Search tips
Search criteria

Results 1-7 (7)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Impaired liver regeneration in aged mice can be rescued by silencing Hippo core kinases MST1 and MST2 
EMBO Molecular Medicine  2016;9(1):46-60.
The liver has an intrinsic capacity to regenerate in response to injury or surgical resection. Nevertheless, circumstances in which hepatocytes are unresponsive to proliferative signals result in impaired regeneration and hepatic failure. As the Hippo pathway has a canonical role in the maintenance of liver size, we investigated whether it could serve as a therapeutic target to support regeneration. Using a standard two‐thirds partial hepatectomy (PH) model in young and aged mice, we demonstrate that the Hippo pathway is modulated across the phases of liver regeneration. The activity of the core kinases MST1 and LATS1 increased during the early hypertrophic phase and returned to steady state levels in the proliferative phase, coinciding with activation of YAP1 target genes and hepatocyte proliferation. Moreover, following PH in aged mice, we demonstrate that Hippo signaling is anomalous in non‐regenerating livers. We provide pre‐clinical evidence that silencing the Hippo core kinases MST1 and MST2 with siRNA provokes hepatocyte proliferation in quiescent livers and rescues liver regeneration in aged mice following PH. Our data suggest that targeting the Hippo core kinases MST1/2 has therapeutic potential to improve regeneration in non‐regenerative disorders.
PMCID: PMC5210079  PMID: 27940445
aged liver; Hippo pathway; liver regeneration; MST; RNAi; Digestive System; Regenerative Medicine
2.  TREM-1 links dyslipidemia to inflammation and lipid deposition in atherosclerosis 
Nature Communications  2016;7:13151.
Triggering receptor expressed on myeloid cells-1 (TREM-1) is a potent amplifier of pro-inflammatory innate immune responses, but its significance in non-infectious diseases remains unclear. Here, we demonstrate that TREM-1 promotes cardiovascular disease by exacerbating atherosclerosis. TREM-1 is expressed in advanced human atheromas and is highly upregulated under dyslipidemic conditions on circulating and on lesion-infiltrating myeloid cells in the Apoe−/− mouse model. TREM-1 strongly contributes to high-fat, high-cholesterol diet (HFCD)-induced monocytosis and synergizes with HFCD serum-derived factors to promote pro-inflammatory cytokine responses and foam cell formation of human monocyte/macrophages. Trem1−/−Apoe−/− mice exhibit substantially attenuated diet-induced atherogenesis. In particular, our results identify skewed monocyte differentiation and enhanced lipid accumulation as novel mechanisms through which TREM-1 can promote atherosclerosis. Collectively, our findings illustrate that dyslipidemia induces TREM-1 surface expression on myeloid cells and subsequently synergizes with TREM-1 to enhance monopoiesis, pro-atherogenic cytokine production and foam cell formation.
TREM-1 is a receptor that amplifies acute pro-inflammatory responses in infection. Here the authors show that TREM-1 plays an important role in atherosclerosis, a chronic and non-infectious disease, by critically skewing myelopoiesis towards preferential monocyte differentiation and by contributing to CD36-driven cellular lipid accumulation.
PMCID: PMC5080444  PMID: 27762264
3.  Identification of Novel Androgen-Regulated Pathways and mRNA Isoforms through Genome-Wide Exon-Specific Profiling of the LNCaP Transcriptome 
PLoS ONE  2011;6(12):e29088.
Androgens drive the onset and progression of prostate cancer (PCa) by modulating androgen receptor (AR) transcriptional activity. Although several microarray-based studies have identified androgen-regulated genes, here we identify in-parallel global androgen-dependent changes in both gene and alternative mRNA isoform expression by exon-level analyses of the LNCaP transcriptome. While genome-wide gene expression changes correlated well with previously-published studies, we additionally uncovered a subset of 226 novel androgen-regulated genes. Gene expression pathway analysis of this subset revealed gene clusters associated with, and including the tyrosine kinase LYN, as well as components of the mTOR (mammalian target of rapamycin) pathway, which is commonly dysregulated in cancer. We also identified 1279 putative androgen-regulated alternative events, of which 325 (∼25%) mapped to known alternative splicing events or alternative first/last exons. We selected 30 androgen-dependent alternative events for RT-PCR validation, including mRNAs derived from genes encoding tumour suppressors and cell cycle regulators. Of seven positively-validating events (∼23%), five events involved transcripts derived from alternative promoters of known AR gene targets. In particular, we found a novel androgen-dependent mRNA isoform derived from an alternative internal promoter within the TSC2 tumour suppressor gene, which is predicted to encode a protein lacking an interaction domain required for mTOR inhibition. We confirmed that expression of this alternative TSC2 mRNA isoform was directly regulated by androgens, and chromatin immunoprecipitation indicated recruitment of AR to the alternative promoter region at early timepoints following androgen stimulation, which correlated with expression of alternative transcripts. Together, our data suggest that alternative mRNA isoform expression might mediate the cellular response to androgens, and may have roles in clinical PCa.
PMCID: PMC3237596  PMID: 22194994
4.  Cellular senescence: unravelling complexity 
Age  2009;31(4):353-363.
Cellular senescence might be a tumour suppressing mechanism as well as a contributor to age-related loss of tissue function. It has been characterised classically as the result of the loss of DNA sequences called telomeres at the end of chromosomes. However, recent studies have revealed that senescence is in fact an intricate process, involving the sequential activation of multiple cellular processes, which have proven necessary for the establishment and maintenance of the phenotype. Here, we review some of these processes, namely, the role of mitochondrial function and reactive oxygen species, senescence-associated secreted proteins and chromatin remodelling. Finally, we illustrate the use of systems biology to address the mechanistic, functional and biochemical complexity of senescence.
PMCID: PMC2813046  PMID: 19618294
Senescence; Oxidative stress; Mitochondria; Secretory phenotype; Systems biology; Interactomes
5.  Feedback between p21 and reactive oxygen production is necessary for cell senescence 
The sustained activation of CDKN1A (p21/Waf1/Cip1) by a DNA damage response induces mitochondrial dysfunction and reactive oxygen species (ROS) production via signalling through CDKN1A-GADD45A-MAPK14- GRB2-TGFBR2-TGFbeta in senescing primary human and mouse cells in vitro and in vivo.Enhanced ROS production in senescing cells generates additional DNA damage. Although this damage is repairable and transient, it elevates the average levels of DNA damage response permanently, thus forming a positive feedback loop.This loop is necessary and sufficient to maintain the stability of growth arrest until a ‘point of no return' is reached during establishment of senescence.
The phenomenon of cellular ‘senescence'—the permanent arrest of division in normally proliferating mammalian cells such as fibroblasts—is thought to be a central component of the ageing process. Senescence contributes both to age-related loss of tissue homeostasis, as the loss of division capacity leads to impaired cell renewal, and also to protect against cancer, because it acts to block the uncontrolled proliferation of cells that may give rise to a malignant tumour. Replicative senescence is triggered by uncapped telomeres or by ‘unrepairable' non-telomeric DNA damage. Both lesions initiate the same canonical DNA damage response (DDR) (d'Adda di Fagagna, 2008). This response is characterized by activation of sensor kinases (ATM/ATR, DNA-PK), formation of DNA damage foci containing activated H2A.X (γH2A.X) and ultimately induction of cell cycle arrest through activation of checkpoint proteins, notably p53 (TP53) and the CDK inhibitor p21 (CDKN1A). This signalling pathway continues to contribute actively to the stability of the G0 arrest in fully senescent cells long after induction of senescence (d'Adda di Fagagna et al, 2003). However, senescence is more complex than mere CDKI-mediated growth arrest. Senescent cells alter their expression of literally hundreds of genes (Shelton et al, 1999), prominent among these being pro-inflammatory secretory genes (Coppe et al, 2008) and marker genes for a retrograde response induced by mitochondrial dysfunction (Passos et al, 2007a).
There is a growing evidence that multiple mechanisms interact to underpin ageing at the cellular level (Kirkwood, 2005; Passos et al, 2007b) necessitating a systems biology approach if the complex mechanisms of ageing are to be understood (Kirkwood, 2008). With respect to cell senescence, the two major unanswered questions are (i) How does a DNA lesion that can be repaired, at least in principle, induce and maintain irreversible growth arrest? and (ii) How does a growth arrest trigger a completely different cellular phenotype as soon as it becomes irreversible?
To understand those questions, we performed a kinetic analysis of the establishment phase of senescence initiated by DNA damage or telomere dysfunction, focussing on pathways downstream of the classical DDR. Using an approach that combined (i) in-silico interactome analysis, (ii) functional target gene inhibition, (iii) stochastic modelling, and (iv) live cell microscopy, we identified a positive feedback loop between DDR and mitochondrial production of reactive oxygen species (ROS) as necessary and sufficient for long-term maintenance of growth arrest. Using pathway log likelihood scores calculated by a quantitative in-silico interactome analysis to guide siRNA and small molecule inhibition experiments, and using results of sequential and combined inhibition experiments to refine the predictions from the interactome analysis, we found that DDR triggered mitochondrial dysfunction leading to enhanced ROS activation through a linear signal transduction through TP53, CDKN1A, GADD45A, p38 (MAPK14), GRB2, TGFBR2 and TGFβ(Figure 2D). We hypothesized that these ROS stochastically generate novel DNA damage in the nucleus, thus forming a positive feedback loop contributing to the long-term maintenance of DDR (Figure 3A). First confirmation came from static inhibitor experiments as before, showing that nuclear DNA damage foci frequencies in senescent cells were reduced if feedback signalling was suppressed. To formally establish the existence of a feedback loop and its relevance for senescence, we used live cell microscopy in combination with quantitative modelling.
We transformed the conceptual model shown in Figure 3A into a stochastic mechanistic model of the DDR feedback loop by extending the previously published model of the TP53/Mdm2 circuit (Proctor and Gray, 2008) to include reactions for synthesis/activation and degradation/deactivation/repair of CDKN1A, GADD45, MAPK14, ROS and DNA damage. The model replicated very precisely the kinetic behaviour of activated TP53, CDKN1A, ROS and DNA damage foci after initiation of senescence by irradiation. Having established its concordance with the experimental data, the model was then used to predict the effects of intervening in the feedback loop. The model predicted that any intervention reducing ROS levels by about half would decrease average DNA damage foci frequencies from six to four foci/nucleus within about 15 h. It further predicted that this would be sufficient to reduce CDKN1A to basal levels continuously for at least 6 h in about 20% of the treated cells, thus allowing a significant fraction of cells to escape from growth arrest and to resume proliferation. This should happen even if the intervention into the feedback loop was started at a late time point (e.g. 6 days) after induction of senescence.
To analyse DNA damage foci dynamics we used a reporter construct (AcGFP–53BP1c) that quantitatively reports single DNA damage foci kinetics in time-resolved live cell microscopy (Nelson et al, 2009). Foci frequency measurements quantitatively confirmed the prediction from the stochastic model. More importantly, we found that many individual foci in both telomere- and stress-dependent senescence had short lifespans with half-lives below 15 h. Feedback loop inhibition reduced only the frequencies of short-lived DNA damage foci in accordance with the hypothesis that ROS production contributed to DDR by constant replenishment of short-lived DNA damage foci.
Finally, we inhibited signalling through the loop at different time points after induction of senescence by ionizing radiation and measured ROS levels, DNA damage foci frequencies and proliferation markers. Treatments with the MAPK14 inhibitor SB203580 or the free radical scavenger PBN were used to block the loop. The results quantitatively confirmed the model prediction and indicated that the feedback loop between DDR and ROS production was both necessary and sufficient to maintain cell cycle arrest for at least 6–10 days after induction of senescence. Interestingly, the loop was still active at later time points and in deep senescence, but proliferation arrest was then stabilized by additional factor(s). This indicated that certain features of the senescent phenotype-like ROS production that might be responsible for the negative impact of senescent cells into their tissue environment can be successfully inhibited even in deep senescence. This may prove relevant for novel therapeutic studies aiming to modulate intracellular ROS levels in both aging and cancer.
Cellular senescence—the permanent arrest of cycling in normally proliferating cells such as fibroblasts—contributes both to age-related loss of mammalian tissue homeostasis and acts as a tumour suppressor mechanism. The pathways leading to establishment of senescence are proving to be more complex than was previously envisaged. Combining in-silico interactome analysis and functional target gene inhibition, stochastic modelling and live cell microscopy, we show here that there exists a dynamic feedback loop that is triggered by a DNA damage response (DDR) and, which after a delay of several days, locks the cell into an actively maintained state of ‘deep' cellular senescence. The essential feature of the loop is that long-term activation of the checkpoint gene CDKN1A (p21) induces mitochondrial dysfunction and production of reactive oxygen species (ROS) through serial signalling through GADD45-MAPK14(p38MAPK)-GRB2-TGFBR2-TGFβ. These ROS in turn replenish short-lived DNA damage foci and maintain an ongoing DDR. We show that this loop is both necessary and sufficient for the stability of growth arrest during the establishment of the senescent phenotype.
PMCID: PMC2835567  PMID: 20160708
aging; cell senescence; DNA damage foci; mitochondria; reactive oxygen
6.  Draft Genome Sequence of the Sexually Transmitted Pathogen Trichomonas vaginalis 
Science (New York, N.Y.)  2007;315(5809):207-212.
We describe the genome sequence of the protist Trichomonas vaginalis, a sexually transmitted human pathogen. Repeats and transposable elements comprise about two-thirds of the ~160-megabase genome, reflecting a recent massive expansion of genetic material. This expansion, in conjunction with the shaping of metabolic pathways that likely transpired through lateral gene transfer from bacteria, and amplification of specific gene families implicated in pathogenesis and phagocytosis of host proteins may exemplify adaptations of the parasite during its transition to a urogenital environment. The genome sequence predicts previously unknown functions for the hydrogenosome, which support a common evolutionary origin of this unusual organelle with mitochondria.
PMCID: PMC2080659  PMID: 17218520
7.  The gain and loss of genes during 600 million years of vertebrate evolution 
Genome Biology  2006;7(5):R43.
Phylogenetic analysis of gene gain and loss during vertebrate evolution provides evidence for the importance of early gene or genome duplication events in evolution of complex vertebrates.
Gene duplication is assumed to have played a crucial role in the evolution of vertebrate organisms. Apart from a continuous mode of duplication, two or three whole genome duplication events have been proposed during the evolution of vertebrates, one or two at the dawn of vertebrate evolution, and an additional one in the fish lineage, not shared with land vertebrates. Here, we have studied gene gain and loss in seven different vertebrate genomes, spanning an evolutionary period of about 600 million years.
We show that: first, the majority of duplicated genes in extant vertebrate genomes are ancient and were created at times that coincide with proposed whole genome duplication events; second, there exist significant differences in gene retention for different functional categories of genes between fishes and land vertebrates; third, there seems to be a considerable bias in gene retention of regulatory genes towards the mode of gene duplication (whole genome duplication events compared to smaller-scale events), which is in accordance with the so-called gene balance hypothesis; and fourth, that ancient duplicates that have survived for many hundreds of millions of years can still be lost.
Based on phylogenetic analyses, we show that both the mode of duplication and the functional class the duplicated genes belong to have been of major importance for the evolution of the vertebrates. In particular, we provide evidence that massive gene duplication (probably as a consequence of entire genome duplications) at the dawn of vertebrate evolution might have been particularly important for the evolution of complex vertebrates.
PMCID: PMC1779523  PMID: 16723033

Results 1-7 (7)