Search tips
Search criteria

Results 1-6 (6)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Evaluation of Normalization Methods to Pave the Way Towards Large-Scale LC-MS-Based Metabolomics Profiling Experiments 
Combining liquid chromatography-mass spectrometry (LC-MS)-based metabolomics experiments that were collected over a long period of time remains problematic due to systematic variability between LC-MS measurements. Until now, most normalization methods for LC-MS data are model-driven, based on internal standards or intermediate quality control runs, where an external model is extrapolated to the dataset of interest. In the first part of this article, we evaluate several existing data-driven normalization approaches on LC-MS metabolomics experiments, which do not require the use of internal standards. According to variability measures, each normalization method performs relatively well, showing that the use of any normalization method will greatly improve data-analysis originating from multiple experimental runs. In the second part, we apply cyclic-Loess normalization to a Leishmania sample. This normalization method allows the removal of systematic variability between two measurement blocks over time and maintains the differential metabolites. In conclusion, normalization allows for pooling datasets from different measurement blocks over time and increases the statistical power of the analysis, hence paving the way to increase the scale of LC-MS metabolomics experiments. From our investigation, we recommend data-driven normalization methods over model-driven normalization methods, if only a few internal standards were used. Moreover, data-driven normalization methods are the best option to normalize datasets from untargeted LC-MS experiments.
PMCID: PMC3760460  PMID: 23808607
2.  Relapse after Treatment with Miltefosine for Visceral Leishmaniasis Is Associated with Increased Infectivity of the Infecting Leishmania donovani Strain 
mBio  2013;4(5):e00611-13.
Leishmania donovani is an intracellular protozoan parasite that causes leishmaniasis, which can range from a self-healing cutaneous disease to a fatal visceral disease depending on the infecting species. Miltefosine is currently the latest and only oral antileishmanial that came out of drug discovery pipelines in the past few decades, but recent reports indicate a significant decline in its efficacy against visceral leishmaniasis (also known as kala-azar) in the Indian subcontinent. This relapse rate of up to 20% within 12 months after treatment was shown not to be related to reinfection, drug quality, drug exposure, or drug-resistant parasites. We therefore aimed to assess other phenotypes of the parasite that may affect treatment outcome and found a significant association between the number of metacyclic parasites, parasite infectivity, and patient treatment outcome in the Indian subcontinent. Together with previous studies on resistance of L. donovani against pentavalent antimonials, these data suggest that the infectivity of the parasite, or related phenotypes, might be a more determinant factor for treatment failure in visceral leishmaniasis than drug susceptibility, warranting a reassessment of our current view on treatment failure and drug resistance in leishmaniasis and beyond.
The high miltefosine relapse rate poses a major challenge for the current Kala-Azar Elimination Program in the Indian subcontinent and other leishmaniasis control programs worldwide. This relapse rate could not be related to reinfection, drug-resistant parasites, or reduced treatment quality. Here we report that an increased infectivity of the parasite is associated with miltefosine relapse of visceral leishmaniasis (VL) patients. These results supplement those obtained with antimonial-resistant L. donovani where an increased infectivity was also observed. This challenges the current view of Leishmania drug susceptibility being the biggest parasitic factor that contributes to treatment failure in leishmaniasis. These selected more infectious parasites may pose an additional burden to leishmaniasis control programs, highlighting the importance of multifaceted control measures to achieve leishmaniasis elimination in the Indian subcontinent and other regions where leishmaniasis is endemic.
PMCID: PMC3791894  PMID: 24105765
3.  LC-MS metabolomics from study design to data-analysis – using a versatile pathogen as a test case 
Thanks to significant improvements in LC-MS technology, metabolomics is increasingly used as a tool to discriminate the responses of organisms to various stimuli or drugs. In this minireview we discuss all aspects of the LC-MS metabolomics pipeline, using a complex and versatile model organism, Leishmania donovani, as an illustrative example. The benefits of a hyphenated mass spectrometry platform and a detailed overview of the entire experimental pipeline from sampling, sample storage and sample list set-up to LC-MS measurements and the generation of meaningful results with state-of-the-art data-analysis software will be thoroughly discussed. Finally, we also highlight important pitfalls in the processing of LC-MS data and comment on the benefits of implementing metabolomics in a systems biology approach.
PMCID: PMC3962178  PMID: 24688684
mass spectrometry; HILIC; Leishmania; unicellular trypanosomatid parasites; global molecular profiles; systems biology
4.  α-Ketoheterocycles as inhibitors of Leishmania mexicana cysteine protease CPB 
ChemMedChem  2010;5(10):1734-1748.
Cysteine proteases of the papain superfamily are present in nearly all eukaryotes and also play pivotal roles in the biology of parasites. Inhibition of cysteine proteases is emerging as an important strategy to combat parasitic diseases such as sleeping sickness, Chagas’ disease and leishmaniasis. Inspired by the in vivo antiparasitic activity of the vinyl sulfone based cysteine protease inhibitors (CPIs), a series of α-ketoheterocycles 1-15 has been developed as reversible inhibitors of a recombinant L. mexicana cysteine protease CPB2.8. The isoxazoles 1-3 and especially the oxadiazole 15 are potent reversible inhibitors of CPB2.8, however, in vitro whole-organism screening against a panel of protozoan parasites did not fully correlate with the observed inhibition of the cysteine protease.
PMCID: PMC3245848  PMID: 20799311
cysteine proteases; inhibitors; ketoheterocycle; parasite CPB; Trypanosoma
5.  Evaluation of Nucleoside Hydrolase Inhibitors for Treatment of African Trypanosomiasis ▿ †  
In this paper, we present the biochemical and biological evaluation of N-arylmethyl-substituted iminoribitol derivatives as potential chemotherapeutic agents against trypanosomiasis. Previously, a library of 52 compounds was designed and synthesized as potent and selective inhibitors of Trypanosoma vivax inosine-adenosine-guanosine nucleoside hydrolase (IAG-NH). However, when the compounds were tested against bloodstream-form Trypanosoma brucei brucei, only one inhibitor, N-(9-deaza-adenin-9-yl)methyl-1,4-dideoxy-1,4-imino-d-ribitol (UAMC-00363), displayed significant activity (mean 50% inhibitory concentration [IC50] ± standard error, 0.49 ± 0.31 μM). Validation in an in vivo model of African trypanosomiasis showed promising results for this compound. Several experiments were performed to investigate why only UAMC-00363 showed antiparasitic activity. First, the compound library was screened against T. b. brucei IAG-NH and inosine-guanosine nucleoside hydrolase (IG-NH) to confirm the previously demonstrated inhibitory effects of the compounds on T. vivax IAG-NH. Second, to verify the uptake of these compounds by T. b. brucei, their affinities for the nucleoside P1 and nucleoside/nucleobase P2 transporters of T. b. brucei were tested. Only UAMC-00363 displayed significant affinity for the P2 transporter. It was also shown that UAMC-00363 is concentrated in the cell via at least one additional transporter, since P2 knockout mutants of T. b. brucei displayed no resistance to the compound. Consequently, no cross-resistance to the diamidine or the melaminophenyl arsenical classes of trypanocides is expected. Third, three enzymes of the purine salvage pathway of procyclic T. b. brucei (IAG-NH, IG-NH, and methylthioadenosine phosphorylase [MTAP]) were investigated using RNA interference. The findings from all these studies showed that it is probably not sufficient to target only the nucleoside hydrolase activity to block the purine salvage pathway of T. b. brucei and that, therefore, it is possible that UAMC-00363 acts on an additional target.
PMCID: PMC2863631  PMID: 20194690
6.  Design and evaluation of Trypanosoma brucei metacaspase inhibitors 
Metacaspase (MCA) is an important enzyme in Trypanosoma brucei, absent from humans and differing significantly from the orthologous human caspases. Therefore MCA constitutes a new attractive drug target for antiparasitic chemotherapeutics, which needs further characterization to support the discovery of innovative drug candidates. A first series of inhibitors has been prepared on the basis of known substrate specificity and the predicted catalytic mechanism of the enzyme. In this Letter we present the first inhibitors of TbMCA2 with low micromolar enzymatic and antiparasitic activity in vitro combined with low cytotoxicity.
PMCID: PMC2845880  PMID: 20167486

Results 1-6 (6)