PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-13 (13)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Insights into bilaterian evolution from three spiralian genomes 
Nature  2012;493(7433):526-531.
Current genomic perspectives on animal diversity neglect two prominent phyla, the molluscs and annelids, that together account for nearly one-third of known marine species and are important both ecologically and as experimental systems in classical embryology1–3. Here we describe the draft genomes of the owl limpet (Lottia gigantea), a marine polychaete (Capitella teleta) and a freshwater leech (Helobdella robusta), and compare them with other animal genomes to investigate the origin and diversification of bilaterians from a genomic perspective. We find that the genome organization, gene structure and functional content of these species are more similar to those of some invertebrate deuterostome genomes (for example, amphioxus and sea urchin) than those of other protostomes that have been sequenced to date (flies, nematodes and flatworms). The conservation of these genomic features enables us to expand the inventory of genes present in the last common bilaterian ancestor, establish the tripartite diversification of bilaterians using multiple genomic characteristics and identify ancient conserved long- and short-range genetic linkages across metazoans. Superimposed on this broadly conserved pan-bilaterian background we find examples of lineage-specific genome evolution, including varying rates of rearrangement, intron gain and loss, expansions and contractions of gene families, and the evolution of clade-specific genes that produce the unique content of each genome.
doi:10.1038/nature11696
PMCID: PMC4085046  PMID: 23254933
2.  Haploinsufficiency of insulin gene enhancer protein 1 (ISL1) is associated with d-transposition of the great arteries 
Congenital heart defects are the most common malformation, and are the foremost causes of mortality in the first year of life. Among congenital heart defects, conotruncal defects represent about 20% and are severe malformations with significant morbidity. Insulin gene enhancer protein 1 (ISL1) has been considered a candidate gene for conotruncal heart defects based on its embryonic expression pattern and heart defects induced in Isl1 knockout mice. Nevertheless no mutation of ISL1 has been reported from any human subject with a heart defect. From a population base of 974,579 births during 1999–2004, we used multiplex ligation-dependent probe amplification to screen for microdeletions/duplications of ISL1 among 389 infants with tetralogy of Fallot or d-transposition of the great arteries (d-TGA). We also sequenced all exons of ISL1. We identified a novel 20-kb microdeletion encompassing the entire coding region of ISL1, but not including either flanking gene, from an infant with d-TGA. We confirmed that the deletion was caused by nonhomologous end joining mechanism. Sequencing of exons of ISL1 did not reveal any subject with a novel nonsynonymous mutation. This is the first report of an ISL1 mutation of a child with a congenital heart defect.
doi:10.1002/mgg3.75
PMCID: PMC4113275  PMID: 25077177
Conotruncal defects; haploinsufficiency; ISL1; microdeletion
3.  The zebrafish reference genome sequence and its relationship to the human genome 
Howe, Kerstin | Clark, Matthew D. | Torroja, Carlos F. | Torrance, James | Berthelot, Camille | Muffato, Matthieu | Collins, John E. | Humphray, Sean | McLaren, Karen | Matthews, Lucy | McLaren, Stuart | Sealy, Ian | Caccamo, Mario | Churcher, Carol | Scott, Carol | Barrett, Jeffrey C. | Koch, Romke | Rauch, Gerd-Jörg | White, Simon | Chow, William | Kilian, Britt | Quintais, Leonor T. | Guerra-Assunção, José A. | Zhou, Yi | Gu, Yong | Yen, Jennifer | Vogel, Jan-Hinnerk | Eyre, Tina | Redmond, Seth | Banerjee, Ruby | Chi, Jianxiang | Fu, Beiyuan | Langley, Elizabeth | Maguire, Sean F. | Laird, Gavin K. | Lloyd, David | Kenyon, Emma | Donaldson, Sarah | Sehra, Harminder | Almeida-King, Jeff | Loveland, Jane | Trevanion, Stephen | Jones, Matt | Quail, Mike | Willey, Dave | Hunt, Adrienne | Burton, John | Sims, Sarah | McLay, Kirsten | Plumb, Bob | Davis, Joy | Clee, Chris | Oliver, Karen | Clark, Richard | Riddle, Clare | Eliott, David | Threadgold, Glen | Harden, Glenn | Ware, Darren | Mortimer, Beverly | Kerry, Giselle | Heath, Paul | Phillimore, Benjamin | Tracey, Alan | Corby, Nicole | Dunn, Matthew | Johnson, Christopher | Wood, Jonathan | Clark, Susan | Pelan, Sarah | Griffiths, Guy | Smith, Michelle | Glithero, Rebecca | Howden, Philip | Barker, Nicholas | Stevens, Christopher | Harley, Joanna | Holt, Karen | Panagiotidis, Georgios | Lovell, Jamieson | Beasley, Helen | Henderson, Carl | Gordon, Daria | Auger, Katherine | Wright, Deborah | Collins, Joanna | Raisen, Claire | Dyer, Lauren | Leung, Kenric | Robertson, Lauren | Ambridge, Kirsty | Leongamornlert, Daniel | McGuire, Sarah | Gilderthorp, Ruth | Griffiths, Coline | Manthravadi, Deepa | Nichol, Sarah | Barker, Gary | Whitehead, Siobhan | Kay, Michael | Brown, Jacqueline | Murnane, Clare | Gray, Emma | Humphries, Matthew | Sycamore, Neil | Barker, Darren | Saunders, David | Wallis, Justene | Babbage, Anne | Hammond, Sian | Mashreghi-Mohammadi, Maryam | Barr, Lucy | Martin, Sancha | Wray, Paul | Ellington, Andrew | Matthews, Nicholas | Ellwood, Matthew | Woodmansey, Rebecca | Clark, Graham | Cooper, James | Tromans, Anthony | Grafham, Darren | Skuce, Carl | Pandian, Richard | Andrews, Robert | Harrison, Elliot | Kimberley, Andrew | Garnett, Jane | Fosker, Nigel | Hall, Rebekah | Garner, Patrick | Kelly, Daniel | Bird, Christine | Palmer, Sophie | Gehring, Ines | Berger, Andrea | Dooley, Christopher M. | Ersan-Ürün, Zübeyde | Eser, Cigdem | Geiger, Horst | Geisler, Maria | Karotki, Lena | Kirn, Anette | Konantz, Judith | Konantz, Martina | Oberländer, Martina | Rudolph-Geiger, Silke | Teucke, Mathias | Osoegawa, Kazutoyo | Zhu, Baoli | Rapp, Amanda | Widaa, Sara | Langford, Cordelia | Yang, Fengtang | Carter, Nigel P. | Harrow, Jennifer | Ning, Zemin | Herrero, Javier | Searle, Steve M. J. | Enright, Anton | Geisler, Robert | Plasterk, Ronald H. A. | Lee, Charles | Westerfield, Monte | de Jong, Pieter J. | Zon, Leonard I. | Postlethwait, John H. | Nüsslein-Volhard, Christiane | Hubbard, Tim J. P. | Crollius, Hugues Roest | Rogers, Jane | Stemple, Derek L.
Nature  2013;496(7446):498-503.
Zebrafish have become a popular organism for the study of vertebrate gene function1,2. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human genetic disease3–5. However, for effective modelling of human genetic disease it is important to understand the extent to which zebrafish genes and gene structures are related to orthologous human genes. To examine this, we generated a high-quality sequence assembly of the zebrafish genome, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map. Detailed automatic and manual annotation provides evidence of more than 26,000 protein-coding genes6, the largest gene set of any vertebrate so far sequenced. Comparison to the human reference genome shows that approximately 70% of human genes have at least one obvious zebrafish orthologue. In addition, the high quality of this genome assembly provides a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebrafish-specific genes on chromosome 4 and chromosomal regions that influence sex determination.
doi:10.1038/nature12111
PMCID: PMC3703927  PMID: 23594743
4.  Identification of novel candidate genes associated with cleft lip and palate using array comparative genomic hybridization 
Journal of medical genetics  2007;45(2):81-86.
Introduction and methods
We analyzed DNA samples isolated from individuals born with cleft lip and cleft palate to identify deletions and duplications of candidate gene loci using array comparative genomic hybridization (array-CGH).
Results
Of 83 syndromic cases analyzed we identified one subject with a previously unknown 2.7 Mb deletion at 22q11.21 coinciding with the DiGeorge syndrome region. Eighteen of the syndromic cases had clinical features of Van der Woude syndrome and deletions were identified in 5 of these, all of which encompassed the interferon regulatory factor 6 (IRF6) gene. In a series of 104 nonsyndromic cases we found one subject with a 3.2 Mb deletion at chromosome 6q25.1-25.2 and another with a 2.2 Mb deletion at 10q26.11-26.13. Analyses of parental DNA demonstrated that the two deletion cases at 22q11.21 and 6q25.1-25.2 were de novo, while the deletion of 10q26.11-26.13 was inherited from the mother, who also has cleft lip. These deletions appear likely to be causally associated with the phenotypes of the subjects. Estrogen receptor 1 (ESR1) and fibroblast growth factor receptor 2 (FGFR2) genes from the 6q25.1-25.2 and 10q26.11-26.13, respectively, were identified as likely causative genes using a gene prioritization software.
Discussion
We have shown that array-CGH analysis of DNA samples derived from cleft lip and palate subjects is an efficient and productive method for identifying candidate chromosomal loci and genes, complementing traditional genetic mapping strategies.
doi:10.1136/jmg.2007.052191
PMCID: PMC3732463  PMID: 17873121
cleft lip; cleft palate; array-CGH; candidate gene
5.  Chromosomal abnormalities among children born with conotruncal cardiac defects 
BACKGROUND
Conotruncal heart defects comprise 25%-30% of non-syndromic congenital heart defects. This study describes the frequency of chromosome abnormalities and microdeletion 22q11 associated with conotruncal heart malformations.
METHODS
From a population base of 974,579 infants/fetuses delivered, 622 Californian infants/fetuses were ascertained with a defect of aortico-pulmonary septation. Infants whose primary cardiac defect was tetralogy of Fallot (n=296) or D-transposition of the great vessels (n=189) were screened for microdeletions of 22q11.
RESULTS
Fourteen (2.3%) of the 622 infants/fetuses had chromosomal abnormalities. Thirty infants, 10% of those whose primary defect was tetralogy of Fallot, had chromosome 22q11 microdeletions. Right aortic arch, abnormal branching patterns of the major arteries arising from the thoracic aorta, and pulmonary artery abnormalities were observed more frequently in these children.
CONCLUSIONS
We found an unusual number of infants with an extra sex chromosome and a conotruncal defect. Infants with tetralogy of Fallot due to 22q11 microdeletion showed more associated vascular anomalies than infants with tetralogy but no 22q11 microdeletion. Although these associated vascular anomalies provide clues as to which infants with tetralogy of Fallot are more likely to carry the microdeletion, the overall risk of 10% among all infants with tetralogy of Fallot warrants chromosome analysis and FISH testing routinely.
doi:10.1002/bdra.20541
PMCID: PMC2856481  PMID: 19067405
congenital heart defect; conotruncal defect; tetralogy of Fallot; transposition of the great vessels; 22q11 microdeletion
6.  DNA sequence of human chromosome 17 and analysis of rearrangement in the human lineage 
Zody, Michael C. | Garber, Manuel | Adams, David J. | Sharpe, Ted | Harrow, Jennifer | Lupski, James R. | Nicholson, Christine | Searle, Steven M. | Wilming, Laurens | Young, Sarah K. | Abouelleil, Amr | Allen, Nicole R. | Bi, Weimin | Bloom, Toby | Borowsky, Mark L. | Bugalter, Boris E. | Butler, Jonathan | Chang, Jean L. | Chen, Chao-Kung | Cook, April | Corum, Benjamin | Cuomo, Christina A. | de Jong, Pieter J. | DeCaprio, David | Dewar, Ken | FitzGerald, Michael | Gilbert, James | Gibson, Richard | Gnerre, Sante | Goldstein, Steven | Grafham, Darren V. | Grocock, Russell | Hafez, Nabil | Hagopian, Daniel S. | Hart, Elizabeth | Norman, Catherine Hosage | Humphray, Sean | Jaffe, David B. | Jones, Matt | Kamal, Michael | Khodiyar, Varsha K. | LaButti, Kurt | Laird, Gavin | Lehoczky, Jessica | Liu, Xiaohong | Lokyitsang, Tashi | Loveland, Jane | Lui, Annie | Macdonald, Pendexter | Major, John E. | Matthews, Lucy | Mauceli, Evan | McCarroll, Steven A. | Mihalev, Atanas H. | Mudge, Jonathan | Nguyen, Cindy | Nicol, Robert | O'Leary, Sinéad B. | Osoegawa, Kazutoyo | Schwartz, David C. | Shaw-Smith, Charles | Stankiewicz, Pawel | Steward, Charles | Swarbreck, David | Venkataraman, Vijay | Whittaker, Charles A. | Yang, Xiaoping | Zimmer, Andrew R. | Bradley, Allan | Hubbard, Tim | Birren, Bruce W. | Rogers, Jane | Lander, Eric S. | Nusbaum, Chad
Nature  2006;440(7087):1045-1049.
Chromosome 17 is unusual among the human chromosomes in many respects. It is the largest human autosome with orthology to only a single mouse chromosome1, mapping entirely to the distal half of mouse chromosome 11. Chromosome 17 is rich in protein-coding genes, having the second highest gene density in the genome2,3. It is also enriched in segmental duplications, ranking third in density among the autosomes4. Here we report a finished sequence for human chromosome 17, as well as a structural comparison with the finished sequence for mouse chromosome 11, the first finished mouse chromosome. Comparison of the orthologous regions reveals striking differences. In contrast to the typical pattern seen in mammalian evolution5,6, the human sequence has undergone extensive intrachromosomal rearrangement, whereas the mouse sequence has been remarkably stable. Moreover, although the human sequence has a high density of segmental duplication, the mouse sequence has a very low density. Notably, these segmental duplications correspond closely to the sites of structural rearrangement, demonstrating a link between duplication and rearrangement. Examination of the main classes of duplicated segments provides insight into the dynamics underlying expansion of chromosome-specific, low-copy repeats in the human genome.
doi:10.1038/nature04689
PMCID: PMC2610434  PMID: 16625196
7.  A BAC-based integrated linkage map of the silkworm Bombyx mori 
Genome Biology  2008;9(1):R21.
An integrated map of the Bombyx mori genome has been constructed using 361.1 Mb of BAC contigs and singletons together with a genetic map containing 1689 independent genes and synteny among Apis, Tribolium, and Bombyx was examined.
Background
In 2004, draft sequences of the model lepidopteran Bombyx mori were reported using whole-genome shotgun sequencing. Because of relatively shallow genome coverage, the silkworm genome remains fragmented, hampering annotation and comparative genome studies. For a more complete genome analysis, we developed extended scaffolds combining physical maps with improved genetic maps.
Results
We mapped 1,755 single nucleotide polymorphism (SNP) markers from bacterial artificial chromosome (BAC) end sequences onto 28 linkage groups using a recombining male backcross population, yielding an average inter-SNP distance of 0.81 cM (about 270 kilobases). We constructed 6,221 contigs by fingerprinting clones from three BAC libraries digested with different restriction enzymes, and assigned a total of 724 single copy genes to them by BLAST (basic local alignment search tool) search of the BAC end sequences and high-density BAC filter hybridization using expressed sequence tags as probes. We assigned 964 additional expressed sequence tags to linkage groups by restriction fragment length polymorphism analysis of a nonrecombining female backcross population. Altogether, 361.1 megabases of BAC contigs and singletons were integrated with a map containing 1,688 independent genes. A test of synteny using Oxford grid analysis with more than 500 silkworm genes revealed six versus 20 silkworm linkage groups containing eight or more orthologs of Apis versus Tribolium, respectively.
Conclusion
The integrated map contains approximately 10% of predicted silkworm genes and has an estimated 76% genome coverage by BACs. This provides a new resource for improved assembly of whole-genome shotgun data, gene annotation and positional cloning, and will serve as a platform for comparative genomics and gene discovery in Lepidoptera and other insects.
doi:10.1186/gb-2008-9-1-r21
PMCID: PMC2395255  PMID: 18226216
8.  Draft Genome Sequence of the Sexually Transmitted Pathogen Trichomonas vaginalis 
Science (New York, N.Y.)  2007;315(5809):207-212.
We describe the genome sequence of the protist Trichomonas vaginalis, a sexually transmitted human pathogen. Repeats and transposable elements comprise about two-thirds of the ~160-megabase genome, reflecting a recent massive expansion of genetic material. This expansion, in conjunction with the shaping of metabolic pathways that likely transpired through lateral gene transfer from bacteria, and amplification of specific gene families implicated in pathogenesis and phagocytosis of host proteins may exemplify adaptations of the parasite during its transition to a urogenital environment. The genome sequence predicts previously unknown functions for the hydrogenosome, which support a common evolutionary origin of this unusual organelle with mitochondria.
doi:10.1126/science.1132894
PMCID: PMC2080659  PMID: 17218520
9.  A physical map of the bovine genome 
Genome Biology  2007;8(8):R165.
A new physical map of the bovine genome has been constructed by integrating data from genetic and radiation hybrid maps, and a new bovine BAC map, with the bovine genome draft assembly.
Background
Cattle are important agriculturally and relevant as a model organism. Previously described genetic and radiation hybrid (RH) maps of the bovine genome have been used to identify genomic regions and genes affecting specific traits. Application of these maps to identify influential genetic polymorphisms will be enhanced by integration with each other and with bacterial artificial chromosome (BAC) libraries. The BAC libraries and clone maps are essential for the hybrid clone-by-clone/whole-genome shotgun sequencing approach taken by the bovine genome sequencing project.
Results
A bovine BAC map was constructed with HindIII restriction digest fragments of 290,797 BAC clones from animals of three different breeds. Comparative mapping of 422,522 BAC end sequences assisted with BAC map ordering and assembly. Genotypes and pedigree from two genetic maps and marker scores from three whole-genome RH panels were consolidated on a 17,254-marker composite map. Sequence similarity allowed integrating the BAC and composite maps with the bovine draft assembly (Btau3.1), establishing a comprehensive resource describing the bovine genome. Agreement between the marker and BAC maps and the draft assembly is high, although discrepancies exist. The composite and BAC maps are more similar than either is to the draft assembly.
Conclusion
Further refinement of the maps and greater integration into the genome assembly process may contribute to a high quality assembly. The maps provide resources to associate phenotypic variation with underlying genomic variation, and are crucial resources for understanding the biology underpinning this important ruminant species so closely associated with humans.
doi:10.1186/gb-2007-8-8-r165
PMCID: PMC2374996  PMID: 17697342
10.  BAC CLONES GENERATED FROM SHEARED DNA 
Genomics  2006;89(2):291-299.
BAC libraries generated from restriction-digested genomic DNA display representational bias and lack some sequences. To facilitate completion of genome projects, procedures have been developed to create BACs from DNA physically sheared to create fragments extending up to 200 kb. The DNA fragments were repaired to create blunt ends and ligated to a new BAC vector. This approach has been tested by generating BAC libraries from Drosophila DNA, with average insert lengths between 50 – 150 kb. The libraries lack chimeric clone problems as determined by mapping paired BAC-end sequences to the assembled fly genome sequence. The utility of “sheared” libraries was demonstrated by closure of a previous clone gap and by isolation of clones from telomeric regions, which were notably absent from previous Drosophila BAC libraries.
doi:10.1016/j.ygeno.2006.10.002
PMCID: PMC1909752  PMID: 17098394
bacterial artificial chromosome; BAC; sheared DNA; cloning; vector; adaptor; telomere; centromere and heterochromatin
11.  A High-Resolution Map of Synteny Disruptions in Gibbon and Human Genomes 
PLoS Genetics  2006;2(12):e223.
Gibbons are part of the same superfamily (Hominoidea) as humans and great apes, but their karyotype has diverged faster from the common hominoid ancestor. At least 24 major chromosome rearrangements are required to convert the presumed ancestral karyotype of gibbons into that of the hominoid ancestor. Up to 28 additional rearrangements distinguish the various living species from the common gibbon ancestor. Using the northern white-cheeked gibbon (2n = 52) (Nomascus leucogenys leucogenys) as a model, we created a high-resolution map of the homologous regions between the gibbon and human. The positions of 100 synteny breakpoints relative to the assembled human genome were determined at a resolution of about 200 kb. Interestingly, 46% of the gibbon–human synteny breakpoints occur in regions that correspond to segmental duplications in the human lineage, indicating a common source of plasticity leading to a different outcome in the two species. Additionally, the full sequences of 11 gibbon BACs spanning evolutionary breakpoints reveal either segmental duplications or interspersed repeats at the exact breakpoint locations. No specific sequence element appears to be common among independent rearrangements. We speculate that the extraordinarily high level of rearrangements seen in gibbons may be due to factors that increase the incidence of chromosome breakage or fixation of the derivative chromosomes in a homozygous state.
Synopsis
It is commonly accepted that mammalian chromosomes have undergone a limited number of rearrangements during the course of more than 100 million years of evolution. Surprisingly, some species have experienced a large increase in the incidence of rearrangements, including translocations (exchange between two non-homologous chromosomes), inversions (change of orientation of one chromosomal segment), fissions, and fusions. Within the primate order, gibbons exhibit the most strikingly unstable chromosome pattern. Gibbon chromosomal structure greatly differs from that of their most recent common ancestor with humans from which they diverged over 15 million years ago. The authors are interested in the mechanisms causing this extraordinary instability. In this study, they employed modern techniques to compare the human and white-cheeked gibbon chromosomes and to localize all the regions of disrupted homology between the two species. Their findings indicate that the molecular mechanism of gibbon chromosomal reshuffling is based on the same principles as in other mammalian species. To explain the 10-fold higher incidence of gibbon chromosomal rearrangements, it will be necessary to pursue future studies into other biological factors such as inbreeding and population dynamics.
doi:10.1371/journal.pgen.0020223
PMCID: PMC1756914  PMID: 17196042
12.  A highly redundant BAC library of Atlantic salmon (Salmo salar): an important tool for salmon projects 
BMC Genomics  2005;6:50.
Background
As farming of Atlantic salmon is growing as an aquaculture enterprise, the need to identify the genomic mechanisms for specific traits is becoming more important in breeding and management of the animal. Traits of importance might be related to growth, disease resistance, food conversion efficiency, color or taste. To identify genomic regions responsible for specific traits, genomic large insert libraries have previously proven to be of crucial importance. These large insert libraries can be screened using gene or genetic markers in order to identify and map regions of interest. Furthermore, large-scale mapping can utilize highly redundant libraries in genome projects, and hence provide valuable data on the genome structure.
Results
Here we report the construction and characterization of a highly redundant bacterial artificial chromosome (BAC) library constructed from a Norwegian aquaculture strain male of Atlantic salmon (Salmo salar). The library consists of a total number of 305 557 clones, in which approximately 299 000 are recombinants. The average insert size of the library is 188 kbp, representing 18-fold genome coverage. High-density filters each consisting of 18 432 clones spotted in duplicates have been produced for hybridization screening, and are publicly available [1]. To characterize the library, 15 expressed sequence tags (ESTs) derived overgos and 12 oligo sequences derived from microsatellite markers were used in hybridization screening of the complete BAC library. Secondary hybridizations with individual probes were performed for the clones detected. The BACs positive for the EST probes were fingerprinted and mapped into contigs, yielding an average of 3 contigs for each probe. Clones identified using genomic probes were PCR verified using microsatellite specific primers.
Conclusion
Identification of genes and genomic regions of interest is greatly aided by the availability of the CHORI-214 Atlantic salmon BAC library. We have demonstrated the library's ability to identify specific genes and genetic markers using hybridization, PCR and fingerprinting experiments. In addition, multiple fingerprinting contigs indicated a pseudo-tetraploidity of the Atlantic salmon genome. The highly redundant CHORI-214 BAC library is expected to be an important resource for mapping and sequencing of the Atlantic salmon genome.
doi:10.1186/1471-2164-6-50
PMCID: PMC1082906  PMID: 15807896
13.  A set of BAC clones spanning the human genome 
Nucleic Acids Research  2004;32(12):3651-3660.
Using the human bacterial artificial chromosome (BAC) fingerprint-based physical map, genome sequence assembly and BAC end sequences, we have generated a fingerprint-validated set of 32 855 BAC clones spanning the human genome. The clone set provides coverage for at least 98% of the human fingerprint map, 99% of the current assembled sequence and has an effective resolving power of 79 kb. We have made the clone set publicly available, anticipating that it will generally facilitate FISH or array-CGH-based identification and characterization of chromosomal alterations relevant to disease.
doi:10.1093/nar/gkh700
PMCID: PMC484185  PMID: 15247347

Results 1-13 (13)