ability to transform from an amoeba to a flagellate form. The genome of N. gruberi has been recently published, and in silico predictions demonstrated that Naegleria has the capacity for both aerobic respiration and anaerobic biochemistry to produce molecular hydrogen in its mitochondria. This finding was considered to have fundamental implications on the evolution of mitochondrial metabolism and of the last eukaryotic common ancestor. However, no actual experimental data have been shown to support this hypothesis. For this reason, we have decided to investigate the anaerobic metabolism of the mitochondrion of N. gruberi. Using in vivo biochemical assays, we have demonstrated that N. gruberi has indeed a functional [FeFe]-hydrogenase, an enzyme that is attributed to anaerobic organisms. Surprisingly, in contrast to the published predictions, we have demonstrated that hydrogenase is localized exclusively in the cytosol, while no hydrogenase activity was associated with mitochondria of the organism. In addition, cytosolic localization displayed for HydE, a marker component of hydrogenase maturases. Naegleria gruberi, an obligate aerobic organism and one of the earliest eukaryotes, is producing hydrogen, a function that raises questions on the purpose of this pathway for the lifestyle of the organism and potentially on the evolution of eukaryotes.
PMCID: PMC4007538  PMID: 24682152
Naegleria; hydrogenase; maturases; mitochondrial evolution; hydrogen hypothesis
4.  Iron-Induced Changes in the Proteome of Trichomonas vaginalis Hydrogenosomes 
PLoS ONE  2013;8(5):e65148.
Iron plays a crucial role in metabolism as a key component of catalytic and redox cofactors, such as heme or iron-sulfur clusters in enzymes and electron-transporting or regulatory proteins. Limitation of iron availability by the host is also one of the mechanisms involved in immunity. Pathogens must regulate their protein expression according to the iron concentration in their environment and optimize their metabolic pathways in cases of limitation through the availability of respective cofactors. Trichomonas vaginalis, a sexually transmitted pathogen of humans, requires high iron levels for optimal growth. It is an anaerobe that possesses hydrogenosomes, mitochondrion-related organelles that harbor pathways of energy metabolism and iron-sulfur cluster assembly. We analyzed the proteomes of hydrogenosomes obtained from cells cultivated under iron-rich and iron-deficient conditions employing two-dimensional peptide separation combining IEF and nano-HPLC with quantitative MALDI-MS/MS. We identified 179 proteins, of which 58 were differentially expressed. Iron deficiency led to the upregulation of proteins involved in iron-sulfur cluster assembly and the downregulation of enzymes involved in carbohydrate metabolism. Interestingly, iron affected the expression of only some of multiple protein paralogues, whereas the expression of others was iron independent. This finding indicates a stringent regulation of differentially expressed multiple gene copies in response to changes in the availability of exogenous iron.
PMCID: PMC3669245  PMID: 23741475
5.  An Advanced System of the Mitochondrial Processing Peptidase and Core Protein Family in Trypanosoma brucei and Multiple Origins of the Core I Subunit in Eukaryotes 
Genome Biology and Evolution  2013;5(5):860-875.
Mitochondrial processing peptidase (MPP) consists of α and β subunits that catalyze the cleavage of N-terminal mitochondrial-targeting sequences (N-MTSs) and deliver preproteins to the mitochondria. In plants, both MPP subunits are associated with the respiratory complex bc1, which has been proposed to represent an ancestral form. Subsequent duplication of MPP subunits resulted in separate sets of genes encoding soluble MPP in the matrix and core proteins (cp1 and cp2) of the membrane-embedded bc1 complex. As only α-MPP was duplicated in Neurospora, its single β–MPP functions in both MPP and bc1 complexes. Herein, we investigated the MPP/core protein family and N-MTSs in the kinetoplastid Trypanosoma brucei, which is often considered one of the most ancient eukaryotes. Analysis of N-MTSs predicted in 336 mitochondrial proteins showed that trypanosomal N-MTSs were comparable with N-MTSs from other organisms. N-MTS cleavage is mediated by a standard heterodimeric MPP, which is present in the matrix of procyclic and bloodstream trypanosomes, and its expression is essential for the parasite. Distinct Genes encode cp1 and cp2, and in the bloodstream forms the expression of cp1 is downregulated along with the bc1 complex. Phylogenetic analysis revealed that all eukaryotic lineages include members with a Neurospora-type MPP/core protein family, whereas cp1 evolved independently in metazoans, some fungi and kinetoplastids. Evolution of cp1 allowed the independent regulation of respiration and protein import, which is essential for the procyclic and bloodstream forms of T. brucei. These results indicate that T. brucei possesses a highly derived MPP/core protein family that likely evolved in response to its complex life cycle and does not appear to have an ancient character proposed earlier for this eukaryote.
PMCID: PMC3673636  PMID: 23563972
mitochondrial processing peptidase; bc1 complex; mitochondrial targeting sequence; trypanosome; evolution
6.  The Mitochondrion-Like Organelle of Trimastix pyriformis Contains the Complete Glycine Cleavage System 
PLoS ONE  2013;8(3):e55417.
All eukaryotic organisms contain mitochondria or organelles that evolved from the same endosymbiotic event like classical mitochondria. Organisms inhabiting low oxygen environments often contain mitochondrial derivates known as hydrogenosomes, mitosomes or neutrally as mitochondrion-like organelles. The detailed investigation has shown unexpected evolutionary plasticity in the biochemistry and protein composition of these organelles in various protists. We investigated the mitochondrion-like organelle in Trimastix pyriformis, a free-living member of one of the three lineages of anaerobic group Metamonada. Using 454 sequencing we have obtained 7 037 contigs from its transcriptome and on the basis of sequence homology and presence of N-terminal extensions we have selected contigs coding for proteins that putatively function in the organelle. Together with the results of a previous transcriptome survey, the list now consists of 23 proteins – mostly enzymes involved in amino acid metabolism, transporters and maturases of proteins and transporters of metabolites. We have no evidence of the production of ATP in the mitochondrion-like organelle of Trimastix but we have obtained experimental evidence for the presence of enzymes of the glycine cleavage system (GCS), which is part of amino acid metabolism. Using homologous antibody we have shown that H-protein of GCS localizes into vesicles in the cell of Trimastix. When overexpressed in yeast, H- and P-protein of GCS and cpn60 were transported into mitochondrion. In case of H-protein we have demonstrated that the first 16 amino acids are necessary for this transport. Glycine cleavage system is at the moment the only experimentally localized pathway in the mitochondrial derivate of Trimastix pyriformis.
PMCID: PMC3596361  PMID: 23516392
7.  Histone H3 Variants in Trichomonas vaginalis 
Eukaryotic Cell  2012;11(5):654-661.
The parabasalid protist Trichomonas vaginalis is a widespread parasite that affects humans, frequently causing vaginitis in infected women. Trichomonad mitosis is marked by the persistence of the nuclear membrane and the presence of an asymmetric extranuclear spindle with no obvious direct connection to the chromosomes. No centromeric markers have been described in T. vaginalis, which has prevented a detailed analysis of mitotic events in this organism. In other eukaryotes, nucleosomes of centromeric chromatin contain the histone H3 variant CenH3. The principal aim of this work was to identify a CenH3 homolog in T. vaginalis. We performed a screen of the T. vaginalis genome to retrieve sequences of canonical and variant H3 histones. Three variant histone H3 proteins were identified, and the subcellular localization of their epitope-tagged variants was determined. The localization of the variant TVAG_185390 could not be distinguished from that of the canonical H3 histone. The sequence of the variant TVAG_087830 closely resembled that of histone H3. The tagged protein colocalized with sites of active transcription, indicating that the variant TVAG_087830 represented H3.3 in T. vaginalis. The third H3 variant (TVAG_224460) was localized to 6 or 12 distinct spots at the periphery of the nucleus, corresponding to the number of chromosomes in G1 phase and G2 phase, respectively. We propose that this variant represents the centromeric marker CenH3 and thus can be employed as a tool to study mitosis in T. vaginalis. Furthermore, we suggest that the peripheral distribution of CenH3 within the nucleus results from the association of centromeres with the nuclear envelope throughout the cell cycle.
PMCID: PMC3346420  PMID: 22408228
8.  Transcriptomic Identification of Iron-Regulated and Iron-Independent Gene Copies within the Heavily Duplicated Trichomonas vaginalis Genome 
Genome Biology and Evolution  2012;4(10):1017-1029.
Gene duplication is an important evolutionary mechanism and no eukaryote has more duplicated gene families than the parasitic protist Trichomonas vaginalis. Iron is an essential nutrient for Trichomonas and plays a pivotal role in the establishment of infection, proliferation, and virulence. To gain insight into the role of iron in T. vaginalis gene expression and genome evolution, we screened iron-regulated genes using an oligonucleotide microarray for T. vaginalis and by comparative EST (expressed sequence tag) sequencing of cDNA libraries derived from trichomonads cultivated under iron-rich (+Fe) and iron-restricted (−Fe) conditions. Among 19,000 ESTs from both libraries, we identified 336 iron-regulated genes, of which 165 were upregulated under +Fe conditions and 171 under −Fe conditions. The microarray analysis revealed that 195 of 4,950 unique genes were differentially expressed. Of these, 117 genes were upregulated under +Fe conditions and 78 were upregulated under −Fe conditions. The results of both methods were congruent concerning the regulatory trends and the representation of gene categories. Under +Fe conditions, the expression of proteins involved in carbohydrate metabolism, particularly in the energy metabolism of hydrogenosomes, and in methionine catabolism was increased. The iron–sulfur cluster assembly machinery and certain cysteine proteases are of particular importance among the proteins upregulated under −Fe conditions. A unique feature of the T. vaginalis genome is the retention during evolution of multiple paralogous copies for a majority of all genes. Although the origins and reasons for this gene expansion remain unclear, the retention of multiple gene copies could provide an opportunity to evolve differential expression during growth in variable environmental conditions. For genes whose expression was affected by iron, we found that iron influenced the expression of only some of the paralogous copies, whereas the expression of the other paralogs was iron independent. This finding indicates a very stringent regulation of the differentially expressed paralogous genes in response to changes in the availability of exogenous nutrients and provides insight into the evolutionary rationale underlying massive paralog retention in the Trichomonas genome.
PMCID: PMC3490414  PMID: 22975721
gene duplication; iron; microarrays; EST analysis
9.  Human mitochondrial ferritin improves respiratory function in yeast mutants deficient in iron–sulfur cluster biogenesis, but is not a functional homologue of yeast frataxin 
MicrobiologyOpen  2012;1(2):95-104.
We overexpressed human mitochondrial ferritin in frataxin-deficient yeast cells (Δyfh1), but also in another mutant affected in [Fe-S] assembly (Δggc1). Ferritin was correctly processed and expressed in the mitochondria of these cells, but the fraction of total mitochondrial iron bound to ferritin was very low, and most of the iron remained in the form of insoluble particles of ferric phosphate in these mitochondria, as evidenced by gel filtration analysis of the mitochondrial matrix (fast protein liquid chromatography [FPLC]) and by Mössbauer spectroscopy. Mutant cells in which ferritin was overexpressed still accumulated iron in the mitochondria and remained deficient in [Fe-S] assembly, suggesting that human mitochondrial ferritin is not a functional homologue of yeast frataxin. However, the respiratory function was improved in these mutants, which correlates with an improvement of cytochrome and heme synthesis. Overexpression of mitochondrial ferritin in [Fe-S] mutants resulted in the appearance of a small pool of high-spin ferrous iron in the mitochondria, which was probably responsible for the improvement of heme synthesis and of the respiratory function in these mutants.
PMCID: PMC3426411  PMID: 22950017
Ferritiny; ggc1; iron; mitochondria; mitochondrial; Mössbauer; yeast frataxin; yfh1
10.  Live Imaging of Mitosomes and Hydrogenosomes by HaloTag Technology 
PLoS ONE  2012;7(4):e36314.
Hydrogenosomes and mitosomes represent remarkable mitochondrial adaptations in the anaerobic parasitic protists such as Trichomonas vaginalis and Giardia intestinalis, respectively. In order to provide a tool to study these organelles in the live cells, the HaloTag was fused to G. intestinalis IscU and T. vaginalis frataxin and expressed in the mitosomes and hydrogenosomes, respectively. The incubation of the parasites with the fluorescent Halo-ligand resulted in highly specific organellar labeling, allowing live imaging of the organelles. With the array of available ligands the HaloTag technology offers a new tool to study the dynamics of mitochondria-related compartments as well as other cellular components in these intriguing unicellular eukaryotes.
PMCID: PMC3338651  PMID: 22558433
11.  Hydrogenosome-localization of arginine deiminase in Trichomonas vaginalis 
The arginine dihydrolase (ADH) pathway has an analogous function to the urea cycle in mitochondria-containing cells, by removing nitrogen from amino acids and generating ATP. Subcellular localization of the ADH pathway enzymes in Trichomonas vaginalis revealed that arginine deiminase (ADI) localizes to the hydrogenosome, a mitochondrion-like organelle of anaerobic protists. However the other enzymes of the ADH pathway, ornithine carbamyltransferase and carbamate kinase localize to the cytosol. Three gene sequences of T. vaginalis ADI (ADI 1–3) were identified in the T. vaginalis genome, all having putative mitochondrial targeting sequences. The ADI sequences were cloned and used to probe T. vaginalis using a carboxyterminal di-hemogglutinin epitope tag which demonstrated co-localization with malic enzyme confirming the hydrogenosome localization of this enzyme.
PMCID: PMC3026898  PMID: 21074581
Trichomonas vaginalis; hydrogenosome; mitochondrion-like organelle; arginine dihydrolase pathway; arginine deiminase
12.  Microsatellite polymorphism in the sexually transmitted human pathogen Trichomonas vaginalis indicates a genetically diverse parasite 
Given the growing appreciation of serious health sequelae from widespread Trichomonas vaginalis infection, new tools are needed to study the parasite's genetic diversity. To this end we have identified and characterized a panel of 21 microsatellites and six single-copy genes from the T. vaginalis genome, using seven laboratory strains of diverse origin. We have (1) adapted our microsatellite typing method to incorporate affordable fluorescent labeling, (2) determined that the microsatellite loci remain stable in parasites continuously cultured up to 17 months, and (3) evaluated microsatellite marker coverage of the six chromosomes that comprise the T. vaginalis genome using fluorescent in situ hybridization (FISH). We have used the markers to show that T. vaginalis is a genetically diverse parasite in a population of commonly used laboratory strains. In addition, we have used phylogenetic methods to infer evolutionary relationships from our markers in order to validate their utility in future population analyses. Our panel is the first series of robust polymorphic genetic markers for T. vaginalis that can be used to classify and monitor lab strains, as well as provide a means to measure the genetic diversity and population structure of extant and future T. vaginalis isolates.
PMCID: PMC2974001  PMID: 20813140
Population genetics; Trichomonas vaginalis; sexually transmitted infection; microsatellite; FISH; genetic markers
13.  Arginine metabolism in Trichomonas vaginalis infected with Mycoplasma hominis 
Microbiology  2010;156(Pt 12):3734-3743.
Both Mycoplasma hominis and Trichomonas vaginalis utilize arginine as an energy source via the arginine dihydrolase (ADH) pathway. It has been previously demonstrated that M. hominis forms a stable intracellular relationship with T. vaginalis; hence, in this study we examined the interaction of two localized ADH pathways by comparing T. vaginalis strain SS22 with the laboratory-generated T. vaginalis strain SS22-MOZ2 infected with M. hominis MOZ2. The presence of M. hominis resulted in an approximately 16-fold increase in intracellular ornithine and a threefold increase in putrescine, compared with control T. vaginalis cultures. No change in the activity of enzymes of the ADH pathway could be demonstrated in SS22-MOZ2 compared with the parent SS22, and the increased production of ornithine could be attributed to the presence of M. hominis. Using metabolic flow analysis it was determined that the elasticity of enzymes of the ADH pathway in SS22-MOZ2 was unchanged compared with the parent SS22; however, the elasticity of ornithine decarboxylase (ODC) in SS22 was small, and it was doubled in SS22-MOZ2 cells. The potential benefit of this relationship to both T. vaginalis and M. hominis is discussed.
PMCID: PMC3068705  PMID: 20656780
14.  The Core Components of Organelle Biogenesis and Membrane Transport in the Hydrogenosomes of Trichomonas vaginalis 
PLoS ONE  2011;6(9):e24428.
Trichomonas vaginalis is a parasitic protist of the Excavata group. It contains an anaerobic form of mitochondria called hydrogenosomes, which produce hydrogen and ATP; the majority of mitochondrial pathways and the organellar genome were lost during the mitochondrion-to-hydrogenosome transition. Consequently, all hydrogenosomal proteins are encoded in the nucleus and imported into the organelles. However, little is known about the membrane machineries required for biogenesis of the organelle and metabolite exchange. Using a combination of mass spectrometry, immunofluorescence microscopy, in vitro import assays and reverse genetics, we characterized the membrane proteins of the hydrogenosome. We identified components of the outer membrane (TOM) and inner membrane (TIM) protein translocases include multiple paralogs of the core Tom40-type porins and Tim17/22/23 channel proteins, respectively, and uniquely modified small Tim chaperones. The inner membrane proteins TvTim17/22/23-1 and Pam18 were shown to possess conserved information for targeting to mitochondrial inner membranes, but too divergent in sequence to support the growth of yeast strains lacking Tim17, Tim22, Tim23 or Pam18. Full complementation was seen only when the J-domain of hydrogenosomal Pam18 was fused with N-terminal region and transmembrane segment of the yeast homolog. Candidates for metabolite exchange across the outer membrane were identified including multiple isoforms of the β-barrel proteins, Hmp35 and Hmp36; inner membrane MCF-type metabolite carriers were limited to five homologs of the ATP/ADP carrier, Hmp31. Lastly, hydrogenosomes possess a pathway for the assembly of C-tail-anchored proteins into their outer membrane with several new tail-anchored proteins being identified. These results show that hydrogenosomes and mitochondria share common core membrane components required for protein import and metabolite exchange; however, they also reveal remarkable differences that reflect the functional adaptation of hydrogenosomes to anaerobic conditions and the peculiar evolutionary history of the Excavata group.
PMCID: PMC3174187  PMID: 21935410
15.  The Minimal Proteome in the Reduced Mitochondrion of the Parasitic Protist Giardia intestinalis 
PLoS ONE  2011;6(2):e17285.
The mitosomes of Giardia intestinalis are thought to be mitochondria highly-reduced in response to the oxygen-poor niche. We performed a quantitative proteomic assessment of Giardia mitosomes to increase understanding of the function and evolutionary origin of these enigmatic organelles. Mitosome-enriched fractions were obtained from cell homogenate using Optiprep gradient centrifugation. To distinguish mitosomal proteins from contamination, we used a quantitative shot-gun strategy based on isobaric tagging of peptides with iTRAQ and tandem mass spectrometry. Altogether, 638 proteins were identified in mitosome-enriched fractions. Of these, 139 proteins had iTRAQ ratio similar to that of the six known mitosomal markers. Proteins were selected for expression in Giardia to verify their cellular localizations and the mitosomal localization of 20 proteins was confirmed. These proteins include nine components of the FeS cluster assembly machinery, a novel diflavo-protein with NADPH reductase activity, a novel VAMP-associated protein, and a key component of the outer membrane protein translocase. None of the novel mitosomal proteins was predicted by previous genome analyses. The small proteome of the Giardia mitosome reflects the reduction in mitochondrial metabolism, which is limited to the FeS cluster assembly pathway, and a simplicity in the protein import pathway required for organelle biogenesis.
PMCID: PMC3044749  PMID: 21390322
16.  Functions and cellular localization of cysteine desulfurase and selenocysteine lyase in Trypanosoma brucei 
The FEBS journal  2009;277(2):383-393.
Nfs-like proteins have cysteine desulfurase activity, which removes sulfur (S) from cysteine, and provides S for iron-sulfur cluster assembly and thiolation of tRNAs. These proteins also have selenocysteine lyase activity in vitro, and cleave selenocysteine into alanine and elemental selenium (Se). It was shown previously that the Nfs-like protein called Nfs from the parasitic protist Trypanosoma brucei is a genuine cysteine desulfurase. A second Nfs-like protein is encoded in the nuclear genome of T. brucei. We called this protein SCL because phylogenetic analysis reveals that it is monophyletic with known eukaryotic selenocysteine lyases. The Nfs protein is located in the mitochondrion, whereas the SCL protein seems to be present in the nucleus and cytoplasm. Unexpectedly, the down-regulation of either Nfs or SCL protein leads to a dramatic decrease of both cysteine desulfurase and selenocysteine lyase activities concurrently in the mitochondrion and the cytosolic fractions. Because loss of Nfs causes a growth phenotype but loss of SCL does not, we propose that Nfs can fully complement SCL, while SCL can only partially replace Nfs under our growth conditions.
PMCID: PMC2813251  PMID: 19968861
Trypanosoma; RNAi; mitochondrion; Fe-S cluster; selenoprotein
17.  The Protein Import Channel in the Outer Mitosomal Membrane of Giardia intestinalis 
Molecular Biology and Evolution  2009;26(9):1941-1947.
The identification of mitosomes in Giardia generated significant debate on the evolutionary origin of these organelles, whether they were highly reduced mitochondria or the product of a unique endosymbiotic event in an amitochondrial organism. As the protein import pathway is a defining characteristic of mitochondria, we sought to discover a TOM (translocase in the outer mitochondrial membrane) complex in Giardia. A Hidden Markov model search of the Giardia genome identified a Tom40 homologous sequence (GiTom40), where Tom40 is the protein translocation channel of the TOM complex. The GiTom40 protein is located in the membrane of mitosomes in a ∼200-kDa TOM complex. As Tom40 was derived in the development of mitochondria to serve as the protein import channel in the outer membrane, its presence in Giardia evidences the mitochondrial ancestry of mitosomes.
PMCID: PMC2734158  PMID: 19531743
mitochondria; mitosomes; Giardia intestinalis; protein translocation; evolution
18.  The Monothiol Single-Domain Glutaredoxin Is Conserved in the Highly Reduced Mitochondria of Giardia intestinalis▿ †  
Eukaryotic Cell  2009;8(10):1584-1591.
The highly reduced mitochondria (mitosomes) of Giardia intestinalis are recently discovered organelles for which, it was suggested, iron-sulfur cluster assembly was their only conserved function. However, only an incomplete set of the components required for FeS cluster biogenesis was localized to the mitosomes. Via proteomic analysis of a mitosome-rich cellular fraction together with immunofluorescence microscopy, we identified a novel mitosomal protein homologous to monothiol glutaredoxins containing a CGFS motif at the active site. Sequence analysis revealed the presence of long nonconserved N-terminal extension of 77 amino acids, which was absent in the mature protein. Expression of the complete and N-terminally truncated forms of the glutaredoxin indicated that the extension is involved in glutaredoxin import into mitosomes. However, the mechanism of preprotein processing is unclear, as the mitosomal processing peptidase is unable to cleave this type of extension. The recombinant mature protein was shown to form a homodimeric structure, which binds a labile FeS cluster. The cluster is stabilized by glutathione and dithiothreitol. Phylogenetic analysis showed that giardial glutaredoxin is related to the mitochondrial monothiol glutaredoxins involved in FeS cluster assembly. The identification of a mitochondrial-type monothiol glutaredoxin in the mitosomes of G. intestinalis thus completes the mitosomal FeS cluster biosynthetic pathway and provides further evidence for the mitochondrial origin of these organelles.
PMCID: PMC2756866  PMID: 19717741
19.  The Essentials of Protein Import in the Degenerate Mitochondrion of Entamoeba histolytica 
PLoS Pathogens  2010;6(3):e1000812.
Several essential biochemical processes are situated in mitochondria. The metabolic transformation of mitochondria in distinct lineages of eukaryotes created proteomes ranging from thousands of proteins to what appear to be a much simpler scenario. In the case of Entamoeba histolytica, tiny mitochondria known as mitosomes have undergone extreme reduction. Only recently a single complete metabolic pathway of sulfate activation has been identified in these organelles. The E. histolytica mitosomes do not produce ATP needed for the sulfate activation pathway and for three molecular chaperones, Cpn60, Cpn10 and mtHsp70. The already characterized ADP/ATP carrier would thus be essential to provide cytosolic ATP for these processes, but how the equilibrium of inorganic phosphate could be maintained was unknown. Finally, how the mitosomal proteins are translocated to the mitosomes had remained unclear. We used a hidden Markov model (HMM) based search of the E. histolytica genome sequence to discover candidate (i) mitosomal phosphate carrier complementing the activity of the ADP/ATP carrier and (ii) membrane-located components of the protein import machinery that includes the outer membrane translocation channel Tom40 and membrane assembly protein Sam50. Using in vitro and in vivo systems we show that E. histolytica contains a minimalist set up of the core import components in order to accommodate a handful of mitosomal proteins. The anaerobic and parasitic lifestyle of E. histolytica has produced one of the simplest known mitochondrial compartments of all eukaryotes. Comparisons with mitochondria of another amoeba, Dictystelium discoideum, emphasize just how dramatic the reduction of the protein import apparatus was after the loss of archetypal mitochondrial functions in the mitosomes of E. histolytica.
Author Summary
All eukaryotic organisms have mitochondria, organelles cordoned by a double membrane, which are descendants of an ancestral bacterial endosymbiont. Nowadays, mitochondria are fully integrated into the context of diverse cellular processes and serve in providing energy, iron-containing prosthetic groups and some of the cellular building blocks like lipids and amino acids. In multi-cellular organisms, mitochondria play an additional vital role in cell signaling pathways and programmed cell death. In some unicellular eukaryotes which inhabit oxygen poor environments, intriguing mitochondrial adaptations have taken place resulting in the creation of specialized compartments known as mitosomes and hydrogenosomes. Several important human pathogens like Entamoeba histolytica, Giardia intestinalis, Trichomonas vaginalis and microsporidia contain these organelles and in many cases the function and biogenesis of these organelles remain unknown. In this paper, we investigated the protein import pathways into the mitosomes of E. histolytica, which represent one of the simplest mitochondria-related compartment discovered yet. In accordance with the limited organellar proteome, we show that only core components of mitochondria-related protein import machines are present in E. histolytica to serve for the import of a small set of substrate proteins.
PMCID: PMC2841616  PMID: 20333239
20.  Trichomonas vaginalis vast BspA-like gene family: evidence for functional diversity from structural organisation and transcriptomics 
BMC Genomics  2010;11:99.
Trichomonas vaginalis is the most common non-viral human sexually transmitted pathogen and importantly, contributes to facilitating the spread of HIV. Yet very little is known about its surface and secreted proteins mediating interactions with, and permitting the invasion and colonisation of, the host mucosa. Initial annotations of T. vaginalis genome identified a plethora of candidate extracellular proteins.
Data mining of the T. vaginalis genome identified 911 BspA-like entries (TvBspA) sharing TpLRR-like leucine-rich repeats, which represent the largest gene family encoding potential extracellular proteins for the pathogen. A broad range of microorganisms encoding BspA-like proteins was identified and these are mainly known to live on mucosal surfaces, among these T. vaginalis is endowed with the largest gene family. Over 190 TvBspA proteins with inferred transmembrane domains were characterised by a considerable structural diversity between their TpLRR and other types of repetitive sequences and two subfamilies possessed distinct classic sorting signal motifs for endocytosis. One TvBspA subfamily also shared a glycine-rich protein domain with proteins from Clostridium difficile pathogenic strains and C. difficile phages. Consistent with the hypothesis that TvBspA protein structural diversity implies diverse roles, we demonstrated for several TvBspA genes differential expression at the transcript level in different growth conditions. Identified variants of repetitive segments between several TvBspA paralogues and orthologues from two clinical isolates were also consistent with TpLRR and other repetitive sequences to be functionally important. For one TvBspA protein cell surface expression and antibody responses by both female and male T. vaginalis infected patients were also demonstrated.
The biased mucosal habitat for microbial species encoding BspA-like proteins, the characterisation of a vast structural diversity for the TvBspA proteins, differential expression of a subset of TvBspA genes and the cellular localisation and immunological data for one TvBspA; all point to the importance of the TvBspA proteins to various aspects of T. vaginalis pathobiology at the host-pathogen interface.
PMCID: PMC2843621  PMID: 20144183
21.  Flavodiiron Protein from Trichomonas vaginalis Hydrogenosomes: the Terminal Oxygen Reductase▿  
Eukaryotic Cell  2008;8(1):47-55.
Trichomonas vaginalis is one of a few eukaryotes that have been found to encode several homologues of flavodiiron proteins (FDPs). Widespread among anaerobic prokaryotes, these proteins are believed to function as oxygen and/or nitric oxide reductases to provide protection against oxidative/nitrosative stresses and host immune responses. One of the T. vaginalis FDP homologues is equipped with a hydrogenosomal targeting sequence and is expressed in the hydrogenosomes, oxygen-sensitive organelles that participate in carbohydrate metabolism and assemble iron-sulfur clusters. The bacterial homologues characterized thus far have been dimers or tetramers; the trichomonad protein is a dimer of identical 45-kDa subunits, each noncovalently binding one flavin mononucleotide. The protein reduces dioxygen to water but is unable to utilize nitric oxide as a substrate, similarly to its closest homologue from another human parasite Giardia intestinalis and related archaebacterial proteins. T. vaginalis FDP is able to accept electrons derived from pyruvate or NADH via ferredoxin and is proposed to play a role in the protection of hydrogenosomes against oxygen.
PMCID: PMC2620750  PMID: 19011120
22.  Reductive Evolution of the Mitochondrial Processing Peptidases of the Unicellular Parasites Trichomonas vaginalis and Giardia intestinalis 
PLoS Pathogens  2008;4(12):e1000243.
Mitochondrial processing peptidases are heterodimeric enzymes (α/βMPP) that play an essential role in mitochondrial biogenesis by recognizing and cleaving the targeting presequences of nuclear-encoded mitochondrial proteins. The two subunits are paralogues that probably evolved by duplication of a gene for a monomeric metallopeptidase from the endosymbiotic ancestor of mitochondria. Here, we characterize the MPP-like proteins from two important human parasites that contain highly reduced versions of mitochondria, the mitosomes of Giardia intestinalis and the hydrogenosomes of Trichomonas vaginalis. Our biochemical characterization of recombinant proteins showed that, contrary to a recent report, the Trichomonas processing peptidase functions efficiently as an α/β heterodimer. By contrast, and so far uniquely among eukaryotes, the Giardia processing peptidase functions as a monomer comprising a single βMPP-like catalytic subunit. The structure and surface charge distribution of the Giardia processing peptidase predicted from a 3-D protein model appear to have co-evolved with the properties of Giardia mitosomal targeting sequences, which, unlike classic mitochondrial targeting signals, are typically short and impoverished in positively charged residues. The majority of hydrogenosomal presequences resemble those of mitosomes, but longer, positively charged mitochondrial-type presequences were also identified, consistent with the retention of the Trichomonas αMPP-like subunit. Our computational and experimental/functional analyses reveal that the divergent processing peptidases of Giardia mitosomes and Trichomonas hydrogenosomes evolved from the same ancestral heterodimeric α/βMPP metallopeptidase as did the classic mitochondrial enzyme. The unique monomeric structure of the Giardia enzyme, and the co-evolving properties of the Giardia enzyme and substrate, provide a compelling example of the power of reductive evolution to shape parasite biology.
Author Summary
In classic model organisms, cleavage of signals that are required to deliver nuclear-encoded proteins to mitochondria is mediated by an enzyme comprising two different subunits, called α or β, neither of which is functional by itself. Here, we have characterized a novel enzyme that functions in the mitosome, a highly reduced mitochondrion, of the pathogenic protist Giardia intestinalis. The Giardia enzyme is unique among eukaryotes because it has undergone reductive evolution to function efficiently as a single β-subunit monomer. We also show that the recent claim that the equivalent enzyme in the hydrogenosome, another type of reduced mitochondrion of the human parasite Trichomonas vaginalis, functions as a homodimer of two β-subunits, is not supported. The Trichomonas enzyme requires both an α- and a β-subunit to function most efficiently. Computational analysis of the Giardia and Trichomonas enzymes reveals that their structures and surface charge distributions have co-evolved to match the peculiar properties of the targeting signals that they process. The Giardia mitosome is an ideal model for studying the limits of mitochondrial reductive evolution and, because it makes cofactors that are essential for Giardia survival, is a potential therapeutic target for this important human parasite.
PMCID: PMC2597178  PMID: 19096520
23.  Frataxin, a Conserved Mitochondrial Protein, in the Hydrogenosome of Trichomonas vaginalis▿  
Eukaryotic Cell  2007;6(8):1431-1438.
Recent data suggest that frataxin plays a key role in eukaryote cellular iron metabolism, particularly in mitochondrial heme and iron-sulfur (FeS) cluster biosynthesis. We have now identified a frataxin homologue (T. vaginalis frataxin) from the human parasite Trichomonas vaginalis. Instead of mitochondria, this unicellular eukaryote possesses hydrogenosomes, peculiar organelles that produce hydrogen but nevertheless share common ancestry with mitochondria. T. vaginalis frataxin contains conserved residues implicated in iron binding, and in silico, it is predicted to form a typical α-β sandwich motif. The short N-terminal extension of T. vaginalis frataxin resembles presequences that target proteins to hydrogenosomes, a prediction confirmed by the results of overexpression of T. vaginalis frataxin in T. vaginalis. When expressed in the mitochondria of a frataxin-deficient Saccharomyces cerevisiae strain, T. vaginalis frataxin partially restored defects in heme and FeS cluster biosynthesis. Although components of heme synthesis or heme-containing proteins have not been found in T. vaginalis to date, T. vaginalis frataxin was also shown to interact with S. cerevisiae ferrochelatase by using a Biacore assay. The discovery of conserved iron-metabolizing pathways in mitochondria and hydrogenosomes provides additional evidence not only of their common evolutionary history, but also of the fundamental importance of this pathway for eukaryotes.
PMCID: PMC1951141  PMID: 17573543
24.  Draft Genome Sequence of the Sexually Transmitted Pathogen Trichomonas vaginalis 
Science (New York, N.Y.)  2007;315(5809):207-212.
We describe the genome sequence of the protist Trichomonas vaginalis, a sexually transmitted human pathogen. Repeats and transposable elements comprise about two-thirds of the ~160-megabase genome, reflecting a recent massive expansion of genetic material. This expansion, in conjunction with the shaping of metabolic pathways that likely transpired through lateral gene transfer from bacteria, and amplification of specific gene families implicated in pathogenesis and phagocytosis of host proteins may exemplify adaptations of the parasite during its transition to a urogenital environment. The genome sequence predicts previously unknown functions for the hydrogenosome, which support a common evolutionary origin of this unusual organelle with mitochondria.
PMCID: PMC2080659  PMID: 17218520
25.  Fe-Hydrogenase Maturases in the Hydrogenosomes of Trichomonas vaginalis†  
Eukaryotic Cell  2006;5(3):579-586.
Assembly of active Fe-hydrogenase in the chloroplasts of the green alga Chlamydomonas reinhardtii requires auxiliary maturases, the S-adenosylmethionine-dependent enzymes HydG and HydE and the GTPase HydF. Genes encoding homologous maturases had been found in the genomes of all eubacteria that contain Fe-hydrogenase genes but not yet in any other eukaryote. By means of proteomic analysis, we identified a homologue of HydG in the hydrogenosomes, mitochondrion-related organelles that produce hydrogen under anaerobiosis by the activity of Fe-hydrogenase, in the pathogenic protist Trichomonas vaginalis. Genes encoding two other components of the Hyd system, HydE and HydF, were found in the T. vaginalis genome database. Overexpression of HydG, HydE, and HydF in trichomonads showed that all three proteins are specifically targeted to the hydrogenosomes, the site of Fe-hydrogenase maturation. The results of Neighbor-Net analyses of sequence similarities are consistent with a common eubacterial ancestor of HydG, HydE, and HydF in T. vaginalis and C. reinhardtii, supporting a monophyletic origin of Fe-hydrogenase maturases in the two eukaryotes. Although Fe-hydrogenases exist in only a few eukaryotes, related Narf proteins with different cellular functions are widely distributed. Thus, we propose that the acquisition of Fe-hydrogenases, together with Hyd maturases, occurred once in eukaryotic evolution, followed by the appearance of Narf through gene duplication of the Fe-hydrogenase gene and subsequent loss of the Hyd proteins in eukaryotes in which Fe-hydrogenase function was lost.
PMCID: PMC1398061  PMID: 16524912

Results 1-25 (27)