PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-11 (11)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
1.  Comparative transcriptome analysis of obligately asexual and cyclically sexual rotifers reveals genes with putative functions in sexual reproduction, dormancy, and asexual egg production 
BMC Genomics  2013;14:412.
Background
Sexual reproduction is a widely studied biological process because it is critically important to the genetics, evolution, and ecology of eukaryotes. Despite decades of study on this topic, no comprehensive explanation has been accepted that explains the evolutionary forces underlying its prevalence and persistence in nature. Monogonont rotifers offer a useful system for experimental studies relating to the evolution of sexual reproduction due to their rapid reproductive rate and close relationship to the putatively ancient asexual bdelloid rotifers. However, little is known about the molecular underpinnings of sex in any rotifer species.
Results
We generated mRNA-seq libraries for obligate parthenogenetic (OP) and cyclical parthenogenetic (CP) strains of the monogonont rotifer, Brachionus calyciflorus, to identify genes specific to both modes of reproduction. Our differential expression analysis identified receptors with putative roles in signaling pathways responsible for the transition from asexual to sexual reproduction. Differential expression of a specific copy of the duplicated cell cycle regulatory gene CDC20 and specific copies of histone H2A suggest that such duplications may underlie the phenotypic plasticity required for reproductive mode switch in monogononts. We further identified differential expression of genes involved in the formation of resting eggs, a process linked exclusively to sex in this species. Finally, we identified transcripts from the bdelloid rotifer Adineta ricciae that have significant sequence similarity to genes with higher expression in CP strains of B. calyciflorus.
Conclusions
Our analysis of global gene expression differences between facultatively sexual and exclusively asexual populations of B. calyciflorus provides insights into the molecular nature of sexual reproduction in rotifers. Furthermore, our results offer insight into the evolution of obligate asexuality in bdelloid rotifers and provide indicators important for the use of monogononts as a model system for investigating the evolution of sexual reproduction.
doi:10.1186/1471-2164-14-412
PMCID: PMC3701536  PMID: 23782598
Evolution of sexual reproduction; Differential expression analysis; Gene ontology analysis; Meiosis; Gametogenesis; Resting eggs; Mixis induction
2.  Phylogeny of Parasitic Parabasalia and Free-Living Relatives Inferred from Conventional Markers vs. Rpb1, a Single-Copy Gene 
PLoS ONE  2011;6(6):e20774.
Background
Parabasalia are single-celled eukaryotes (protists) that are mainly comprised of endosymbionts of termites and wood roaches, intestinal commensals, human or veterinary parasites, and free-living species. Phylogenetic comparisons of parabasalids are typically based upon morphological characters and 18S ribosomal RNA gene sequence data (rDNA), while biochemical or molecular studies of parabasalids are limited to a few axenically cultivable parasites. These previous analyses and other studies based on PCR amplification of duplicated protein-coding genes are unable to fully resolve the evolutionary relationships of parabasalids. As a result, genetic studies of Parabasalia lag behind other organisms.
Principal Findings
Comparing parabasalid EF1α, α-tubulin, enolase and MDH protein-coding genes with information from the Trichomonas vaginalis genome reveals difficulty in resolving the history of species or isolates apart from duplicated genes. A conserved single-copy gene encodes the largest subunit of RNA polymerase II (Rpb1) in T. vaginalis and other eukaryotes. Here we directly sequenced Rpb1 degenerate PCR products from 10 parabasalid genera, including several T. vaginalis isolates and avian isolates, and compared these data by phylogenetic analyses. Rpb1 genes from parabasalids, diplomonads, Parabodo, Diplonema and Percolomonas were all intronless, unlike intron-rich homologs in Naegleria, Jakoba and Malawimonas.
Conclusions/Significance
The phylogeny of Rpb1 from parasitic and free-living parabasalids, and conserved Rpb1 insertions, support Trichomonadea, Tritrichomonadea, and Hypotrichomonadea as monophyletic groups. These results are consistent with prior analyses of rDNA and GAPDH sequences and ultrastructural data. The Rpb1 phylogenetic tree also resolves species- and isolate-level relationships. These findings, together with the relative ease of Rpb1 isolation, make it an attractive tool for evaluating more extensive relationships within Parabasalia.
doi:10.1371/journal.pone.0020774
PMCID: PMC3111441  PMID: 21695260
3.  Accelerated Mutation Accumulation in Asexual Lineages of a Freshwater Snail 
Molecular Biology and Evolution  2009;27(4):954-963.
Sexual reproduction is both extremely costly and widespread relative to asexual reproduction, meaning that it must also confer profound advantages in order to persist. One theorized benefit of sex is that it facilitates the clearance of harmful mutations, which would accumulate more rapidly in the absence of recombination. The extent to which ineffective purifying selection and mutation accumulation are direct consequences of asexuality and whether the accelerated buildup of harmful mutations in asexuals can occur rapidly enough to maintain sex within natural populations, however, remain as open questions. We addressed key components of these questions by estimating the rate of mutation accumulation in the mitochondrial genomes of multiple sexual and asexual representatives of Potamopyrgus antipodarum, a New Zealand snail characterized by mixed sexual/asexual populations. We found that increased mutation accumulation is associated with asexuality and occurs rapidly enough to be detected in recently derived asexual lineages of P. antipodarum. Our results demonstrate that increased mutation accumulation in asexuals can differentially affect coexisting and ecologically similar sexual and asexual lineages. The accelerated rate of mutation accumulation observed in asexual P. antipodarum provides some of the most direct evidence to date for a link between asexuality and mutation accumulation and implies that mutational buildup could be rapid enough to contribute to the short-term evolutionary mechanisms that favor sexual reproduction.
doi:10.1093/molbev/msp300
PMCID: PMC2912463  PMID: 19995828
sex; asexual; parthenogenetic; Muller's ratchet; mtDNA; Hill–Robertson; Potamopyrgus antipodarum
4.  Meiosis genes in Daphnia pulex and the role of parthenogenesis in genome evolution 
Background
Thousands of parthenogenetic animal species have been described and cytogenetic manifestations of this reproductive mode are well known. However, little is understood about the molecular determinants of parthenogenesis. The Daphnia pulex genome must contain the molecular machinery for different reproductive modes: sexual (both male and female meiosis) and parthenogenetic (which is either cyclical or obligate). This feature makes D. pulex an ideal model to investigate the genetic basis of parthenogenesis and its consequences for gene and genome evolution. Here we describe the inventory of meiotic genes and their expression patterns during meiotic and parthenogenetic reproduction to help address whether parthenogenesis uses existing meiotic and mitotic machinery, or whether novel processes may be involved.
Results
We report an inventory of 130 homologs representing over 40 genes encoding proteins with diverse roles in meiotic processes in the genome of D. pulex. Many genes involved in cell cycle regulation and sister chromatid cohesion are characterized by expansions in copy number. In contrast, most genes involved in DNA replication and homologous recombination are present as single copies. Notably, RECQ2 (which suppresses homologous recombination) is present in multiple copies while DMC1 is the only gene in our inventory that is absent in the Daphnia genome. Expression patterns for 44 gene copies were similar during meiosis versus parthenogenesis, although several genes displayed marked differences in expression level in germline and somatic tissues.
Conclusion
We propose that expansions in meiotic gene families in D. pulex may be associated with parthenogenesis. Taking into account our findings, we provide a mechanistic model of parthenogenesis, highlighting steps that must differ from meiosis including sister chromatid cohesion and kinetochore attachment.
doi:10.1186/1471-2148-9-78
PMCID: PMC2680839  PMID: 19383157
5.  Consensus nomenclature for the human ArfGAP domain-containing proteins 
The Journal of Cell Biology  2008;182(6):1039-1044.
At the FASEB summer research conference on “Arf Family GTPases”, held in Il Ciocco, Italy in June, 2007, it became evident to researchers that our understanding of the family of Arf GTPase activating proteins (ArfGAPs) has grown exponentially in recent years. A common nomenclature for these genes and proteins will facilitate discovery of biological functions and possible connections to pathogenesis. Nearly 100 researchers were contacted to generate a consensus nomenclature for human ArfGAPs. This article describes the resulting consensus nomenclature and provides a brief description of each of the 10 subfamilies of 31 human genes encoding proteins containing the ArfGAP domain.
doi:10.1083/jcb.200806041
PMCID: PMC2542466  PMID: 18809720
6.  Correction: An Expanded Inventory of Conserved Meiotic Genes Provides Evidence for Sex in Trichomonas vaginalis 
PLoS ONE  2008;3(9):10.1371/annotation/029c403b-10aa-47af-9e99-11451de76b85.
doi:10.1371/annotation/029c403b-10aa-47af-9e99-11451de76b85
PMCID: PMC3935636
7.  Broadly sampled multigene trees of eukaryotes 
Background
Our understanding of the eukaryotic tree of life and the tremendous diversity of microbial eukaryotes is in flux as additional genes and diverse taxa are sampled for molecular analyses. Despite instability in many analyses, there is an increasing trend to classify eukaryotic diversity into six major supergroups: the 'Amoebozoa', 'Chromalveolata', 'Excavata', 'Opisthokonta', 'Plantae', and 'Rhizaria'. Previous molecular analyses have often suffered from either a broad taxon sampling using only single-gene data or have used multigene data with a limited sample of taxa. This study has two major aims: (1) to place taxa represented by 72 sequences, 61 of which have not been characterized previously, onto a well-sampled multigene genealogy, and (2) to evaluate the support for the six putative supergroups using two taxon-rich data sets and a variety of phylogenetic approaches.
Results
The inferred trees reveal strong support for many clades that also have defining ultrastructural or molecular characters. In contrast, we find limited to no support for most of the putative supergroups as only the 'Opisthokonta' receive strong support in our analyses. The supergroup 'Amoebozoa' has only moderate support, whereas the 'Chromalveolata', 'Excavata', 'Plantae', and 'Rhizaria' receive very limited or no support.
Conclusion
Our analytical approach substantiates the power of increased taxon sampling in placing diverse eukaryotic lineages within well-supported clades. At the same time, this study indicates that the six supergroup hypothesis of higher-level eukaryotic classification is likely premature. The use of a taxon-rich data set with 105 lineages, which still includes only a small fraction of the diversity of microbial eukaryotes, fails to resolve deeper phylogenetic relationships and reveals no support for four of the six proposed supergroups. Our analyses provide a point of departure for future taxon- and gene-rich analyses of the eukaryotic tree of life, which will be critical for resolving their phylogenetic interrelationships.
doi:10.1186/1471-2148-8-14
PMCID: PMC2249577  PMID: 18205932
8.  SIVsm Quasispecies Adaptation to a New Simian Host 
PLoS Pathogens  2005;1(1):e3.
Despite the potential for infectious agents harbored by other species to become emerging human pathogens, little is known about why some agents establish successful cross-species transmission, while others do not. The simian immunodeficiency viruses (SIVs), certain variants of which gave rise to the human HIV-1 and HIV-2 epidemics, have demonstrated tremendous success in infecting new host species, both simian and human. SIVsm from sooty mangabeys appears to have infected humans on several occasions, and was readily transmitted to nonnatural Asian macaque species, providing animal models of AIDS. Here we describe the first in-depth analysis of the tremendous SIVsm quasispecies sequence variation harbored by individual sooty mangabeys, and how this diverse quasispecies adapts to two different host species—new nonnatural rhesus macaque hosts and natural sooty mangabey hosts. Viral adaptation to rhesus macaques was associated with the immediate amplification of a phylogenetically related subset of envelope (env) variants. These variants contained a shorter variable region 1 loop and lacked two specific glycosylation sites, which may be selected for during acute infection. In contrast, transfer of SIVsm to its natural host did not subject the quasispecies to any significant selective pressures or bottleneck. After 100 d postinfection, variants more closely representative of the source inoculum reemerged in the macaques. This study describes an approach for elucidating how pathogens adapt to new host species, and highlights the particular importance of SIVsm env diversity in enabling cross-species transmission. The replicative advantage of a subset of SIVsm variants in macaques may be related to features of target cells or receptors that are specific to the new host environment, and may involve CD4-independent engagement of a viral coreceptor conserved among primates.
Synopsis
Why do some infectious agents establish successful cross-species transmission while others do not? Despite the clear potential for diseases harbored by animals to become emerging human pathogens, this question remains unanswered. Certain simian immunodeficiency viruses (SIVs) responsible for the human HIV-1 and HIV-2 epidemics have succeeded in infecting new host species, including humans. This study provides clues to how an SIV adapts to a new host in an experimental cross-species transmission. Indeed, many emerging diseases are caused by highly mutation-prone RNA viruses like SIV, which exist not as a single species, but rather as a population of genetic variants within a single infection. The presence of numerous viral variants in an infected animal increases the chance that variants with the ability to enter into or multiply in a new host species are present. This study describes how an SIV population from a natural reservoir host, the sooty mangabey, adapts to a new monkey species, the rhesus macaque. A limited subset of SIV variants containing unique viral surface proteins appears well suited to multiply in the new host. This study documents how viral variation facilitates cross-species transmission, and highlights the particular importance of immunodeficiency virus envelope variants in infecting new hosts.
doi:10.1371/journal.ppat.0010003
PMCID: PMC1238738  PMID: 16201015
9.  Functional evolution of ADAMTS genes: Evidence from analyses of phylogeny and gene organization 
Background
The ADAMTS (A Disintegrin-like and Metalloprotease with Thrombospondin motifs) proteins are a family of metalloproteases with sequence similarity to the ADAM proteases, that contain the thrombospondin type 1 sequence repeat motifs (TSRs) common to extracellular matrix proteins. ADAMTS proteins have recently gained attention with the discovery of their role in a variety of diseases, including tissue and blood disorders, cancer, osteoarthritis, Alzheimer's and the genetic syndromes Weill-Marchesani syndrome (ADAMTS10), thrombotic thrombocytopenic purpura (ADAMTS13), and Ehlers-Danlos syndrome type VIIC (ADAMTS2) in humans and belted white-spotting mutation in mice (ADAMTS20).
Results
Phylogenetic analysis and comparison of the exon/intron organization of vertebrate (Homo, Mus, Fugu), chordate (Ciona) and invertebrate (Drosophila and Caenorhabditis) ADAMTS homologs has elucidated the evolutionary relationships of this important gene family, which comprises 19 members in humans.
Conclusions
The evolutionary history of ADAMTS genes in vertebrate genomes has been marked by rampant gene duplication, including a retrotransposition that gave rise to a distinct ADAMTS subfamily (ADAMTS1, -4, -5, -8, -15) that may have distinct aggrecanase and angiogenesis functions.
doi:10.1186/1471-2148-5-11
PMCID: PMC549037  PMID: 15693998
10.  An Expanded Inventory of Conserved Meiotic Genes Provides Evidence for Sex in Trichomonas vaginalis 
PLoS ONE  2008;3(8):e2879.
Meiosis is a defining feature of eukaryotes but its phylogenetic distribution has not been broadly determined, especially among eukaryotic microorganisms (i.e. protists)—which represent the majority of eukaryotic ‘supergroups’. We surveyed genomes of animals, fungi, plants and protists for meiotic genes, focusing on the evolutionarily divergent parasitic protist Trichomonas vaginalis. We identified homologs of 29 components of the meiotic recombination machinery, as well as the synaptonemal and meiotic sister chromatid cohesion complexes. T. vaginalis has orthologs of 27 of 29 meiotic genes, including eight of nine genes that encode meiosis-specific proteins in model organisms. Although meiosis has not been observed in T. vaginalis, our findings suggest it is either currently sexual or a recent asexual, consistent with observed, albeit unusual, sexual cycles in their distant parabasalid relatives, the hypermastigotes. T. vaginalis may use meiotic gene homologs to mediate homologous recombination and genetic exchange. Overall, this expanded inventory of meiotic genes forms a useful “meiosis detection toolkit”. Our analyses indicate that these meiotic genes arose, or were already present, early in eukaryotic evolution; thus, the eukaryotic cenancestor contained most or all components of this set and was likely capable of performing meiotic recombination using near-universal meiotic machinery.
doi:10.1371/journal.pone.0002879
PMCID: PMC2488364  PMID: 18663385
11.  A genomic survey of the fish parasite Spironucleus salmonicida indicates genomic plasticity among diplomonads and significant lateral gene transfer in eukaryote genome evolution 
BMC Genomics  2007;8:51.
Background
Comparative genomic studies of the mitochondrion-lacking protist group Diplomonadida (diplomonads) has been lacking, although Giardia lamblia has been intensively studied. We have performed a sequence survey project resulting in 2341 expressed sequence tags (EST) corresponding to 853 unique clones, 5275 genome survey sequences (GSS), and eleven finished contigs from the diplomonad fish parasite Spironucleus salmonicida (previously described as S. barkhanus).
Results
The analyses revealed a compact genome with few, if any, introns and very short 3' untranslated regions. Strikingly different patterns of codon usage were observed in genes corresponding to frequently sampled ESTs versus genes poorly sampled, indicating that translational selection is influencing the codon usage of highly expressed genes. Rigorous phylogenomic analyses identified 84 genes – mostly encoding metabolic proteins – that have been acquired by diplomonads or their relatively close ancestors via lateral gene transfer (LGT). Although most acquisitions were from prokaryotes, more than a dozen represent likely transfers of genes between eukaryotic lineages. Many genes that provide novel insights into the genetic basis of the biology and pathogenicity of this parasitic protist were identified including 149 that putatively encode variant-surface cysteine-rich proteins which are candidate virulence factors. A number of genomic properties that distinguish S. salmonicida from its human parasitic relative G. lamblia were identified such as nineteen putative lineage-specific gene acquisitions, distinct mutational biases and codon usage and distinct polyadenylation signals.
Conclusion
Our results highlight the power of comparative genomic studies to yield insights into the biology of parasitic protists and the evolution of their genomes, and suggest that genetic exchange between distantly-related protist lineages may be occurring at an appreciable rate in eukaryote genome evolution.
doi:10.1186/1471-2164-8-51
PMCID: PMC1805757  PMID: 17298675

Results 1-11 (11)