Search tips
Search criteria

Results 1-19 (19)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
1.  YlxM Is a Newly Identified Accessory Protein That Influences the Function of Signal Recognition Particle Pathway Components in Streptococcus mutans 
Journal of Bacteriology  2014;196(11):2043-2052.
Streptococcus mutans is a cariogenic oral pathogen whose virulence is determined largely by its membrane composition. The signal recognition particle (SRP) protein-targeting pathway plays a pivotal role in membrane biogenesis. S. mutans SRP pathway mutants demonstrate growth defects, cannot contend with environmental stress, and exhibit multiple changes in membrane composition. This study sought to define a role for ylxM, which in S. mutans and numerous other bacteria resides directly upstream of the ffh gene, encoding a major functional element of the bacterial SRP. YlxM was observed as a produced protein in S. mutans. Its predicted helix-turn-helix motif suggested that it has a role as a transcriptional regulator of components within the SRP pathway; however, no evidence of transcriptional regulation was found. Instead, capture enzyme-linked immunosorbent assay (ELISA), affinity chromatography, and bio-layer interferometry (BLI) demonstrated that S. mutans YlxM interacts with the SRP components Ffh and small cytoplasmic RNA (scRNA) but not with the SRP receptor FtsY. In the absence of FtsY, YlxM increased the GTP hydrolysis activity of Ffh alone and in complex with scRNA. However, in the presence of FtsY, YlxM caused an overall diminution of net GTPase activity. Thus, YlxM appears to modulate GTP hydrolysis, a process necessary for proper recycling of SRP pathway components. The presence of YlxM conferred a significant competitive growth advantage under nonstress and acid stress conditions when wild-type and ylxM mutant strains were cultured together. Our results identify YlxM as a component of the S. mutans SRP and suggest a regulatory function affecting GTPase activity.
PMCID: PMC4010984  PMID: 24659773
2.  YidC1 and YidC2 are functionally distinct proteins involved in protein secretion, biofilm formation and cariogenicity of Streptococcus mutans 
Microbiology  2012;158(Pt 7):1702-1712.
The cariogenic bacterium Streptococcus mutans has two paralogues of the YidC/Oxa1/Alb3 family of membrane protein insertases/chaperones. Disruption of yidC2 results in loss of genetic competence, decreased membrane-associated ATPase activity and stress sensitivity (acid, osmotic and oxidative). Elimination of yidC1 has less severe effects, with little observable effect on growth or stress sensitivity. To examine the respective roles of YidC1 and YidC2, a conditional expression system was developed allowing simultaneous elimination of both endogenous YidCs. The function of the YidC C-terminal tails was also investigated and a chimeric YidC1 protein appended with the C terminus of YidC2 enabled YidC1 to complement a ΔyidC2 mutant for stress tolerance, ATP hydrolysis activity and extracellular glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity. Elimination of yidC1 or yidC2 affected levels of extracellular proteins, including GtfB, GtfC and adhesin P1 (AgI/II, PAc), which were increased without YidC1 but decreased in the absence of YidC2. Both yidC1 and yidC2 were shown to contribute to S. mutans biofilm formation and to cariogenicity in a rat model. Collectively, these results provide evidence that YidC1 and YidC2 contribute to cell surface biogenesis and protein secretion in S. mutans and that differences in stress sensitivity between the ΔyidC1 and ΔyidC2 mutants stem from a functional difference in the C-termini of these two proteins.
PMCID: PMC3542144  PMID: 22504439
3.  Alterations in Immunodominance of Streptococcus mutans AgI/II: Lessons Learned from Immunomodulatory Antibodies 
Vaccine  2013;32(3):375-382.
Streptococcus mutans Antigen I/II (AgI/II) has been widely studied as a candidate vaccine antigen against human dental caries. In this report we follow up on prior studies that indicated that anti-AgI/II immunomodulatory monoclonal antibodies (MAbs) exerted their effects by destabilizing the native protein structure and exposing cryptic epitopes. We show here that similar results can be obtained by immunizing mice with truncated polypeptides out of the context of an intra-molecular interaction that occurs within the full-length molecule and that appears to dampen the functional response against at least two important target epitopes. Putative T cell epitopes that influenced antibody specificity were identified immediately upstream of the alanine-rich repeat domain. Adherence inhibiting antibodies could be induced against two discrete domains of the protein, one corresponding to the central portion of the molecule and the other corresponding to the C-terminus.
PMCID: PMC3901311  PMID: 24252705
Streptococcus; Monoclonal antibody; immune complex; immunodominance; vaccine design
4.  Streptococcus mutans Extracellular DNA Is Upregulated during Growth in Biofilms, Actively Released via Membrane Vesicles, and Influenced by Components of the Protein Secretion Machinery 
Journal of Bacteriology  2014;196(13):2355-2366.
Streptococcus mutans, a major etiological agent of human dental caries, lives primarily on the tooth surface in biofilms. Limited information is available concerning the extracellular DNA (eDNA) as a scaffolding matrix in S. mutans biofilms. This study demonstrates that S. mutans produces eDNA by multiple avenues, including lysis-independent membrane vesicles. Unlike eDNAs from cell lysis that were abundant and mainly concentrated around broken cells or cell debris with floating open ends, eDNAs produced via the lysis-independent pathway appeared scattered but in a structured network under scanning electron microscopy. Compared to eDNA production of planktonic cultures, eDNA production in 5- and 24-h biofilms was increased by >3- and >1.6-fold, respectively. The addition of DNase I to growth medium significantly reduced biofilm formation. In an in vitro adherence assay, added chromosomal DNA alone had a limited effect on S. mutans adherence to saliva-coated hydroxylapatite beads, but in conjunction with glucans synthesized using purified glucosyltransferase B, the adherence was significantly enhanced. Deletion of sortase A, the transpeptidase that covalently couples multiple surface-associated proteins to the cell wall peptidoglycan, significantly reduced eDNA in both planktonic and biofilm cultures. Sortase A deficiency did not have a significant effect on membrane vesicle production; however, the protein profile of the mutant membrane vesicles was significantly altered, including reduction of adhesin P1 and glucan-binding proteins B and C. Relative to the wild type, deficiency of protein secretion and membrane protein insertion machinery components, including Ffh, YidC1, and YidC2, also caused significant reductions in eDNA.
PMCID: PMC4054167  PMID: 24748612
5.  A therapeutic anti-Streptococcus mutans monoclonal antibody used in human passive protection trials influences the adaptive immune response 
Vaccine  2011;29(37):6292-6300.
The adhesin known as Antigen I/II, P1 or PAc of the cariogenic dental pathogen Streptococcus mutans is a target of protective immunity and candidate vaccine antigen. Previously we demonstrated that immunization of mice with S. mutans complexed with anti-AgI/II monoclonal antibodies (MAbs) resulted in changes in the specificity, isotype and functionality of elicited anti-AgI/II antibodies in the serum of immunized mice compared to administration of bacteria alone. In the current study, an anti-AgI/II MAb reported in the literature to confer unexplained long term protection against S. mutans re-colonization following passive immunization in human clinical trials (MAb Guy’s 13), and expressed in tobacco plants (MAb Guy’s 13 plantibody), was evaluated for its potential immunomodulatory properties. Immunization of BALB/c mice with immune complexes of Guy’s 13 plantibody bound to S. mutans whole cells resulted in a similar change in specificity, isotype, and functionality of elicited anti-AgI/II antibodies as had been observed for other immunomodulatory MAbs. This new information, coupled with the recently solved crystal structure of the adhesin, now provides a rational explanation and plausible mechanism of action of passively administered Guy’s 13/Guy’s 13 plantibody in human clinical trials, and how long-term prevention of S. mutans carriage well past the application period of the therapeutic antibody could have been achieved.
PMCID: PMC3156276  PMID: 21704107
Immunomodulation; Passive immunization; Streptococcus; Monoclonal antibody
6.  The changing faces of Streptococcus antigen I/II polypeptide family adhesins 
Molecular microbiology  2010;77(2):276-286.
Streptococcus mutans antigen I/II (AgI/II) protein was one of the first cell-wall anchored adhesins identified in Gram-positive bacteria. It mediates attachment of Streptococcus mutans to tooth surfaces and has been a focus for immunization studies against dental caries. The AgI/II family polypeptides recognize salivary glycoproteins, and are also involved in biofilm formation, platelet aggregation, tissue invasion, and immune modulation. The genes encoding AgI/II family polypeptides are found amongst Streptococcus species indigenous to the human mouth, as well as in S. pyogenes, S. agalactiae, and S. suis. Evidence of functionalities for different regions of the AgI/II proteins has emerged. A sequence motif within the C-terminal portion of Streptococcus gordonii SspB (AgI/II) is bound by Porphyromonas gingivalis, thus promoting oral colonization by this anaerobic pathogen. The significance of other epitopes is now clearer following resolution of regional crystal structures. A new picture emerges of the central V (variable) region, predicted to contain a carbohydrate-binding trench, being projected from the cell surface by a stalk formed by an unusual association between an amino-terminal α-helix and a carboxy-terminal polyproline helix. This presentation mode might be important in determining functional conformations of other Gram-positive surface proteins that have adhesin domains flanked by α-helical and proline-rich regions.
PMCID: PMC2909373  PMID: 20497507
Cell wall protein; adhesin; crystal structure AgI/II; epitope conformation; vaccine anti-Streptococcus
7.  Beneficial Immunomodulation by Streptococcus mutans anti-P1 Monoclonal Antibodies is Fc-independent and Correlates with Increased Exposure of a Relevant Target Epitope 
We showed previously that deliberate immunization of BALB/c mice with immune complexes (IC) of the cariogenic bacterium Streptococcus mutans and monoclonal antibodies (MAbs) against its surface adhesin P1 results in changes in the specificity and isotype of elicited anti-P1 antibodies. Depending on the MAb, changes were beneficial, neutral, or detrimental as measured by the ability of the serum from immunized mice to inhibit bacterial adherence to human salivary agglutinin by a BIAcore SPR assay. The current study further defined changes in the host response that result from immunization with IC containing beneficial MAbs and evaluated mechanisms by which beneficial immunomodulation could occur in this system. Immunomodulatory effects varied depending upon genetic background with differing results in C57/BL6 and BALB/c mice. Desirable effects following IC immunization were observed in the absence of activating Fc receptors in BALB/c Fcer1g transgenic mice. MAb F(ab)2 fragments mediated desirable changes similar to those observed using intact IgG. Sera from IC-immunized BALB/c mice that were better able to inhibit bacterial adherence demonstrated an increase in antibodies able to compete with an adherence-inhibiting anti-P1 MAb, and binding of a beneficial immumomodulatory MAb to S. mutans increased exposure of that epitope. Consistent with a mechanism involving a MAb-mediated structural alteration of P1 on the cell surface, immunization with truncated P1 derivatives lacking segments that contribute to recognition by beneficial immunomodulatory MAbs resulted in an improvement in the ability of elicited serum antibodies to inhibit bacterial adherence compared to immunization with the full-length protein.
PMCID: PMC2810654  PMID: 19752237
Rodent; Vaccination; Bacterial; Antibodies; Epitopes
8.  Characteristics of Biofilm Formation by Streptococcus mutans in the Presence of Saliva▿  
Infection and Immunity  2008;76(9):4259-4268.
Interactions between salivary agglutinin and the adhesin P1 of Streptococcus mutans contribute to bacterial aggregation and mediate sucrose-independent adherence to tooth surfaces. We have examined biofilm formation by S. mutans UA159, and derivative strains carrying mutations affecting the localization or expression of P1, in the presence of fluid-phase or adsorbed saliva or salivary agglutinin preparations. Whole saliva- and salivary agglutinin-induced aggregation of S. mutans was adversely affected by the loss of P1 and sortase (SrtA) but not by the loss of trigger factor (RopA). Fluid-phase salivary agglutinin and, to a lesser extent, immobilized agglutinin inhibited biofilm development by S. mutans in the absence of sucrose, and whole saliva was more effective at decreasing biofilm formation than salivary agglutinin. Inhibition of biofilm development by salivary agglutinin was differently influenced by particular mutations, with the P1-deficient strain displaying a greater inhibition of biofilm development than the SrtA- or RopA-deficient strains. As expected, biofilm-forming capacities of all strains in the presence of salivary preparations were markedly enhanced in the presence of sucrose, although biofilm formation by the mutants was less efficient than that by the parental strain. Aeration strongly inhibited biofilm development, and the presence of salivary components did not restore biofilm formation in aerated conditions. The results disclose a potent ability of salivary constituents to moderate biofilm formation by S. mutans through P1-dependent and P1-independent pathways.
PMCID: PMC2519434  PMID: 18625741
9.  Requirements for Surface Expression and Function of Adhesin P1 from Streptococcus mutans▿ †  
Infection and Immunity  2008;76(6):2456-2468.
In this report, we define requirements for the successful translocation and functional maturation of the adhesin P1 of Streptococcus mutans. Conformational epitopes recognized by anti-P1 monoclonal antibodies (MAbs) were further characterized, thus facilitating the use of particular MAbs as tools to monitor the locations of various forms of the protein. We show that correct localization of P1 is dependent on structural features of the molecule itself, including a requisite A region-P region intramolecular interaction that occurs within the cell prior to secretion. P1 also was shown to be affected by several members of the protein-folding-secretion-turnover apparatus. It does not achieve a fully functional form in the absence of the trigger factor PPIase homolog RopA, and its translocation is delayed when DnaK levels are limited. In addition, dnaK message levels are differentially altered in the presence of P1 lacking the alanine-rich compared to the proline-rich repeat domains. Lastly, nonsecreted P1 lacking the P region accumulates within the cell in the absence of htrA, implying an intracellular HtrA protease function in the degradation and turnover of this particular internal-deletion polypeptide. However, the opposite effect is seen for full-length P1, suggesting a sensing mechanism and substrate-dependent alteration in HtrA's function and effect that is consistent with its known ability to switch between chaperone and protease, depending on environmental perturbations.
PMCID: PMC2423087  PMID: 18362133
10.  Functional Overlap but Lack of Complete Cross-Complementation of Streptococcus mutans and Escherichia coli YidC Orthologs▿  
Journal of Bacteriology  2008;190(7):2458-2469.
Oxa/YidC/Alb family proteins are chaperones involved in membrane protein insertion and assembly. Streptococcus mutans has two YidC paralogs. Elimination of yidC2, but not yidC1, results in stress sensitivity with decreased membrane-associated F1Fo ATPase activity and an inability to initiate growth at low pH or high salt concentrations (A. Hasona, P. J. Crowley, C. M. Levesque, R. W. Mair, D. G. Cvitkovitch, A. S. Bleiweis, and L. J. Brady, Proc. Natl. Acad. Sci. USA 102:17466-17471, 2005). We now show that Escherichia coli YidC complements for acid tolerance, and partially for salt tolerance, in S. mutans lacking yidC2 and that S. mutans YidC1 or YidC2 complements growth in liquid medium, restores the proton motive force, and functions to assemble the F1Fo ATPase in a previously engineered E. coli YidC depletion strain (J. C. Samuelson, M. Chen, F. Jiang, I. Moller, M. Wiedmann, A. Kuhn, G. J. Phillips, and R. E. Dalbey, Nature 406:637-641, 2000). Both YidC1 and YidC2 also promote membrane insertion of known YidC substrates in E. coli; however, complete membrane integrity is not fully replicated, as evidenced by induction of phage shock protein A. While both function to rescue E. coli growth in broth, a different result is observed on agar plates: growth of the YidC depletion strain is largely restored by 247YidC2, a hybrid S. mutans YidC2 fused to the YidC targeting region, but not by a similar chimera, 247YidC1, nor by YidC1 or YidC2. Simultaneous expression of YidC1 and YidC2 improves complementation on plates. This study demonstrates functional redundancy between YidC orthologs in gram-negative and gram-positive organisms but also highlights differences in their activity depending on growth conditions and species background, suggesting that the complete functional spectrum of each is optimized for the specific bacteria and environment in which they reside.
PMCID: PMC2293197  PMID: 18178746
11.  Membrane Composition Changes and Physiological Adaptation by Streptococcus mutans Signal Recognition Particle Pathway Mutants▿  
Journal of Bacteriology  2006;189(4):1219-1230.
Previously, we presented evidence that the oral cariogenic species Streptococcus mutans remains viable but physiologically impaired and sensitive to environmental stress when genes encoding the minimal conserved bacterial signal recognition particle (SRP) elements are inactivated. Two-dimensional gel electrophoresis of isolated membrane fractions from strain UA159 and three mutants (Δffh, ΔscRNA, and ΔftsY) grown at pH 7.0 or pH 5.0 allowed us to obtain insight into the adaptation process and the identities of potential SRP substrates. Mutant membrane preparations contained increased amounts of the chaperones DnaK and GroES and ClpP protease but decreased amounts of transcription- and translation-related proteins, the β subunit of ATPase, HPr, and several metabolic and glycolytic enzymes. Therefore, the acid sensitivity of SRP mutants might be caused in part by diminished ATPase activity, as well as the absence of an efficient mechanism for supplying ATP quickly at the site of proton elimination. Decreased amounts of LuxS were also observed in all mutant membranes. To further define physiological changes that occur upon disruption of the SRP pathway, we studied global gene expression in S. mutans UA159 (parent strain) and AH333 (Δffh mutant) using microarray analysis. Transcriptome analysis revealed up-regulation of 81 genes, including genes encoding chaperones, proteases, cell envelope biosynthetic enzymes, and DNA repair and replication enzymes, and down-regulation of 35 genes, including genes concerned with competence, ribosomal proteins, and enzymes involved in amino acid and protein biosynthesis. Quantitative real-time reverse transcription-PCR analysis of eight selected genes confirmed the microarray data. Consistent with a demonstrated defect in competence and the suggested impairment of LuxS-dependent quorum sensing, biofilm formation was significantly decreased in each SRP mutant.
PMCID: PMC1797365  PMID: 17085548
13.  Redirecting the Humoral Immune Response against Streptococcus mutans Antigen P1 with Monoclonal Antibodies  
Infection and Immunity  2004;72(12):6951-6960.
The adhesin P1 of Streptococcus mutans has been studied as an anticaries vaccine antigen. An anti-P1 monoclonal antibody (MAb) bound to S. mutans prior to mucosal immunization of mice was shown previously to alter the amount, specificity, isotype, and biological activity of anti-P1 antibodies. The present study was undertaken to screen this and four additional anti-P1 MAbs for immunomodulatory activity when complexed with S. mutans and administered by a systemic route and to evaluate sera from immunized mice for the ability to inhibit adherence of S. mutans to immobilized human salivary agglutinin. All five MAbs tested influenced murine anti-P1 serum antibody responses in terms of subclass distribution and/or specificity. The effects varied depending on which MAb was used and its coating concentration. Two MAbs promoted a more effective, and two others a less effective, adherence inhibition response. An inverse relationship was observed between the ability of the MAbs themselves to inhibit adherence and the ability of antibodies elicited following immunization with immune complexes to inhibit adherence. Statistically significant correlations were demonstrated between the levels of anti-P1 serum immunoglobulin G2a (IgG2a) and IgG2b, but not of IgG1 or IgG3, and the ability of sera from immunized animals to inhibit bacterial adherence. These results indicate that multiple anti-P1 MAbs can mediate changes in the immune response and that certain alterations are potentially more biologically relevant than others. Immunomodulation by anti-P1 MAbs represents a useful strategy to improve the beneficial immune response against S. mutans.
PMCID: PMC529146  PMID: 15557617
14.  Contribution of the Alanine-Rich Region of Streptococcus mutans P1 to Antigenicity, Surface Expression, and Interaction with the Proline-Rich Repeat Domain  
Infection and Immunity  2004;72(8):4699-4706.
Streptococcus mutans is considered to be the major etiologic agent of human dental caries. Attachment of S. mutans to the tooth surface is required for the development of caries and is mediated, in part, by the 185-kDa surface protein variously known as antigen I/II, PAc, and P1. Such proteins are expressed by nearly all species of oral streptococci. Characteristics of P1 include an alanine-rich repeat region and a centrally located proline-rich repeat region. The proline-rich region of P1 has been shown to be important for the translational stability and translocation of P1 through the bacterial membrane. We show here that (i) several anti-P1 monoclonal antibodies require the simultaneous presence of the alanine-rich and proline-rich regions for binding, (ii) the proline-rich region of P1 interacts with the alanine-rich region, (iii) like the proline-rich region, the alanine-rich region is required for the stability and translocation of P1, (iv) both the proline-rich and alanine-rich regions are required for secretion of P1 in Escherichia coli, and (v) in E. coli, P1 is secreted in the absence of SecB.
PMCID: PMC470626  PMID: 15271931
15.  Characterization of the Streptococcus mutans P1 Epitope Recognized by Immunomodulatory Monoclonal Antibody 6-11A  
Infection and Immunity  2004;72(8):4680-4688.
Monoclonal antibody (MAb) 6-11A directed against Streptococcus mutans surface adhesin P1 was shown previously to influence the mucosal immunogenicity of this organism in BALB/c mice. The specificity of anti-P1 serum immunoglobulin G (IgG) and secretory IgA antibodies and the subclass distribution of anti-P1 serum IgG antibodies were altered, and the ability of elicited serum antibodies to inhibit S. mutans adherence in vitro was in certain cases increased. MAb 6-11A is known to recognize an epitope dependent on the presence of the proline-rich region of the protein, although it does not bind directly to the isolated P-region domain. In this report, we show that MAb 6-11A recognizes a complex discontinuous epitope that requires the simultaneous presence of the alanine-rich repeat domain (A-region) and the P-region. Formation of the core epitope requires the interaction of these segments of P1. Residues amino terminal to the A-region also contributed to recognition by MAb 6-11A but were not essential for binding. Characterization of the MAb 6-11A epitope will enable insight into potential mechanisms of immunomodulation and broaden our understanding of the tertiary structure of P1.
PMCID: PMC470667  PMID: 15271929
16.  Further Characterization of Immunomodulation by a Monoclonal Antibody against Streptococcus mutans Antigen P1  
Infection and Immunity  2004;72(1):13-21.
We demonstrated previously that mucosal immunization of mice with Streptococcus mutans coated with the monoclonal antibody (MAb) 6-11A directed against the major surface adhesin protein P1 results in changes in the amount, isotype distribution, and specificity of serum antibodies compared with animals immunized with bacteria only. We now show that the specificity of the mucosal secretory IgA response was also influenced by this MAb. Changes in antibody specificity were associated with changes in biological activity. Serum samples which differed in antibody reactivity with P1 polypeptides generated by partial digestion with N-chlorosuccinimide but not in isotype distribution or overall reactivity with S. mutans or intact P1 demonstrated a statistically significant difference in the ability to inhibit bacterial adherence to salivary-agglutinin-coated hydroxyapatite beads. Serum IgG antibodies against P1 from mice immunized with either S. mutans alone or S. mutans coated with 6-11A were shown to recognize antigenic determinants dependent on the presence of the central proline-rich repeat domain, a segment necessary for the structural integrity of the molecule. However, no statistically significant differences were observed in antibody reactivity with a panel of six partial P1 polypeptides encoded by overlapping spaP subclones, suggesting that the targets of biologically relevant antibodies involve complex epitopes not reconstituted by the recombinant products tested. Lastly, we show that binding of MAb 6-11A to P1 on the surface of S. mutans alters P1's susceptibility to proteolytic digestion. Hence, changes in antigen processing and presentation may contribute to the immunomodulatory effects of this MAb.
PMCID: PMC343944  PMID: 14688075
17.  Characterization of the sat Operon in Streptococcus mutans: Evidence for a Role of Ffh in Acid Tolerance 
Journal of Bacteriology  2001;183(8):2543-2552.
An essential protein translocation pathway in Escherichia coli and Bacillus subtilis involves the signal recognition particle (SRP), of which the 54-kDa homolog (Ffh) is an essential component. In a previous study, we found that a transposon insertion in the ylxM-ffh intergenic region of the designated secretion and acid tolerance (sat) operon of Streptococcus mutans resulted in an acid-sensitive phenotype. In the present study, we further characterized this genomic region in S. mutans after construction of bonafide sat operon mutants and confirmed the role of the SRP pathway in acid resistance. Northern blot and primer extension analyses identified an acid-inducible promoter upstream of ylxM that was responsible for upregulating the coordinate expression of all five genes of the sat operon when cells were grown at acid pH. Two constitutive promoters, one immediately upstream of satD and one just 3′ to the acid-inducible promoter, were also identified. Except for Ffh, the functions of the sat operon gene products are unknown. SatC, SatD, and SatE have no homology to proteins with known functions, although YlxM may function as a transcriptional regulator linked to genes encoding SRP pathway proteins. Nonpolar mutations created in each of the five genes of the sat locus resulted in viable mutants. Most striking, however, was the finding that a mutation in ffh did not result in loss of cell viability, as is the case in all other microbial species in which this pathway has been described. This mutant also lacked immunologically detectable Ffh and was severely affected in resistance to acid. Complementation of the mutation resulted in restoration of acid tolerance and reappearance of cytoplasmic Ffh. These data provide evidence that the SRP pathway plays an important role in acid tolerance in S. mutans.
PMCID: PMC95171  PMID: 11274114
18.  Monoclonal Antibody-Mediated Modulation of the Humoral Immune Response against Mucosally Applied Streptococcus mutans 
Infection and Immunity  2000;68(4):1796-1805.
Systemic immunization with antigen coupled to monoclonal antibody (MAb) has been used by several investigators to increase the number of MAb-producing hybridomas against an antigen and to elicit antibodies specific for poorly immunogenic epitopes. This strategy has implications for vaccine design in that protective immunity is not necessarily directed at immunodominant epitopes of pathogens and may be improved by deliberately shifting the immune response toward subdominant epitopes. To our knowledge, no studies to date have addressed the potential for immunomodulatory activity mediated by MAbs bound to mucosally applied antigen. To test whether administration of an exogenous MAb directed against a streptococcal surface protein could influence the humoral immune response, BALB/c mice were immunized orally by gastric intubation or intranasally with Streptococcus mutans alone or S. mutans complexed with a MAb directed against the major surface protein P1. Significant changes in the subclass distribution, as well as the specificity, of anti-P1 serum immunoglobulin G antibodies were demonstrated in groups of mice which received S. mutans coated with the anti-P1 MAb versus those which received S. mutans alone. Alterations in the humoral immune response were dependent on the amount of anti-P1 MAb used to coat the bacteria. In addition, differences in the anti-P1 immune responses were observed between groups of mice immunized via oral versus intranasal routes. In summary, an exogenous MAb complexed with a streptococcal antigen prior to mucosal immunization can influence the immunoglobulin isotype and specificity of the host humoral immune response against the antigen.
PMCID: PMC97350  PMID: 10722566
19.  Virulence of a spaP Mutant of Streptococcus mutans in a Gnotobiotic Rat Model 
Infection and Immunity  1999;67(3):1201-1206.
Streptococcus mutans, the principal etiologic agent of dental caries in humans, possesses a variety of virulence traits that enable it to establish itself in the oral cavity and initiate disease. A 185-kDa cell surface-localized protein known variously as antigen I/II, antigen B, PAc, and P1 has been postulated to be a virulence factor in S. mutans. We showed previously that P1 expression is necessary for in vitro adherence of S. mutans to salivary agglutinin-coated hydroxyapatite as well as for fluid-phase aggregation. Since adherence of the organism is a necessary first step toward colonization of the tooth surface, we sought to determine what effect deletion of the gene for P1, spaP, has on the colonization and subsequent cariogenicity of this organism in vivo. Germ-free Fischer rats fed a diet containing 5% sucrose were infected with either S. mutans NG8 or an NG8-derived spaP mutant strain, PC3370, which had been constructed by allelic exchange mutagenesis. At 1-week intervals for 6 weeks after infection, total organisms recovered from mandibles were enumerated. At week 6, caries lesions also were scored. A significantly lower number of enamel and dentinal carious lesions was observed for the mutant-infected rats, although there was no difference between parent and mutant in the number of organisms recovered from teeth through 6 weeks postinfection. Coinfection of animals with both parent and mutant strains resulted in an increasing predominance of the mutant strain being recovered over time, suggesting that P1 is not a necessary prerequisite for colonization. These data do, however, suggest a role for P1 in the virulence of S. mutans, as reflected by a decrease in the cariogenicity of bacteria lacking this surface protein.
PMCID: PMC96447  PMID: 10024561

Results 1-19 (19)