PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (83)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  Evolutionary and Population Genomics of the Cavity Causing Bacteria Streptococcus mutans 
Molecular Biology and Evolution  2012;30(4):881-893.
Streptococcus mutans is widely recognized as one of the key etiological agents of human dental caries. Despite its role in this important disease, our present knowledge of gene content variability across the species and its relationship to adaptation is minimal. Estimates of its demographic history are not available. In this study, we generated genome sequences of 57 S. mutans isolates, as well as representative strains of the most closely related species to S. mutans (S. ratti, S. macaccae, and S. criceti), to identify the overall structure and potential adaptive features of the dispensable and core components of the genome. We also performed population genetic analyses on the core genome of the species aimed at understanding the demographic history, and impact of selection shaping its genetic variation. The maximum gene content divergence among strains was approximately 23%, with the majority of strains diverging by 5–15%. The core genome consisted of 1,490 genes and the pan-genome approximately 3,296. Maximum likelihood analysis of the synonymous site frequency spectrum (SFS) suggested that the S. mutans population started expanding exponentially approximately 10,000 years ago (95% confidence interval [CI]: 3,268–14,344 years ago), coincidental with the onset of human agriculture. Analysis of the replacement SFS indicated that a majority of these substitutions are under strong negative selection, and the remainder evolved neutrally. A set of 14 genes was identified as being under positive selection, most of which were involved in either sugar metabolism or acid tolerance. Analysis of the core genome suggested that among 73 genes present in all isolates of S. mutans but absent in other species of the mutans taxonomic group, the majority can be associated with metabolic processes that could have contributed to the successful adaptation of S. mutans to its new niche, the human mouth, and with the dietary changes that accompanied the origin of agriculture.
doi:10.1093/molbev/mss278
PMCID: PMC3603310  PMID: 23228887
Streptococcus mutans; demographic inference; cavities; bacterial evolution; pan and core genome; infectious disease
2.  Bacterial Profile of Dentine Caries and the Impact of pH on Bacterial Population Diversity 
PLoS ONE  2014;9(3):e92940.
Dental caries is caused by the release of organic acids from fermentative bacteria, which results in the dissolution of hydroxyapatite matrices of enamel and dentine. While low environmental pH is proposed to cause a shift in the consortium of oral bacteria, favouring the development of caries, the impact of this variable has been overlooked in microbial population studies. This study aimed to detail the zonal composition of the microbiota associated with carious dentine lesions with reference to pH. We used 454 sequencing of the 16S rRNA gene (V3–V4 region) to compare microbial communities in layers ranging in pH from 4.5–7.8 from 25 teeth with advanced dentine caries. Pyrosequencing of the amplicons yielded 449,762 sequences. Nine phyla, 97 genera and 409 species were identified from the quality-filtered, de-noised and chimera-free sequences. Among the microbiota associated with dentinal caries, the most abundant taxa included Lactobacillus sp., Prevotella sp., Atopobium sp., Olsenella sp. and Actinomyces sp. We found a disparity between microbial communities localised at acidic versus neutral pH strata. Acidic conditions were associated with low diversity microbial populations, with Lactobacillus species including L. fermentum, L. rhamnosus and L. crispatus, being prominent. In comparison, the distinctive species of a more diverse flora associated with neutral pH regions of carious lesions included Alloprevotella tanerrae, Leptothrix sp., Sphingomonas sp. and Streptococcus anginosus. While certain bacteria were affected by the pH gradient, we also found that ∼60% of the taxa associated with caries were present across the investigated pH range, representing a substantial core. We demonstrated that some bacterial species implicated in caries progression show selective clustering with respect to pH gradient, providing a basis for specific therapeutic strategies.
doi:10.1371/journal.pone.0092940
PMCID: PMC3968045  PMID: 24675997
3.  Core-Gene-Encoded Peptide Regulating Virulence-Associated Traits in Streptococcus mutans 
Journal of Bacteriology  2013;195(12):2912-2920.
Recently, high-coverage genome sequence of 57 isolates of Streptococcus mutans, the primary etiological agent of human dental caries, was completed. The SMU.1147 gene, encoding a 61-amino-acid (61-aa) peptide, was present in all sequenced strains of S. mutans but absent in all bacteria in current databases. Reverse transcription-PCR revealed that SMU.1147 is cotranscribed with scnK and scnR, which encode the histidine kinase and response regulator, respectively, of a two-component system (TCS). The C terminus of the SMU.1147 gene product was tagged with a FLAG epitope and shown to be expressed in S. mutans by Western blotting with an anti-FLAG antibody. A nonpolar mutant of SMU.1147 formed less biofilm in glucose-containing medium and grew slower than did the wild-type strain under aerobic and anaerobic conditions, at low pH, or in the presence of H2O2. Mutation of SMU.1147 dramatically reduced genetic competence and expression of comX and comY, compared to S. mutans UA159. The competence defect of the SMU.1147 mutant could not be overcome by addition of sigX-inducing peptide (XIP) in defined medium or by competence-stimulating peptide (CSP) in complex medium. Complementation with SMU.1147 on a plasmid restored all phenotypes. Interestingly, mutants lacking either one of the TCS components and a mutant lacking all three genes behaved like the wild-type strain for all phenotypes mentioned above, but all mutant strains grew slower than UA159 in medium supplemented with 0.3 M NaCl. Thus, the SMU.1147-encoded peptide affects virulence-related traits and dominantly controls quorum-sensing pathways for development of genetic competence in S. mutans.
doi:10.1128/JB.00189-13
PMCID: PMC3697264  PMID: 23603743
4.  Correction: Phenotypic Heterogeneity of Genomically-Diverse Isolates of Streptococcus mutans 
PLoS ONE  2013;8(11):10.1371/annotation/ffff8cd5-b8fa-4d3c-a993-e5169198f1e6.
doi:10.1371/annotation/ffff8cd5-b8fa-4d3c-a993-e5169198f1e6
PMCID: PMC3826765  PMID: 24250771
5.  Microfluidic study of competence regulation in Streptococcus mutans: environmental inputs modulate bimodal and unimodal expression of comX 
Molecular microbiology  2012;86(2):258-272.
Summary
Streptococcus mutans regulates genetic competence through a complex network that receives inputs from a number of environmental stimuli, including two signaling peptides designated as CSP and XIP. The response of the downstream competence genes to these inputs shows evidence of stochasticity and bistability and has been difficult to interpret. We have used microfluidic, single-cell methods to study how combinations of extracellular signals shape the response of comX, an alternative sigma factor governing expression of the late competence genes. We find that the composition of the medium determines which extracellular signal (XIP or CSP) can elicit a response from comX and whether that response is unimodal or bimodal across a population of cells. In a chemically defined medium, exogenous CSP does not induce comX, whereas exogenous XIP elicits a comX response from all cells. In complex medium, exogenous XIP does not induce comX, whereas CSP elicits a bimodal comX response from the population. Interestingly, bimodal behavior required an intact copy of comS, which encodes the precursor of XIP. The comS-dependent capability for both unimodal and bimodal response suggests that a constituent – most likely peptides – of complex medium interacts with a positive feedback loop in the competence regulatory network.
doi:10.1111/j.1365-2958.2012.08187.x
PMCID: PMC3468698  PMID: 22845615
single-cell; bistability; quorum sensing; gene regulation; feedback; transformation
6.  Comprehensive Mutational Analysis of Sucrose-Metabolizing Pathways in Streptococcus mutans Reveals Novel Roles for the Sucrose Phosphotransferase System Permease 
Journal of Bacteriology  2013;195(4):833-843.
Sucrose is perhaps the most efficient carbohydrate for the promotion of dental caries in humans, and the primary caries pathogen Streptococcus mutans encodes multiple enzymes involved in the metabolism of this disaccharide. Here, we engineered a series of mutants lacking individual or combinations of sucrolytic pathways to understand the control of sucrose catabolism and to determine whether as-yet-undisclosed pathways for sucrose utilization were present in S. mutans. Growth phenotypes indicated that gtfBCD (encoding glucan exopolysaccharide synthases), ftf (encoding the fructan exopolysaccharide synthase), and the scrAB pathway (sugar-phosphotransferase system [PTS] permease and sucrose-6-PO4 hydrolase) constitute the majority of the sucrose-catabolizing activity; however, mutations in any one of these genes alone did not affect planktonic growth on sucrose. The multiple-sugar metabolism pathway (msm) contributed minimally to growth on sucrose. Notably, a mutant lacking gtfBC, which cannot produce water-insoluble glucan, displayed improved planktonic growth on sucrose. Meanwhile, loss of scrA led to growth stimulation on fructooligosaccharides, due in large part to increased expression of the fruAB (fructanase) operon. Using the LevQRST four-component signal transduction system as a model for carbohydrate-dependent gene expression in strains lacking extracellular sucrases, a PlevD-cat (EIIALev) reporter was activated by pulsing with sucrose. Interestingly, ScrA was required for activation of levD expression by sucrose through components of the LevQRST complex, but not for activation by the cognate LevQRST sugars fructose or mannose. Sucrose-dependent catabolite repression was also evident in strains containing an intact sucrose PTS. Collectively, these results reveal a novel regulatory circuitry for the control of sucrose catabolism, with a central role for ScrA.
doi:10.1128/JB.02042-12
PMCID: PMC3562097  PMID: 23222725
7.  Oral Microbiome of Deep and Shallow Dental Pockets In Chronic Periodontitis 
PLoS ONE  2013;8(6):e65520.
We examined the subgingival bacterial biodiversity in untreated chronic periodontitis patients by sequencing 16S rRNA genes. The primary purpose of the study was to compare the oral microbiome in deep (diseased) and shallow (healthy) sites. A secondary purpose was to evaluate the influences of smoking, race and dental caries on this relationship. A total of 88 subjects from two clinics were recruited. Paired subgingival plaque samples were taken from each subject, one from a probing site depth >5 mm (deep site) and the other from a probing site depth ≤3mm (shallow site). A universal primer set was designed to amplify the V4–V6 region for oral microbial 16S rRNA sequences. Differences in genera and species attributable to deep and shallow sites were determined by statistical analysis using a two-part model and false discovery rate. Fifty-one of 170 genera and 200 of 746 species were found significantly different in abundances between shallow and deep sites. Besides previously identified periodontal disease-associated bacterial species, additional species were found markedly changed in diseased sites. Cluster analysis revealed that the microbiome difference between deep and shallow sites was influenced by patient-level effects such as clinic location, race and smoking. The differences between clinic locations may be influenced by racial distribution, in that all of the African Americans subjects were seen at the same clinic. Our results suggested that there were influences from the microbiome for caries and periodontal disease and these influences are independent.
doi:10.1371/journal.pone.0065520
PMCID: PMC3675156  PMID: 23762384
8.  Role of the Serine-Rich Surface Glycoprotein Srr1 of Streptococcus agalactiae in the Pathogenesis of Infective Endocarditis 
PLoS ONE  2013;8(5):e64204.
The binding of bacteria to fibrinogen and platelets are important events in the pathogenesis of infective endocarditis. Srr1 is a serine-rich repeat glycoprotein of Streptococcus agalactiae that binds directly to the Aα chain of human fibrinogen. To assess the impact of Srr1 on the pathogenesis of endocarditis due to S. agalactiae, we first examined the binding of this organism to immobilized human platelets. Strains expressing Srr1 had significantly higher levels of binding to human platelets in vitro, as compared with isogenic Δsrr1 mutants. In addition, platelet binding was inhibited by pretreatment with anti-fibrinogen IgG or purified Srr1 binding region. To assess the contribution of Srr1 to pathogenicity, we compared the relative virulence of S. agalactiae NCTC 10/84 strain and its Δsrr1 mutant in a rat model of endocarditis, where animals were co-infected with the WT and the mutant strains at a 1∶1 ratio. At 72 h post-infection, bacterial densities (CFU/g) of the WT strain within vegetations, kidneys, and spleens were significantly higher, as compared with the Δsrr1 mutant. These results indicate that Srr1 contributes to the pathogenesis of endocarditis due to S. agalactiae, at least in part through its role in fibrinogen-mediated platelet binding.
doi:10.1371/journal.pone.0064204
PMCID: PMC3662765  PMID: 23717569
9.  Exit from Competence for Genetic Transformation in Streptococcus pneumoniae Is Regulated at Multiple Levels 
PLoS ONE  2013;8(5):e64197.
Development of natural competence in S. pneumoniae entails coordinated expression of two sets of genes. Early gene expression depends on ComE, a response regulator activated by the pheromone CSP (Competence-Stimulating-Peptide). Subsequently, an early gene product (the alternative sigma factor ComX) activates expression of late genes, establishing the competent state. Expression of both sets of genes is transient, rapidly shut off by a mechanism that depends on the late gene, dprA. It has been thought that the rapid shutoff of late gene expression is the combined result of auto-inhibition of ComE and the instability of ComX. However, this explanation seems incomplete, because of evidence for ComX-dependent repressor(s) that might also be important for shutting off the response to CSP and identifying dprA as such a gene. We screened individual late gene mutants to investigate further the roles of ComX-dependent genes in competence termination. A ΔdprA mutant displayed a prolonged late gene expression pattern, whereas mutants lacking cbpD, cibABC, cglEFG, coiA, ssbB, celAB, cclA, cglABCD, cflAB, or radA, exhibited a wild-type temporal expression pattern. Thus, no other gene than dprA was found to be involved in shutoff. DprA limits the amounts of ComX and another early gene product, ComW, by restriction of early gene expression rather than by promoting proteolysis. To ask if DprA also affects late gene expression, we decoupled late gene expression from early gene regulation. Because DprA did not limit ComX activity under these conditions, we also conclude that ComX activity is limited by another mechanism not involving DprA.
doi:10.1371/journal.pone.0064197
PMCID: PMC3661451  PMID: 23717566
10.  Phenotypic Heterogeneity of Genomically-Diverse Isolates of Streptococcus mutans 
PLoS ONE  2013;8(4):e61358.
High coverage, whole genome shotgun (WGS) sequencing of 57 geographically- and genetically-diverse isolates of Streptococcus mutans from individuals of known dental caries status was recently completed. Of the 57 sequenced strains, fifteen isolates, were selected based primarily on differences in gene content and phenotypic characteristics known to affect virulence and compared with the reference strain UA159. A high degree of variability in these properties was observed between strains, with a broad spectrum of sensitivities to low pH, oxidative stress (air and paraquat) and exposure to competence stimulating peptide (CSP). Significant differences in autolytic behavior and in biofilm development in glucose or sucrose were also observed. Natural genetic competence varied among isolates, and this was correlated to the presence or absence of competence genes, comCDE and comX, and to bacteriocins. In general strains that lacked the ability to become competent possessed fewer genes for bacteriocins and immunity proteins or contained polymorphic variants of these genes. WGS sequence analysis of the pan-genome revealed, for the first time, components of a Type VII secretion system in several S. mutans strains, as well as two putative ORFs that encode possible collagen binding proteins located upstream of the cnm gene, which is associated with host cell invasiveness. The virulence of these particular strains was assessed in a wax-worm model. This is the first study to combine a comprehensive analysis of key virulence-related phenotypes with extensive genomic analysis of a pathogen that evolved closely with humans. Our analysis highlights the phenotypic diversity of S. mutans isolates and indicates that the species has evolved a variety of adaptive strategies to persist in the human oral cavity and, when conditions are favorable, to initiate disease.
doi:10.1371/journal.pone.0061358
PMCID: PMC3628994  PMID: 23613838
11.  Gene Regulation by CcpA and Catabolite Repression Explored by RNA-Seq in Streptococcus mutans 
PLoS ONE  2013;8(3):e60465.
A bacterial transcriptome of the primary etiological agent of human dental caries, Streptococcus mutans, is described here using deep RNA sequencing. Differential expression profiles of the transcriptome in the context of carbohydrate source, and of the presence or absence of the catabolite control protein CcpA, revealed good agreement with previously-published DNA microarrays. In addition, RNA-seq considerably expanded the repertoire of DNA sequences that showed statistically-significant changes in expression as a function of the presence of CcpA and growth carbohydrate. Novel mRNAs and small RNAs were identified, some of which were differentially expressed in conditions tested in this study, suggesting that the function of the S. mutans CcpA protein and the influence of carbohydrate sources has a more substantial impact on gene regulation than previously appreciated. Likewise, the data reveal that the mechanisms underlying prioritization of carbohydrate utilization are more diverse than what is currently understood. Collectively, this study demonstrates the validity of RNA-seq as a potentially more-powerful alternative to DNA microarrays in studying gene regulation in S. mutans because of the capacity of this approach to yield a more precise landscape of transcriptomic changes in response to specific mutations and growth conditions.
doi:10.1371/journal.pone.0060465
PMCID: PMC3610829  PMID: 23555977
12.  Is Accessing Dental Care Becoming More Difficult? Evidence from Canada's Middle-Income Population 
PLoS ONE  2013;8(2):e57377.
Objective
To explore trends in access to dental care among middle-income Canadians.
Methods
A secondary data analysis of six Canadian surveys that collected information on dental insurance coverage, cost-barriers to dental care, and out-of-pocket expenditures for dental care was conducted for select years from 1978 to 2009. Descriptive analyses were used to outline and compare trends among middle-income Canadians with other levels of income as well as national averages.
Results
By 2009, middle-income Canadians had the lowest levels of dental insurance coverage (48.7%) compared to all other income groups. They reported the greatest increase in cost-barriers to dental care, from 12.6% in 1996 to 34.1% by 2009. Middle-income Canadians had the largest rise in out-of-pocket expenditures for dental care since 1978.
Conclusions
This study suggests that affordability issues in accessing dental care are no longer just a problem for the lowest income groups in Canada, but are now impacting middle-income earners as a consequence of their lack of, or decreased access to, comprehensive dental insurance.
doi:10.1371/journal.pone.0057377
PMCID: PMC3577722  PMID: 23437378
13.  Two Gene Clusters Coordinate Galactose and Lactose Metabolism in Streptococcus gordonii 
Applied and Environmental Microbiology  2012;78(16):5597-5605.
Streptococcus gordonii is an early colonizer of the human oral cavity and an abundant constituent of oral biofilms. Two tandemly arranged gene clusters, designated lac and gal, were identified in the S. gordonii DL1 genome, which encode genes of the tagatose pathway (lacABCD) and sugar phosphotransferase system (PTS) enzyme II permeases. Genes encoding a predicted phospho-β-galactosidase (LacG), a DeoR family transcriptional regulator (LacR), and a transcriptional antiterminator (LacT) were also present in the clusters. Growth and PTS assays supported that the permease designated EIILac transports lactose and galactose, whereas EIIGal transports galactose. The expression of the gene for EIIGal was markedly upregulated in cells growing on galactose. Using promoter-cat fusions, a role for LacR in the regulation of the expressions of both gene clusters was demonstrated, and the gal cluster was also shown to be sensitive to repression by CcpA. The deletion of lacT caused an inability to grow on lactose, apparently because of its role in the regulation of the expression of the genes for EIILac, but had little effect on galactose utilization. S. gordonii maintained a selective advantage over Streptococcus mutans in a mixed-species competition assay, associated with its possession of a high-affinity galactose PTS, although S. mutans could persist better at low pHs. Collectively, these results support the concept that the galactose and lactose systems of S. gordonii are subject to complex regulation and that a high-affinity galactose PTS may be advantageous when S. gordonii is competing against the caries pathogen S. mutans in oral biofilms.
doi:10.1128/AEM.01393-12
PMCID: PMC3406145  PMID: 22660715
14.  Population Biology of Streptococcus pneumoniae in West Africa: Multilocus Sequence Typing of Serotypes That Exhibit Different Predisposition to Invasive Disease and Carriage 
PLoS ONE  2013;8(1):e53925.
Background
Little is known about the population biology of Streptococcus pneumoniae in developing countries, although the majority of pneumococcal infections occur in this setting. The aim of the study was to apply MLST to investigate the population biology of S. pneumoniae in West Africa.
Methods
Seventy three invasive and carriage S. pneumoniae isolates from three West African countries including The Gambia, Nigeria and Ghana were investigated. The isolates covered seven serotypes (1, 3, 5, 6A, 11, 14, 23F) and were subjected to multilocus sequence typing and antibiotic susceptibility testing.
Results
Overall, 50 different sequence types (STs) were identified, of which 38% (29) were novel. The most common ST was a novel clone-ST 4012 (6.5%), and some clones including STs 913, 925, 1737, 2160 and 3310 appeared to be specific to the study region. Two STs including ST 63 and ST 4012 were associated with multiple serotypes indicating a history of serotype switching. ST 63 was associated with serotypes 3 and 23F, while ST 4012 was associated with serotypes 6A and 23. eBURST analyses using the stringent 6/7 identical loci definition grouped the 50 STs into 5 clonal complexes and 65 singletons, expressing a high level of genetic diversity among the isolates. Compared to the other serotypes, serotypes 1 and 5 isolates appeared to be more clonal. Internationally recognized antibiotic resistant clones of S. pneumoniae were generally absent in the population investigated and the only multidrug resistant isolate identified (1/66) belong to the Pneumocococcal Epidemiology Network clone ST 63.
Conclusions
The pneumococcal population in West Africa is quite divergent, and serotypes that are common in invasive disease (such as serotypes 1 and 5) are more likely to be clonal than serotypes that are common in carriage.
doi:10.1371/journal.pone.0053925
PMCID: PMC3547056  PMID: 23342041
15.  The Genome Sequences of Cellulomonas fimi and “Cellvibrio gilvus” Reveal the Cellulolytic Strategies of Two Facultative Anaerobes, Transfer of “Cellvibrio gilvus” to the Genus Cellulomonas, and Proposal of Cellulomonas gilvus sp. nov 
PLoS ONE  2013;8(1):e53954.
Actinobacteria in the genus Cellulomonas are the only known and reported cellulolytic facultative anaerobes. To better understand the cellulolytic strategy employed by these bacteria, we sequenced the genome of the Cellulomonas fimi ATCC 484T. For comparative purposes, we also sequenced the genome of the aerobic cellulolytic “Cellvibrio gilvus” ATCC 13127T. An initial analysis of these genomes using phylogenetic and whole-genome comparison revealed that “Cellvibrio gilvus” belongs to the genus Cellulomonas. We thus propose to assign “Cellvibrio gilvus” to the genus Cellulomonas. A comparative genomics analysis between these two Cellulomonas genome sequences and the recently completed genome for Cellulomonas flavigena ATCC 482T showed that these cellulomonads do not encode cellulosomes but appear to degrade cellulose by secreting multi-domain glycoside hydrolases. Despite the minimal number of carbohydrate-active enzymes encoded by these genomes, as compared to other known cellulolytic organisms, these bacteria were found to be proficient at degrading and utilizing a diverse set of carbohydrates, including crystalline cellulose. Moreover, they also encode for proteins required for the fermentation of hexose and xylose sugars into products such as ethanol. Finally, we found relatively few significant differences between the predicted carbohydrate-active enzymes encoded by these Cellulomonas genomes, in contrast to previous studies reporting differences in physiological approaches for carbohydrate degradation. Our sequencing and analysis of these genomes sheds light onto the mechanism through which these facultative anaerobes degrade cellulose, suggesting that the sequenced cellulomonads use secreted, multidomain enzymes to degrade cellulose in a way that is distinct from known anaerobic cellulolytic strategies.
doi:10.1371/journal.pone.0053954
PMCID: PMC3544764  PMID: 23342046
16.  Transcriptional Organization and Physiological Contributions of the relQ Operon of Streptococcus mutans 
Journal of Bacteriology  2012;194(8):1968-1978.
The molecular alarmone (p)ppGpp functions as a global regulator of gene expression in bacteria. In Streptococcus mutans, (p)ppGpp synthesis is catalyzed by three gene products: RelA, RelP, and RelQ. RelA is responsible for (p)ppGpp production during a stringent response, and RelP is the primary source of (p)ppGpp during exponential growth, but the role of RelQ has not been thoroughly investigated. In this study, we analyzed the four-gene relQ operon to establish how these gene products may affect homeostasis and stress tolerance in the dental caries pathogen S. mutans. Northern blotting and reverse transcriptase PCR demonstrated that relQ is cotranscribed with the downstream genes ppnK (NAD kinase), rluE (pseudouridine synthase), and pta (phosphotransacetylase). In addition, a promoter located within the rluE gene was shown to drive transcription of pta. Inactivation of relQ, ppnK, or rluE did not significantly affect growth of or stress tolerance by S. mutans, whereas strains lacking pta were more sensitive to acid and oxidative stresses. Interestingly, introduction of an rluE deletion into the pta mutant reversed the deleterious effects of the pta mutation on growth and stress tolerance. Accumulation of (p)ppGpp was also decreased in a pta mutant strain, whereas inactivation of relQ caused enhanced (p)ppGpp synthesis in exponential-phase cells. The results reveal an important role for the relQ operon in the expression of traits that are essential for persistence and pathogenesis by S. mutans and provide evidence for a molecular connection of acetate and (p)ppGpp metabolism with tolerance of acid and oxidative stresses.
doi:10.1128/JB.00037-12
PMCID: PMC3318469  PMID: 22343297
17.  Progress toward understanding the contribution of alkali generation in dental biofilms to inhibition of dental caries 
Alkali production by oral bacteria is believed to have a major impact on oral microbial ecology and to be inibitory to the initiation and progression of dental caries. A substantial body of evidence is beginning to accumulate that indicates the modulation of the alkalinogenic potential of dental biofilms may be a promising strategy for caries control. This brief review highlights recent progress toward understanding molecular genetic and physiologic aspects of important alkali-generating pathways in oral bacteria, and the role of alkali production in the ecology of dental biofilms in health and disease.
doi:10.1038/ijos.2012.54
PMCID: PMC3465751  PMID: 22996271
arginine; biofilm; dental caries; microbial ecology; urea
18.  Identification of the Streptococcus mutans LytST two-component regulon reveals its contribution to oxidative stress tolerance 
BMC Microbiology  2012;12:187.
Background
The S. mutans LrgA/B holin-like proteins have been shown to affect biofilm formation and oxidative stress tolerance, and are regulated by oxygenation, glucose levels, and by the LytST two-component system. In this study, we sought to determine if LytST was involved in regulating lrgAB expression in response to glucose and oxygenation in S. mutans.
Results
Real-time PCR revealed that growth phase-dependent regulation of lrgAB expression in response to glucose metabolism is mediated by LytST under low-oxygen conditions. However, the effect of LytST on lrgAB expression was less pronounced when cells were grown with aeration. RNA expression profiles in the wild-type and lytS mutant strains were compared using microarrays in early exponential and late exponential phase cells. The expression of 40 and 136 genes in early-exponential and late exponential phase, respectively, was altered in the lytS mutant. Although expression of comYB, encoding a DNA binding-uptake protein, was substantially increased in the lytS mutant, this did not translate to an effect on competence. However, a lrgA mutant displayed a substantial decrease in transformation efficiency, suggestive of a previously-unknown link between LrgA and S. mutans competence development. Finally, increased expression of genes encoding antioxidant and DNA recombination/repair enzymes was observed in the lytS mutant, suggesting that the mutant may be subjected to increased oxidative stress during normal growth. Although the intracellular levels of reaction oxygen species (ROS) appeared similar between wild-type and lytS mutant strains after overnight growth, challenge of these strains with hydrogen peroxide (H2O2) resulted in increased intracellular ROS in the lytS mutant.
Conclusions
Overall, these results: (1) Reinforce the importance of LytST in governing lrgAB expression in response to glucose and oxygen, (2) Define a new role for LytST in global gene regulation and resistance to H2O2, and (3) Uncover a potential link between LrgAB and competence development in S. mutans.
doi:10.1186/1471-2180-12-187
PMCID: PMC3507848  PMID: 22937869
Stress; Oxygen; Competence; Cid/Lrg system; Streptococcus mutans
19.  Transcriptional Repressor Rex Is Involved in Regulation of Oxidative Stress Response and Biofilm Formation by Streptococcus mutans 
FEMS microbiology letters  2011;320(2):110-117.
The transcriptional repressor Rex has been implicated in regulation of energy metabolism and fermentative growth in response to redox potential. Streptococcus mutans, the primary causative agent of human dental caries, possesses a gene that encodes a protein with high similarity to members of the Rex family of proteins. In this study, we showed that Rex-deficiency compromised the ability of S. mutans to cope with oxidative stress and to form biofilms. The Rex-deficient mutant also accumulated less biofilm after 3-days than the wild-type strain, especially when grown in sucrose-containing medium, but produced more extracellular glucans than the parental strain. Rex-deficiency caused substantial alterations in gene transcription, including those involved in heterofermentative metabolism, NAD+ regeneration and oxidative stress. Among the up-regulated genes was gtfC, which encodes glucosyltransferase C, an enzyme primarily responsible for synthesis of water-insoluble glucans. These results reveal that Rex plays an important role in oxidative stress responses and biofilm formation by S. mutans.
doi:10.1111/j.1574-6968.2011.02293.x
PMCID: PMC3115380  PMID: 21521360
Redox sensing; oxidative stress; biofilm formation; Streptococcus mutans
20.  The Collagen-Binding Protein Cnm Is Required for Streptococcus mutans Adherence to and Intracellular Invasion of Human Coronary Artery Endothelial Cells ▿  
Infection and Immunity  2011;79(6):2277-2284.
Streptococcus mutans is considered the primary etiologic agent of dental caries, a global health problem that affects 60 to 90% of the population, and a leading causative agent of infective endocarditis. It can be divided into four different serotypes (c, e, f, and k), with serotype c strains being the most common in the oral cavity. In this study, we demonstrate that in addition to OMZ175 and B14, three other strains (NCTC11060, LM7, and OM50E) of the less prevalent serotypes e and f are able to invade primary human coronary artery endothelial cells (HCAEC). Invasive strains were also significantly more virulent than noninvasive strains in the Galleria mellonella (greater wax worm) model of systemic disease. Interestingly, the invasive strains carried an additional gene, cnm, which was previously shown to bind to collagen and laminin in vitro. Inactivation of cnm rendered the organisms unable to invade HCAEC and attenuated their virulence in G. mellonella. Notably, the cnm knockout strains did not adhere to HCAEC as efficiently as the parental strains did, indicating that the loss of the invasion phenotype observed for the mutants was linked to an adhesion defect. Comparisons of the invasive strains and their respective cnm mutants did not support a correlation between biofilm formation and invasion. Thus, Cnm is required for S. mutans invasion of endothelial cells and possibly represents an important virulence factor of S. mutans that may contribute to cardiovascular infections and pathologies.
doi:10.1128/IAI.00767-10
PMCID: PMC3125845  PMID: 21422186
21.  The Major Autolysin of Streptococcus gordonii Is Subject to Complex Regulation and Modulates Stress Tolerance, Biofilm Formation, and Extracellular-DNA Release▿ 
Journal of Bacteriology  2011;193(11):2826-2837.
A gene, designated atlS, encoding a major autolysin from Streptococcus gordonii, was identified and characterized. The predicted AtlS protein is 1,160 amino acids and 127 kDa and has a conserved β1,4-N-acetylmuramidase domain. Zymographic analysis of wild-type S. gordonii revealed peptidoglycan hydrolase activities with molecular masses of 130 and 90 kDa that were absent in an atlS deletion mutant. Western blotting revealed that the 90-kDa band was derived from the 130-kDa protein. Inactivation of atlS resulted in formation of long chains by the cells, markedly decreased autolytic capacity, poor biofilm formation, diminished tolerance of acid and oxidative stress, and decreased production of extracellular DNA (eDNA). The biofilm-forming capacity of the atlS mutant could be almost completely restored to that of the wild-type strain by adding purified recombinant AtlA autolysin of S. mutans but was only partially restored by addition of eDNA. Autolysis, eDNA release, and atlS expression increased sharply when cells entered stationary phase and were greatly enhanced in cells growing with aeration. The LytST and VicRK two-component systems were both required for the induction of atlS by aeration, and purified LytT was able to bind to the promoter region of atlS in vitro. Thus, AtlS and its associated regulatory cascade dominantly control phenotypes of S. gordonii that are critical to colonization, persistence, and competition with other commensal and pathogenic oral bacteria in response to the redox environment and growth domain.
doi:10.1128/JB.00056-11
PMCID: PMC3133117  PMID: 21478346
22.  The Streptococcus mutans Cid and Lrg systems modulate virulence traits in response to multiple environmental signals 
Microbiology  2010;156(Pt 10):3136-3147.
The tight control of autolysis by Streptococcus mutans is critical for proper virulence gene expression and biofilm formation. A pair of dicistronic operons, SMU.575/574 (lrgAB) and SMU.1701/1700 (designated cidAB), encode putative membrane proteins that share structural features with the bacteriophage-encoded holin family of proteins, which modulate host cell lysis during lytic infection. Analysis of S. mutans lrg and cid mutants revealed a role for these operons in autolysis, biofilm formation, glucosyltransferase expression and oxidative stress tolerance. Expression of lrgAB was repressed during early exponential phase and was induced over 1000-fold as cells entered late exponential phase, whereas cidAB expression declined from early to late exponential phase. A two-component system encoded immediately upstream of lrgAB (LytST) was required for activation of lrgAB expression, but not for cid expression. In addition to availability of oxygen, glucose levels were revealed to affect lrg and cid transcription differentially and significantly, probably through CcpA (carbon catabolite protein A). Collectively, these findings demonstrate that the Cid/Lrg system can affect several virulence traits of S. mutans, and its expression is controlled by two major environmental signals, oxygen and glucose. Moreover, cid/lrg expression is tightly regulated by LytST and CcpA.
doi:10.1099/mic.0.039586-0
PMCID: PMC3068699  PMID: 20671018
23.  The EIIABMan Phosphotransferase System Permease Regulates Carbohydrate Catabolite Repression in Streptococcus gordonii▿ †  
Commensal oral streptococci play critical roles in oral biofilm formation and promote dental health by competing with, and antagonizing the growth of, pathogenic organisms, such as Streptococcus mutans. Efficient utilization of the spectrum of carbohydrates in the oral cavity by commensal streptococci is essential for their persistence, and yet very little is known about the regulation of carbohydrate catabolism by these organisms. Carbohydrate catabolite repression (CCR) in the abundant oral commensal Streptococcus gordonii strain DL-1 was investigated using the exo-β-d-fructosidase gene (fruA) and a fructose/mannose sugar:phosphotransferase (PTS) enzyme II operon (levDEFG) as model systems. Functional studies confirmed the predicted roles of FruA and LevD in S. gordonii. ManL, the AB domain of a fructose/mannose-type enzyme II PTS permease, contributed to utilization of glucose, mannose, galactose, and fructose and exerted primary control over CCR of the fruA and levD operons. Unlike in S. mutans, ManL-dependent CCR was not sugar specific, and galactose was very effective at eliciting CCR in S. gordonii. Inactivation of the apparent ccpA homologue of S. gordonii actually enhanced CCR of fruA and levD, an effect likely due to its demonstrated role in repression of manL expression. Thus, there are some similarities and fundamental differences in CCR control mechanisms between the oral pathogen S. mutans and the oral commensal S. gordonii that may eventually be exploited to enhance the competitiveness of health-associated commensals in oral biofilms.
doi:10.1128/AEM.02385-10
PMCID: PMC3067331  PMID: 21239541
24.  A Transcriptional Regulator and ABC Transporters Link Stress Tolerance, (p)ppGpp, and Genetic Competence in Streptococcus mutans▿ †  
Journal of Bacteriology  2010;193(4):862-874.
Streptococcus mutans, a primary agent of dental caries, has three (p)ppGpp synthases: RelA, which is required for a mupirocin-induced stringent response; RelP, which produces (p)ppGpp during exponential growth and is regulated by the RelRS two-component system; and RelQ. Transcription of relPRS and a gene cluster (SMu0835 to SMu0837) located immediately upstream was activated in cells grown with aeration and during a stringent response, respectively. Bioinformatic analysis predicted that SMu0836 and SMu0837 encode ABC exporters, which we designated rcrPQ (rel competence-related) genes, respectively. SMu0835 (rcrR) encodes a MarR family transcriptional regulator. Reverse transcriptase PCR (RT-PCR) and quantitative RT-PCR analysis showed that RcrR functions as an autogenous negative regulator of the expression of the rcrRPQ operon. A mutant in which a polar insertion replaced the SMu836 gene (Δ836polar) grew more slowly and had final yields that were lower than those of the wild-type strain. Likewise, the Δ836polar strain had an impaired capacity to form biofilms, grew poorly at pH 5.5, and was more sensitive to oxidative stressors. Optimal expression of rcrPQ required RelP and vice versa. Replacement of rcrR with a nonpolar antibiotic resistance marker (Δ835np), which leads to overexpression of rcrPQ, yielded a strain that was not transformable with exogenous DNA. Transcriptional analysis revealed that the expression of comYA and comX was dramatically altered in the Δ835np and Δ836polar mutants. Collectively, the data support the suggestion that the rcrRPQ gene products play a critical role in physiologic homeostasis and stress tolerance by linking (p)ppGpp metabolism, acid and oxidative stress tolerance, and genetic competence.
doi:10.1128/JB.01257-10
PMCID: PMC3028664  PMID: 21148727
25.  Protocols to Study the Physiology of Oral Biofilms 
The oral cavity harbors several hundred different bacterial species that colonize both hard (teeth) and soft tissues, forming complex populations known as microbial biofilms. It is widely accepted that the phenotypic characteristics of bacteria grown in biofilms are substantially different from those grown in suspensions. Because biofilms are the natural habitat for the great majority of oral bacteria, including those contributing to oral diseases, a better understanding of the physiology of adherent populations is clearly needed to control oral microbes in health and disease. In this chapter, we use oral streptococci as examples for studying the physiology of oral biofilms.
doi:10.1007/978-1-60761-820-1_7
PMCID: PMC3130507  PMID: 20717780
Biofilm; oral streptococci; Streptococcus; enzymatic assays; stress; production of polysaccharides

Results 1-25 (83)