Search tips
Search criteria

Results 1-25 (99)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
1.  Amino Sugars Enhance the Competitiveness of Beneficial Commensals with Streptococcus mutans through Multiple Mechanisms 
Applied and Environmental Microbiology  2016;82(12):3671-3682.
Biochemical and genetic aspects of the metabolism of the amino sugars N-acetylglucosamine (GlcNAc) and glucosamine (GlcN) by commensal oral streptococci and the effects of these sugars on interspecies competition with the dental caries pathogen Streptococcus mutans were explored. Multiple S. mutans wild-type isolates displayed long lag phases when transferred from glucose-containing medium to medium with GlcNAc as the primary carbohydrate source, but commensal streptococci did not. Competition in liquid coculture or dual-species biofilms between S. mutans and Streptococcus gordonii showed that S. gordonii was particularly dominant when the primary carbohydrate was GlcN or GlcNAc. Transcriptional and enzymatic assays showed that the catabolic pathway for GlcNAc was less highly induced in S. mutans than in S. gordonii. Exposure to H2O2, which is produced by S. gordonii and antagonizes the growth of S. mutans, led to reduced mRNA levels of nagA and nagB in S. mutans. When the gene for the transcriptional regulatory NagR was deleted in S. gordonii, the strain produced constitutively high levels of nagA (GlcNAc-6-P deacetylase), nagB (GlcN-6-P deaminase), and glmS (GlcN-6-P synthase) mRNA. Similar to NagR of S. mutans (NagRSm), the S. gordonii NagR protein (NagRSg) could bind to consensus binding sites (dre) in the nagA, nagB, and glmS promoter regions of S. gordonii. Notably, NagRSg binding was inhibited by GlcN-6-P, but G-6-P had no effect, unlike for NagRSm. This study expands the understanding of amino sugar metabolism and NagR-dependent gene regulation in streptococci and highlights the potential for therapeutic applications of amino sugars to prevent dental caries.
IMPORTANCE Amino sugars are abundant in the biosphere, so the relative efficiency of particular bacteria in a given microbiota to metabolize these sources of carbon and nitrogen might have a profound impact on the ecology of the community. Our investigation reveals that several oral commensal bacteria have a much greater capacity to utilize amino sugars than the dental pathogen Streptococcus mutans and that the ability of the model commensal Streptococcus gordonii to compete against S. mutans is substantively enhanced by the presence of amino sugars commonly found in the oral cavity. The mechanisms underlying the greater capacity and competitive enhancements of the commensal are shown to depend on how the genes for the catabolic enzymes are regulated, the role of the allosteric modulators affecting such regulation, and the ability of amino sugars to enhance certain activities of the commensal that are antagonistic to S. mutans.
PMCID: PMC4959161  PMID: 27084009
2.  Post-transcriptional regulation by distal Shine-Dalgarno sequences in the grpE-dnaK intergenic region of Streptococcus mutans 
Molecular microbiology  2015;98(2):302-317.
A unique 373 bp region (igr66) between grpE and dnaK of Streptococcus mutans lacks a promoter but is required for optimal production of DnaK. Northern blotting using probes specific to hrcA, igr66 or dnaK revealed multiple transcripts produced from the dnaK operon and 5′-RACE mapped 5′ termini of multiple dnaK transcripts within igr66. One product mapped to a predicted 5′-SL (stem-loop) and two others mapped just 5′ to Shine-Dalgarno (SD)-like sequences located immediately upstream to dnaK and to a predicted SL 120 bp upstream of the dnaK start codon (3′-SL). A collection of cat reporter-gene strains containing mutant derivatives of igr66 were engineered. Chloramphenicol acetyltransferase (CAT) activity varied greatly between strains, but there were no correlative changes in cat mRNA levels. Interestingly, mutations introduced into the SD-like sequences 5′ to the 3′-SL resulted in an 83–98% decrease in CAT activity. Markerless point mutations introduced upstream of dnaK in the SD-like sequences impaired growth at elevated temperatures and resulted in up to a 40% decrease in DnaK protein after heat shock. Collectively, these results indicate processing within igr66 enhances translation in a temperature dependent manner via non-canonical ribosome binding sites positioned > 120 bp upstream of dnaK.
PMCID: PMC4666293  PMID: 26172310
3.  Bidirectional signaling in the competence regulatory pathway of Streptococcus mutans 
FEMS Microbiology Letters  2015;362(19):fnv159.
Streptococcus mutans expresses comX (also known as sigX), which encodes a sigma factor that is required for development of genetic competence, in response to the peptide signals XIP and CSP and environmental factors. XIP (sigX inducing peptide) is derived from ComS and activates comX unimodally in chemically defined media via the ComRS system. CSP (competence stimulating peptide) activates comX bimodally in peptide-rich media through the ComDE two-component system. However, CSP-ComDE activation of comX is indirect and involves ComRS. Therefore, the bimodality of CSP-dependent activation of comX may arise from either ComRS or ComDE. Here we study, at the single-cell level, how genes in the CSP signaling pathway respond to CSP, XIP and media. Our data indicate that activation of comX stimulates expression of comE. In addition, activation of comE requires intact comR and comS genes. Therefore, not only does CSP-ComDE stimulate the ComRS pathway to activate comX expression, but ComRS activation of comX also stimulates expression of the CSP-ComDE pathway and its regulon. The results demonstrate the mutual interconnection of the signaling pathways that control bacteriocin expression (ComDE) and genetic competence (ComRS), both of which are linked to lytic and virulence behaviors.
Single-cell studies show that signaling is bidirectional between the two quorum-sensing systems that regulate genetic competence in Streptococcus mutans.
Graphical Abstract Figure.Single-cell studies show that signaling is bidirectional between the two quorum-sensing systems that regulate genetic competence in Streptococcus mutans.
PMCID: PMC4809993  PMID: 26363019
transformation; single cell; bistability; fluorescence; feedback; bimodality; quorum sensing
4.  A Highly Arginolytic Streptococcus Species That Potently Antagonizes Streptococcus mutans 
The ability of certain oral biofilm bacteria to moderate pH through arginine metabolism by the arginine deiminase system (ADS) is a deterrent to the development of dental caries. Here, we characterize a novel Streptococcus strain, designated strain A12, isolated from supragingival dental plaque of a caries-free individual. A12 not only expressed the ADS pathway at high levels under a variety of conditions but also effectively inhibited growth and two intercellular signaling pathways of the dental caries pathogen Streptococcus mutans. A12 produced copious amounts of H2O2 via the pyruvate oxidase enzyme that were sufficient to arrest the growth of S. mutans. A12 also produced a protease similar to challisin (Sgc) of Streptococcus gordonii that was able to block the competence-stimulating peptide (CSP)–ComDE signaling system, which is essential for bacteriocin production by S. mutans. Wild-type A12, but not an sgc mutant derivative, could protect the sensitive indicator strain Streptococcus sanguinis SK150 from killing by the bacteriocins of S. mutans. A12, but not S. gordonii, could also block the XIP (comX-inducing peptide) signaling pathway, which is the proximal regulator of genetic competence in S. mutans, but Sgc was not required for this activity. The complete genome sequence of A12 was determined, and phylogenomic analyses compared A12 to streptococcal reference genomes. A12 was most similar to Streptococcus australis and Streptococcus parasanguinis but sufficiently different that it may represent a new species. A12-like organisms may play crucial roles in the promotion of stable, health-associated oral biofilm communities by moderating plaque pH and interfering with the growth and virulence of caries pathogens.
PMCID: PMC4807514  PMID: 26826230
5.  Conserved and divergent functions of RcrRPQ in Streptococcus gordonii and S. mutans 
FEMS Microbiology Letters  2015;362(16):fnv119.
In the dental caries pathogen Streptococcus mutans, an MarR-like transcriptional regulator (RcrR), two ABC efflux pumps (RcrPQ) and two effector peptides encoded in the rcrRPQ operon provide molecular connections between stress tolerance, (p)ppGpp metabolism and genetic competence. Here, we examined the role of RcrRPQ in the oral commensal S. gordonii. Unlike in S. mutans, introduction of polar or non-polar rcrR mutations into S. gordonii elicited no significant changes in transformation efficiency. However, S. gordonii rcrR mutants were markedly impaired in their ability to grow in the presence of hydrogen peroxide, paraquat, low pH or elevated temperature. Sensitivity to paraquat could also be conferred by mutation of cysteine residues that are present in the RcrR protein of S. gordonii, but not in S. mutans RcrR. Thus, stress tolerance is a conserved function of RcrRPQ in a commensal and pathogenic streptococcus, but the study reveals additional differences in regulation of genetic competence development between S. mutans and S. gordonii.
Divergent regulation and different roles in genetic competence of a transcriptional repressor and two ABC efflux pumps are elucidated in a commensal streptococcus when compared with a related oral pathogen.
Graphical Abstract Figure.Divergent regulation and different roles in genetic competence of a transcriptional repressor and two ABC efflux pumps are elucidated in a commensal streptococcus when compared with a related oral pathogen.
PMCID: PMC4809977  PMID: 26229070
transcriptional regulator; stress tolerance; genetic competence; streptococcus; cysteine residues
6.  An Essential Role for (p)ppGpp in the Integration of Stress Tolerance, Peptide Signaling, and Competence Development in Streptococcus mutans 
The microbes that inhabit the human oral cavity are subjected to constant fluctuations in their environment. To overcome these challenges and gain a competitive advantage, oral streptococci employ numerous adaptive strategies, many of which appear to be intertwined with the development of genetic competence. Here, we demonstrate that the regulatory circuits that control development of competence in Streptococcus mutans, a primary etiological agent of human dental caries, are integrated with key stress tolerance pathways by the molecular alarmone (p)ppGpp. We first observed that the growth of a strain that does not produce (p)ppGpp (ΔrelAPQ, (p)ppGpp0) is not sensitive to growth inhibition by comX inducing peptide (XIP), unlike the wild-type strain UA159, even though XIP-dependent activation of the alternative sigma factor comX by the ComRS pathway is not impaired in the (p)ppGpp0 strain. Overexpression of a (p)ppGpp synthase gene (relP) in the (p)ppGpp0 mutant restored growth inhibition by XIP. We also demonstrate that exposure to micromolar concentrations of XIP elicited changes in (p)ppGpp accumulation in UA159. Loss of the RelA/SpoT homolog (RSH) enzyme, RelA, lead to higher basal levels of (p)ppGpp accumulation, but to decreased sensitivity to XIP and to decreases in comR promoter activity and ComX protein levels. By introducing single amino acid substitutions into the RelA enzyme, the hydrolase activity of the enzyme was shown to be crucial for full com gene induction and transformation by XIP. Finally, loss of relA resulted in phenotypic changes to ΔrcrR mutants, highlighted by restoration of transformation and ComX protein production in the otherwise non-transformable ΔrcrR-NP mutant. Thus, RelA activity and its influence on (p)ppGpp pools appears to modulate competence signaling and development through RcrRPQ and the peptide effectors encoded within rcrQ. Collectively, this study provides new insights into the molecular mechanisms that integrate intercellular communication with the physiological status of the cells and the regulation of key virulence-related phenotypes in S. mutans.
PMCID: PMC4963387  PMID: 27516759
competence; biofilms; comX; stringent response; (p)ppGpp; dental caries
7.  Growth of Streptococcus mutans in Biofilms Alters Peptide Signaling at the Sub-population Level 
Streptococcus mutans activates multiple cellular processes in response to the formation of a complex between comX-inducing peptide (XIP) and the ComR transcriptional regulator. Bulk phase and microfluidic experiments previously revealed that ComR-dependent activation of comX is altered by pH and by carbohydrate source. Biofilm formation is a major factor in bacterial survival and virulence in the oral cavity. Here, we sought to determine the response of S. mutans biofilm cells to XIP during different stages of biofilm maturation. Using flow cytometry and confocal microscopy, we showed that exogenous addition of XIP to early biofilms resulted in robust comX activation. However, as the biofilms matured, increasing amounts of XIP were required to activate comX expression. Single-cell analysis demonstrated that the entire population was responding to XIP with activation of comX in early biofilms, but only a sub-population was responding in mature biofilms. The sub-population response of mature biofilms was retained when the cells were dispersed and then treated with XIP. The proportion and intensity of the bi-modal response of mature biofilm cells was altered in mutants lacking the Type II toxins MazF and RelE, or in a strain lacking the (p)ppGpp synthase/hydrolase RelA. Thus, competence signaling is markedly altered in cells growing in mature biofilms, and pathways that control cell death and growth/survival decisions modulate activation of comX expression in these sessile populations.
PMCID: PMC4946182  PMID: 27471495
genetic competence; biofilm; ComRS; RelA; type II toxins; quorum sensing
8.  Sucrose- and Fructose-Specific Effects on the Transcriptome of Streptococcus mutans, as Determined by RNA Sequencing 
Recent genome-scale studies have begun to establish the scope and magnitude of the impacts of carbohydrate source and availability on the regulation of gene expression in bacteria. The effects of sugars on gene expression are particularly profound in a group of lactic acid bacteria that rely almost entirely on their saccharolytic activities for energy production and growth. For Streptococcus mutans, the major etiologic agent of human dental caries, sucrose is the carbohydrate that contributes in the most significant manner to establishment, persistence, and virulence of the organism. However, because this organism produces multiple extracellular sucrolytic enzymes that can release hexoses from sucrose, it has not been possible to study the specific effects of sucrose transport and metabolism on gene expression in the absence of carbohydrates that by themselves can elicit catabolite repression and induce expression of multiple genes. By employing RNA deep-sequencing (RNA-Seq) technology and mutants that lacked particular sucrose-metabolizing enzymes, we compared the transcriptomes of S. mutans bacteria growing on glucose, fructose, or sucrose as the sole carbohydrate source. The results provide a variety of new insights into the impact of sucrose transport and metabolism by S. mutans, including the likely expulsion of fructose after sucrose internalization and hydrolysis, and identify a set of genes that are differentially regulated by sucrose versus fructose. The findings significantly enhance our understanding of the genetics and physiology of this cariogenic pathogen.
PMCID: PMC4702655  PMID: 26475108
9.  NagR Differentially Regulates the Expression of the glmS and nagAB Genes Required for Amino Sugar Metabolism by Streptococcus mutans 
Journal of Bacteriology  2015;197(22):3533-3544.
The ability of bacteria to metabolize glucosamine (GlcN) and N-acetyl-d-glucosamine (GlcNAc) is considered important for persistent colonization of the oral cavity. In the dental caries pathogen Streptococcus mutans, the NagR protein regulates the expression of glmS, which encodes a GlcN-6-P synthetase, and nagA (GlcNAc-6-P deacetylase) and nagB (GlcN-6-P deaminase), which are required for the catabolism of GlcNAc and GlcN. Two NagR-binding sites (dre) were identified in each of the promoter regions for nagB and glmS. Using promoter-reporter gene fusions, the role of each dre site was examined in the regulation of glmS and nagB promoter activities in cells grown with glucose, GlcNAc, or GlcN. A synergistic relationship between the two dre sites in the glmS promoter that required proper spacing was observed, but that was not the case for nagB. Binding of purified NagR to DNA fragments from both promoter regions, as well as to dre sites alone, was strongly influenced by particular sugar phosphates. Using a random mutagenesis approach that targeted the effector-binding domain of NagR, mutants that displayed aberrant regulation of both the glmS and nagAB genes were identified. Collectively, these findings provide evidence that NagR is essential for regulation of genes for both the synthesis and catabolism of GlcN and GlcNAc in S. mutans, and that NagR engages differently with the target promoter regions in response to specific metabolites interacting with the effector-binding domain of NagR.
IMPORTANCE Glucosamine and N-acetylglucosamine are among the most abundant naturally occurring sugars on the planet, and they are catabolized by many bacterial species as sources of carbon and nitrogen. Representing a group called lactic acid bacteria (LAB), the human dental caries pathogen Streptococcus mutans is shown to differ from known paradigm organisms in that it possesses a GntR/HutC-type regulator, NagR, that is required for the regulation of both catabolism of GlcN and biosynthesis. Results reported here reveal a simple and elegant mechanism whereby NagR differentially regulates two opposing biological processes by surveying metabolic intermediates. This study provides insights that may contribute to the development of novel therapeutic tools to combat dental caries and other infectious diseases.
PMCID: PMC4621086  PMID: 26324448
10.  A unique open reading frame within the comX gene of Streptococcus mutans regulates genetic competence and oxidative stress tolerance 
Molecular microbiology  2015;96(3):463-482.
Streptococcus mutans displays complex regulation of genetic competence, with ComX controlling late competence gene transcription. The rcrRPQ operon has been shown to link oxidative stress tolerance, (p)ppGpp metabolism and competence in S. mutans. Importantly, an rcrR polar (ΔrcrR-P) mutant is hyper-transformable, but an rcrR non-polar (ΔrcrR-NP) mutant cannot be transformed. Transcriptome comparisons of the rcrR mutants using RNA-Seq and quantitative real-time polymerase chain reaction revealed little expression in the 5′ region of comX in ΔrcrR-NP, but high level expression in the 3′ region. Northern blotting with comX probes revealed two distinct transcripts in the ΔrcrR-P and ΔrcrR-NP strains, and 5′ Rapid Amplification of cDNA Ends mapped the 5′ terminus of the shorter transcript to nt +140 of the comX structural gene, where a unique 69-aa open reading frame, termed XrpA, was encoded in a different reading frame than ComX. Two single-nucleotide substitution mutants (comX::T162C; comX::T210A) were introduced to disrupt XrpA without affecting the sequence of ComX. When the mutations were in the ΔrcrR-NP genetic background, ComX production and transformation were restored. Overexpression of xrpA led to impaired growth in aerobic conditions and decreased transformability. These results reveal an unprecedented mechanism for competence regulation and stress tolerance by a gene product encoded within the comX gene that appears unique to S. mutans.
PMCID: PMC4414889  PMID: 25620525
11.  Regulation of competence and gene expression in Streptococcus mutans by the RcrR transcriptional regulator 
Molecular oral microbiology  2014;30(2):147-159.
An intimate linkage between the regulation of biofilm formation, stress tolerance and genetic competence exists in the dental caries pathogen Streptococcus mutans. The rcrRPQ genes encode ABC exporters (RcrPQ) and a MarR-family transcriptional repressor of the rcr operon (RcrR) play a dominant role in regulation of the development of genetic competence and connect competence with stress tolerance and (p)ppGpp production in S. mutans. Here we identify the target for efficient RcrR binding in the rcr promoter region using purified recombinant RcrR (rRcrR) protein in electrophoretic mobility shift assays and show that DNA fragments carrying mutations in the binding region were not bound as efficiently by rRcrR in vitro. Mutations in the RcrR binding site impacted expression from the rcrR promoter in vivo and elicited changes in transformation efficiency, competence gene expression, and growth inhibition by competence stimulating peptide; even when the changes in rcrRPQ transcription were minor. An additional mechanistic linkage of RcrR with competence and (p)ppGpp metabolism was identified by showing that the rRcrR protein could bind to the promoter regions of comX, comYA and relP, although the binding was not as efficient as to the rcrRPQ promoter under the conditions tested. Thus, tightly controlled autogenous regulation of the rcrRPQ operon by RcrR binding to specific target sites is essential for cellular homeostasis, and RcrR contributes to the integration of genetic competence, (p)ppGpp metabolism, and acid and oxidative stress tolerance in S. mutans through both direct and indirect mechanisms.
PMCID: PMC4336644  PMID: 25146832
dental caries; genetic competence; autolysis; peptide signaling; transcriptional regulator
12.  Genetics and Physiology of Acetate Metabolism by the Pta-Ack Pathway of Streptococcus mutans 
Applied and Environmental Microbiology  2015;81(15):5015-5025.
In the dental caries pathogen Streptococcus mutans, phosphotransacetylase (Pta) catalyzes the conversion of acetyl coenzyme A (acetyl-CoA) to acetyl phosphate (AcP), which can be converted to acetate by acetate kinase (Ack), with the concomitant generation of ATP. A ΔackA mutant displayed enhanced accumulation of AcP under aerobic conditions, whereas little or no AcP was observed in the Δpta or Δpta ΔackA mutant. The Δpta and Δpta ΔackA mutants also had diminished ATP pools compared to the size of the ATP pool for the parental or ΔackA strain. Surprisingly, when exposed to oxidative stress, the Δpta ΔackA strain appeared to regain the capacity to produce AcP, with a concurrent increase in the size of the ATP pool compared to that for the parental strain. The ΔackA and Δpta ΔackA mutants exhibited enhanced (p)ppGpp accumulation, whereas the strain lacking Pta produced less (p)ppGpp than the wild-type strain. The ΔackA and Δpta ΔackA mutants displayed global changes in gene expression, as assessed by microarrays. All strains lacking Pta, which had defects in AcP production under aerobic conditions, were impaired in their abilities to form biofilms when glucose was the growth carbohydrate. Collectively, these data demonstrate the complex regulation of the Pta-Ack pathway and critical roles for these enzymes in processes that appear to be essential for the persistence and pathogenesis of S. mutans.
PMCID: PMC4495203  PMID: 25979891
13.  Sharply Tuned pH Response of Genetic Competence Regulation in Streptococcus mutans: a Microfluidic Study of the Environmental Sensitivity of comX 
Applied and Environmental Microbiology  2015;81(16):5622-5631.
Genetic competence in Streptococcus mutans is a transient state that is regulated in response to multiple environmental inputs. These include extracellular pH and the concentrations of two secreted peptides, designated CSP (competence-stimulating peptide) and XIP (comX-inducing peptide). The role of environmental cues in regulating competence can be difficult to disentangle from the effects of the organism's physiological state and its chemical modification of its environment. We used microfluidics to control the extracellular environment and study the activation of the key competence gene comX. We find that the comX promoter (PcomX) responds to XIP or CSP only when the extracellular pH lies within a narrow window, about 1 pH unit wide, near pH 7. Within this pH range, CSP elicits a strong PcomX response from a subpopulation of cells, whereas outside this range the proportion of cells expressing comX declines sharply. Likewise, PcomX is most sensitive to XIP only within a narrow pH window. While previous work suggested that comX may become refractory to CSP or XIP stimulus as cells exit early exponential phase, our microfluidic data show that extracellular pH dominates in determining sensitivity to XIP and CSP. The data are most consistent with an effect of pH on the ComR/ComS system, which has direct control over transcription of comX in S. mutans.
PMCID: PMC4510173  PMID: 26070670
14.  Characterization of the Arginolytic Microflora Provides Insights into pH Homeostasis in Human Oral Biofilms 
Caries research  2015;49(2):165-176.
A selected group of oral bacteria commonly associated with dental health is capable of producing alkali via the arginine deiminase system (ADS), which has a profound impact on the pH of human oral biofilms. An increased risk for dental caries has been associated with reduced ADS activity of the bacteria in oral biofilms. Arginolytic bacterial strains from dental plaque samples of caries-free (CF) and caries-active (CA) adults were isolated and characterized to investigate the basis for differences in plaque ADS activity between individuals. Fifty-six ADS-positive bacterial strains were identified by 16S rRNA gene sequencing and their ADS activity levels were compared under standard growth conditions. The spectrum of bacterial ADS activity ranged from 45.2 to 688.0 units (mg protein)−1. Although Streptococcus sanguinis was the most prevalent species, other Streptococcus were also represented. Biochemical assays carried out using twenty-seven ADS-positive strains under conditions known to induce or repress ADS gene expression, showed substantial variation in arginolytic activity in response to pH, oxygen, and the availability of carbohydrate or arginine. This study reveals that the basis for the wide spectrum of arginolytic expression observed among clinical strains is, at least in part, attributable to differences in the regulation of the ADS within and between species. The results provide insights into the microbiological basis for inter-subject differences in ADS activity in oral biofilms and enhance our understanding of dental caries as an ecologically-driven disease in which arginine metabolism moderates plaque pH and promotes dental health.
PMCID: PMC4313619  PMID: 25634570
Arginine deiminase; biofilm; plaque; microflora; caries; pH
15.  Pluronics-Formulated Farnesol Promotes Efficient Killing and Demonstrates Novel Interactions with Streptococcus mutans Biofilms 
PLoS ONE  2015;10(7):e0133886.
Streptococcus mutans is the primary causative agent of dental caries, one of the most prevalent diseases in the United States. Previously published studies have shown that Pluronic-based tooth-binding micelles carrying hydrophobic antimicrobials are extremely effective at inhibiting S. mutans biofilm growth on hydroxyapatite (HA). Interestingly, these studies also demonstrated that non-binding micelles (NBM) carrying antimicrobial also had an inhibitory effect, leading to the hypothesis that the Pluronic micelles themselves may interact with the biofilm. To explore this potential interaction, three different S. mutans strains were each grown as biofilm in tissue culture plates, either untreated or supplemented with NBM alone (P85), NBM containing farnesol (P85F), or farnesol alone (F). In each tested S. mutans strain, biomass was significantly decreased (SNK test, p < 0.05) in the P85F and F biofilms relative to untreated biofilms. Furthermore, the P85F biofilms formed large towers containing dead cells that were not observed in the other treatment conditions. Tower formation appeared to be specific to formulated farnesol, as this phenomenon was not observed in S. mutans biofilms grown with NBM containing triclosan. Parallel CFU/ml determinations revealed that biofilm growth in the presence of P85F resulted in a 3-log reduction in viability, whereas F decreased viability by less than 1-log. Wild-type biofilms grown in the absence of sucrose or gtfBC mutant biofilms grown in the presence of sucrose did not form towers. However, increased cell killing with P85F was still observed, suggesting that cell killing is independent of tower formation. Finally, repeated treatment of pre-formed biofilms with P85F was able to elicit a 2-log reduction in viability, whereas parallel treatment with F alone only reduced viability by 0.5-log. Collectively, these results suggest that Pluronics-formulated farnesol induces alterations in biofilm architecture, presumably via interaction with the sucrose-dependent biofilm matrix, and may be a viable treatment option in the prevention and treatment of pathogenic plaque biofilms.
PMCID: PMC4519314  PMID: 26222384
16.  Discovery of Novel Peptides Regulating Competence Development in Streptococcus mutans 
Journal of Bacteriology  2014;196(21):3735-3745.
A MarR-like transcriptional repressor (RcrR) and two predicted ABC efflux pumps (RcrPQ) encoded by a single operon were recently shown to be dominant regulators of stress tolerance and development of genetic competence in the oral pathogen Streptococcus mutans. Here, we focused on polar (ΔrcrR-P) and nonpolar (ΔrcrR-NP) rcrR mutants, which are hyper- and nontransformable, respectively, to dissect the mechanisms by which these mutations impact competence. We discovered two open reading frames (ORFs) in the 3′ end of the rcrQ gene that encode peptides of 27 and 42 amino acids (aa) which are also dramatically upregulated in the ΔrcrR-NP strain. Deletion of, or start codon mutations in, the ORFs for the peptides in the ΔrcrR-NP background restored competence and sensitivity to competence-stimulating peptide (CSP) to levels seen in the ΔrcrR-P strain. Overexpression of the peptides adversely affected competence development. Importantly, overexpression of mutant derivatives of the ABC exporters that lacked the peptides also resulted in impaired competence. FLAG-tagged versions of the peptides could be detected in S. mutans, and FLAG tagging of the peptides impaired their function. The competence phenotypes associated with the various mutations, and with overexpression of the peptides and ABC transporters, were correlated with the levels of ComX protein in cells. Collectively, these studies revealed multiple novel mechanisms for regulation of competence development by the components of the rcrRPQ operon. Given their intimate role in competence and stress tolerance, the rcrRPQ-encoded peptides may prove to be useful targets for therapeutics to diminish the virulence of S. mutans.
PMCID: PMC4248802  PMID: 25135217
17.  The pH-Dependent Expression of the Urease Operon in Streptococcus salivarius Is Mediated by CodY 
Applied and Environmental Microbiology  2014;80(17):5386-5393.
Urease gene expression in Streptococcus salivarius 57.I, a strain of one of the major alkali producers in the mouth, is induced by acidic pH and excess amounts of carbohydrate. Expression is controlled primarily at the transcriptional level from a promoter, pureI. Recent sequencing analysis revealed a CodY box located 2 bases 5′ to the −35 element of pureI. Using continuous chemostat culture, transcription from pureI was shown to be repressed by CodY, and at pH 7 the repression was more pronounced than that in cells grown at pH 5.5 under both 20 and 100 mM glucose. The direct binding of CodY to pureI was demonstrated by electrophoretic mobility shift assay and chromatin immunoprecipitation (ChIP)–quantitative real-time PCR (qPCR). The result of ChIP-qPCR also confirmed that the regulation of CodY is indeed modulated by pH and the binding of CodY at neutral pH is further enhanced by a limited supply of glucose (20 mM). In the absence of CodY, the C-terminal domain of the RNA polymerase (RNAP) α subunit interacted with the AT tracks within the CodY box, indicating that CodY and RNAP compete for the same binding region. Such regulation could ensure optimal urease expression when the enzyme is most required, i.e., at an acidic growth pH with an excess amount of carbon nutrients.
PMCID: PMC4136106  PMID: 24951785
18.  Uptake and Metabolism of N-Acetylglucosamine and Glucosamine by Streptococcus mutans 
Applied and Environmental Microbiology  2014;80(16):5053-5067.
Glucosamine and N-acetylglucosamine are among the most abundant sugars on the planet, and their introduction into the oral cavity via the diet and host secretions, and through bacterial biosynthesis, provides oral biofilm bacteria with a source of carbon, nitrogen, and energy. In this study, we demonstrated that the dental caries pathogen Streptococcus mutans possesses an inducible system for the metabolism of N-acetylglucosamine and glucosamine. These amino sugars are transported by the phosphoenolpyruvate:sugar phosphotransferase system (PTS), with the glucose/mannose enzyme II permease encoded by manLMN playing a dominant role. Additionally, a previously uncharacterized gene product encoded downstream of the manLMN operon, ManO, was shown to influence the efficiency of uptake and growth on N-acetylglucosamine and, to a lesser extent, glucosamine. A transcriptional regulator, designated NagR, was able to bind the promoter regions in vitro, and repress the expression in vivo, of the nagA and nagB genes, encoding N-acetylglucosamine-6-phosphate deacetylase and glucosamine-6-phosphate deaminase, respectively. The binding activity of NagR could be inhibited by glucosamine-6-phosphate in vitro. Importantly, in contrast to the case with certain other Firmicutes, the gene for de novo synthesis of glucosamine-6-phosphate in S. mutans, glmS, was also shown to be regulated by NagR, and NagR could bind the glmS promoter region in vitro. Finally, metabolism of these amino sugars by S. mutans resulted in the production of significant quantities of ammonia, which can neutralize cytoplasmic pH and increase acid tolerance, thus contributing to enhanced persistence and pathogenic potential.
PMCID: PMC4135778  PMID: 24928869
19.  Streptococcus mutans Extracellular DNA Is Upregulated during Growth in Biofilms, Actively Released via Membrane Vesicles, and Influenced by Components of the Protein Secretion Machinery 
Journal of Bacteriology  2014;196(13):2355-2366.
Streptococcus mutans, a major etiological agent of human dental caries, lives primarily on the tooth surface in biofilms. Limited information is available concerning the extracellular DNA (eDNA) as a scaffolding matrix in S. mutans biofilms. This study demonstrates that S. mutans produces eDNA by multiple avenues, including lysis-independent membrane vesicles. Unlike eDNAs from cell lysis that were abundant and mainly concentrated around broken cells or cell debris with floating open ends, eDNAs produced via the lysis-independent pathway appeared scattered but in a structured network under scanning electron microscopy. Compared to eDNA production of planktonic cultures, eDNA production in 5- and 24-h biofilms was increased by >3- and >1.6-fold, respectively. The addition of DNase I to growth medium significantly reduced biofilm formation. In an in vitro adherence assay, added chromosomal DNA alone had a limited effect on S. mutans adherence to saliva-coated hydroxylapatite beads, but in conjunction with glucans synthesized using purified glucosyltransferase B, the adherence was significantly enhanced. Deletion of sortase A, the transpeptidase that covalently couples multiple surface-associated proteins to the cell wall peptidoglycan, significantly reduced eDNA in both planktonic and biofilm cultures. Sortase A deficiency did not have a significant effect on membrane vesicle production; however, the protein profile of the mutant membrane vesicles was significantly altered, including reduction of adhesin P1 and glucan-binding proteins B and C. Relative to the wild type, deficiency of protein secretion and membrane protein insertion machinery components, including Ffh, YidC1, and YidC2, also caused significant reductions in eDNA.
PMCID: PMC4054167  PMID: 24748612
20.  Modification of Gene Expression and Virulence Traits in Streptococcus mutans in Response to Carbohydrate Availability 
The genetic and phenotypic responses of Streptococcus mutans, an organism that is strongly associated with the development of dental caries, to changes in carbohydrate availability were investigated. S. mutans UA159 or a derivative of UA159 lacking ManL, which is the EIIAB component (EIIABMan) of a glucose/mannose permease of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) and a dominant effector of catabolite repression, was grown in continuous culture to steady state under conditions of excess (100 mM) or limiting (10 mM) glucose. Microarrays using RNA from S. mutans UA159 revealed that 174 genes were differentially expressed in response to changes in carbohydrate availability (P < 0.001). Glucose-limited cells possessed higher PTS activity, could acidify the environment more rapidly and to a greater extent, and produced more ManL protein than cultures grown with excess glucose. Loss of ManL adversely affected carbohydrate transport and acid tolerance. Comparison of the histidine protein (HPr) in S. mutans UA159 and the manL deletion strain indicated that the differences in the behaviors of the strains were not due to major differences in HPr pools or HPr phosphorylation status. Therefore, carbohydrate availability alone can dramatically influence the expression of physiologic and biochemical pathways that contribute directly to the virulence of S. mutans, and ManL has a profound influence on this behavior.
PMCID: PMC3911228  PMID: 24271168
21.  A galactose-specific sugar:phosphotransferase permease is prevalent in the non-core genome of Streptococcus mutans 
Molecular oral microbiology  2013;28(4):292-301.
Three genes predicted to encode the A, B and C domains of a sugar:phosphotransferase system (PTS) permease specific for galactose (EIIGal) were identified in the genomes of 35 of 57 recently-sequenced isolates of Streptococcus mutans, the primary etiological agent of human dental caries. Mutants defective in the EIIGal complex were constructed in 6 of the isolates and showed markedly reduced growth rates on galactose-based medium relative to the parental strains. An EIIGal-deficient strain constructed using the invasive serotype f strain OMZ175 (OMZ/IIGal) expressed significantly lower PTS activity when galactose was present as the substrate. Galactose was shown to be an effective inducer of catabolite repression in OMZ175, but not in the EIIGal-deficient strain. In a mixed-species competition assay with galactose as the sole carbohydrate source, OMZ/IIGal was less effective than the parental strain at competing with the oral commensal bacterium Streptococcus gordonii, which has a high-affinity galactose transporter. Thus, a significant proportion of S. mutans strains encode a galactose PTS permease that could enhance the ability of these isolates to compete more effectively with commensal streptococci for galactose in salivary constituents and the diet.
PMCID: PMC3661675  PMID: 23421335
phosphotransferase system; galactose-PTS; tagatose pathway; biofilm; dental caries
22.  Growth Phase and pH Influence Peptide Signaling for Competence Development in Streptococcus mutans 
Journal of Bacteriology  2014;196(2):227-236.
The development of competence by the dental caries pathogen Streptococcus mutans is mediated primarily through the alternative sigma factor ComX (SigX), which is under the control of multiple regulatory systems and activates the expression of genes involved in DNA uptake and recombination. Here we report that the induction of competence and competence gene expression by XIP (sigX-inducing peptide) and CSP (competence-stimulating peptide) is dependent on the growth phase and that environmental pH has a potent effect on the responses to XIP. A dramatic decline in comX and comS expression was observed in mid- and late-exponential-phase cells. XIP-mediated competence development and responses to XIP were optimal around a neutral pH, although mid-exponential-phase cells remained refractory to XIP treatment, and acidified late-exponential-phase cultures were resistant to killing by high concentrations of XIP. Changes in the expression of the genes for the oligopeptide permease (opp), which appears to be responsible for the internalization of XIP, could not entirely account for the behaviors observed. Interestingly, comS and comX expression was highly induced in response to endogenously overproduced XIP or ComS in mid-exponential-phase cells. In contrast to the effects of pH on XIP, competence induction and responses to CSP in complex medium were not affected by pH, although a decreased response to CSP in cells that had exited early-exponential phase was observed. Collectively, these results indicate that competence development may be highly sensitive to microenvironments within oral biofilms and that XIP and CSP signaling in biofilms could be spatially and temporally heterogeneous.
PMCID: PMC3911236  PMID: 24163340
23.  Evolutionary and Population Genomics of the Cavity Causing Bacteria Streptococcus mutans 
Molecular Biology and Evolution  2012;30(4):881-893.
Streptococcus mutans is widely recognized as one of the key etiological agents of human dental caries. Despite its role in this important disease, our present knowledge of gene content variability across the species and its relationship to adaptation is minimal. Estimates of its demographic history are not available. In this study, we generated genome sequences of 57 S. mutans isolates, as well as representative strains of the most closely related species to S. mutans (S. ratti, S. macaccae, and S. criceti), to identify the overall structure and potential adaptive features of the dispensable and core components of the genome. We also performed population genetic analyses on the core genome of the species aimed at understanding the demographic history, and impact of selection shaping its genetic variation. The maximum gene content divergence among strains was approximately 23%, with the majority of strains diverging by 5–15%. The core genome consisted of 1,490 genes and the pan-genome approximately 3,296. Maximum likelihood analysis of the synonymous site frequency spectrum (SFS) suggested that the S. mutans population started expanding exponentially approximately 10,000 years ago (95% confidence interval [CI]: 3,268–14,344 years ago), coincidental with the onset of human agriculture. Analysis of the replacement SFS indicated that a majority of these substitutions are under strong negative selection, and the remainder evolved neutrally. A set of 14 genes was identified as being under positive selection, most of which were involved in either sugar metabolism or acid tolerance. Analysis of the core genome suggested that among 73 genes present in all isolates of S. mutans but absent in other species of the mutans taxonomic group, the majority can be associated with metabolic processes that could have contributed to the successful adaptation of S. mutans to its new niche, the human mouth, and with the dietary changes that accompanied the origin of agriculture.
PMCID: PMC3603310  PMID: 23228887
Streptococcus mutans; demographic inference; cavities; bacterial evolution; pan and core genome; infectious disease
24.  Phylogenomics and the Dynamic Genome Evolution of the Genus Streptococcus 
Genome Biology and Evolution  2014;6(4):741-753.
The genus Streptococcus comprises important pathogens that have a severe impact on human health and are responsible for substantial economic losses to agriculture. Here, we utilize 46 Streptococcus genome sequences (44 species), including eight species sequenced here, to provide the first genomic level insight into the evolutionary history and genetic basis underlying the functional diversity of all major groups of this genus. Gene gain/loss analysis revealed a dynamic pattern of genome evolution characterized by an initial period of gene gain followed by a period of loss, as the major groups within the genus diversified. This was followed by a period of genome expansion associated with the origins of the present extant species. The pattern is concordant with an emerging view that genomes evolve through a dynamic process of expansion and streamlining. A large proportion of the pan-genome has experienced lateral gene transfer (LGT) with causative factors, such as relatedness and shared environment, operating over different evolutionary scales. Multiple gene ontology terms were significantly enriched for each group, and mapping terms onto the phylogeny showed that those corresponding to genes born on branches leading to the major groups represented approximately one-fifth of those enriched. Furthermore, despite the extensive LGT, several biochemical characteristics have been retained since group formation, suggesting genomic cohesiveness through time, and that these characteristics may be fundamental to each group. For example, proteolysis: mitis group; urea metabolism: salivarius group; carbohydrate metabolism: pyogenic group; and transcription regulation: bovis group.
PMCID: PMC4007547  PMID: 24625962
comparative genomics; phylogenetics; gene gain and loss; enrichment; lateral gene transfer
25.  Fueling the caries process: carbohydrate metabolism and gene regulation by Streptococcus mutans  
Journal of Oral Microbiology  2014;6:10.3402/jom.v6.24878.
The nature of the oral cavity and host behaviors has mandated that the oral microbiota evolve mechanisms for coping with environmental fluctuations, especially changes in the type and availability of carbohydrates. In the case of human dental caries, the presence of excess carbohydrates is often responsible for altering the local environment to be more favorable for species associated with the initiation and progression of disease, including Streptococcus mutans. Some of the earliest endeavors to understand how cariogenic species respond to environmental perturbations were carried out using chemostat cultivation, which provides fine control over culture conditions and bacterial behaviors. The development of genome-scale methodologies has allowed for the combination of sophisticated cultivation technologies with genome-level analysis to more thoroughly probe how bacterial pathogens respond to environmental stimuli. Recent investigations in S. mutans and other closely related streptococci have begun to reveal that carbohydrate metabolism can drastically impact pathogenic potential and highlight the important influence that nutrient acquisition has on the success of pathogens; inside and outside of the oral cavity. Collectively, research into pathogenic streptococci, which have evolved in close association with the human host, has begun to unveil the essential nature of careful orchestration of carbohydrate acquisition and catabolism to allow the organisms to persist and, when conditions allow, initiate or worsen disease.
PMCID: PMC4157138  PMID: 25317251
carbohydrate transport; sugar phosphotransferase system; dental caries; biofilms; catabolite repression

Results 1-25 (99)