PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (35)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  A Conserved Streptococcal Membrane Protein, LsrS, Exhibits a Receptor-Like Function for Lantibiotics 
Journal of Bacteriology  2014;196(8):1578-1587.
Streptococcus mutans strain GS-5 produces a two-peptide lantibiotic, Smb, which displays inhibitory activity against a broad spectrum of bacteria, including other streptococci. For inhibition, lantibiotics must recognize specific receptor molecules present on the sensitive bacterial cells. However, so far no such receptor proteins have been identified for any lantibiotics. In this study, using a powerful transposon mutagenesis approach, we have identified in Streptococcus pyogenes a gene that exhibits a receptor-like function for Smb. The protein encoded by that gene, which we named LsrS, is a membrane protein belonging to the CAAX protease family. We also found that nisin, a monopeptide lantibiotic, requires LsrS for its optimum inhibitory activity. However, we found that LsrS is not required for inhibition by haloduracin and galolacticin, both of which are two-peptide lantibiotics closely related to Smb. LsrS appears to be a well-conserved protein that is present in many streptococci, including S. mutans. Inactivation of SMU.662, an LsrS homolog, in S. mutans strains UA159 and V403 rendered the cells refractory to Smb-mediated killing. Furthermore, overexpression of LsrS in S. mutans created cells more susceptible to Smb. Although LsrS and its homolog contain the CAAX protease domain, we demonstrate that inactivation of the putative active sites on the LsrS protein has no effect on its receptor-like function. This is the first report describing a highly conserved membrane protein that displays a receptor-like function for lantibiotics.
doi:10.1128/JB.00028-14
PMCID: PMC3993366  PMID: 24509319
2.  Shuttle expression plasmids for genetic studies in Streptococcus mutans 
Microbiology (Reading, England)  2008;154(0 8):2275-2282.
A set of shuttle plasmids containing four different constitutive promoters was generated to facilitate overexpression of foreign and native genes in streptococci, such as Streptococcus mutans. The four promoters that were chosen were: Pami, Pspac, P23 and Pveg. These promoters are active in many Gram-positive bacteria, and allow various levels of gene expression depending on the host bacterium. Shuttle plasmids were constructed based on two types of broad-host-range replication origins: a rolling-circle replicon (pSH71) and a theta replicon (pAMβ1). Shuttle plasmids derived from the pAMβ1 replicon were generated to avoid the structural and segregational stability problems associated with rolling-circle replication, since these problems may be encountered during large gene cloning. In a complementation assay, we used one such plasmid to express a gene in trans to show the utility of these plasmids. In addition, a series of plasmids was generated for the expression of recombinant proteins with an N-terminal 6×His tag or a C-terminal Strep-tag fusion, and, using a gene derived from S. mutans, we showed a high level of recombinant protein expression in S. mutans and Streptococcus pyogenes. Since these plasmids contain broad-host-range replication origins, and because the selected promoters are functional in many bacteria, they can be used for gene expression studies, such as complementation and recombinant protein expression.
doi:10.1099/mic.0.2008/019265-0
PMCID: PMC4110107  PMID: 18667560
3.  SMU.746-SMU.747, a Putative Membrane Permease Complex, Is Involved in Aciduricity, Acidogenesis, and Biofilm Formation in Streptococcus mutans 
Journal of Bacteriology  2014;196(1):129-139.
Dental caries induced by Streptococcus mutans is one of the most prevalent chronic infectious diseases worldwide. The pathogenicity of S. mutans relies on the bacterium's ability to colonize tooth surfaces and survive a strongly acidic environment. We performed an ISS1 transposon mutagenesis to screen for acid-sensitive mutants of S. mutans and identified an SMU.746-SMU.747 gene cluster that is needed for aciduricity. SMU.746 and SMU.747 appear to be organized in an operon and encode a putative membrane-associated permease. SMU.746- and SMU.747-deficient mutants showed a reduced ability to grow in acidified medium. However, the short-term or long-term acid survival capacity and F1F0 ATPase activity remained unaffected in the mutants. Furthermore, deletion of both genes did not change cell membrane permeability and the oxidative and heat stress responses. Growth was severely affected even with slight acidification of the defined medium (pH 6.5). The ability of the mutant strain to acidify the defined medium during growth in the presence of glucose and sucrose was significantly reduced, although the glycolysis rate was only slightly affected. Surprisingly, deletion of the SMU.746-SMU.747 genes triggered increased biofilm formation in low-pH medium. The observed effects were more striking in a chemically defined medium. We speculate that the SMU.746-SMU.747 complex is responsible for amino acid transport, and we discuss its possible role in colonization and survival in the oral environment.
doi:10.1128/JB.00960-13
PMCID: PMC3911122  PMID: 24142257
4.  SmbFT, a Putative ABC Transporter Complex, Confers Protection against the Lantibiotic Smb in Streptococci 
Journal of Bacteriology  2013;195(24):5592-5601.
Streptococcus mutans, a dental pathogen, secretes different kinds of lantibiotic and nonlantibiotic bacteriocins. For self-protection, a bacteriocin producer strain must possess one or more cognate immunity mechanisms. We report here the identification of one such immunity complex in S. mutans strain GS-5 that confers protection against Smb, a two-component lantibiotic. The immunity complex that we identified is an ABC transporter composed of two proteins: SmbF (the ATPase component) and SmbT (the permease component). Both of the protein-encoding genes are located within the smb locus. We show that GS-5 becomes sensitized to Smb upon deletion of smbT, which makes the ABC transporter nonfunctional. To establish the role SmbFT in providing immunity, we heterologously expressed this ABC transporter complex in four different sensitive streptococcal species and demonstrated that it can confer resistance against Smb. To explore the specificity of SmbFT in conferring resistance, we tested mutacin IV (a nonlantibiotic), nisin (a single peptide lantibiotics), and three peptide antibiotics (bacitracin, polymyxin B, and vancomycin). We found that SmbFT does not recognize these structurally different peptides. We then tested whether SmbFT can confer protection against haloduracin, another two-component lantibiotic that is structurally similar to Smb; SmbFT indeed conferred protection against haloduracin. SmbFT can also confer protection against an uncharacterized but structurally similar lantibiotic produced by Streptococcus gallolyticus. Our data suggest that SmbFT truly displays immunity function and confer protection against Smb and structurally similar lantibiotics.
doi:10.1128/JB.01060-13
PMCID: PMC3889610  PMID: 24123816
5.  ClpL Is Required for Folding of CtsR in Streptococcus mutans 
Journal of Bacteriology  2013;195(3):576-584.
ClpL, a member of the HSP100 family, is widely distributed in Gram-positive bacteria but is absent in Gram-negative bacteria. Although ClpL is involved in various cellular processes, such as the stress tolerance response, long-term survival, virulence, and antibiotic resistance, the detailed molecular mechanisms are largely unclear. Here we report that ClpL acts as a chaperone to properly fold CtsR, a stress response repressor, and prevents it from forming protein aggregates in Streptococcus mutans. In vitro, ClpL was able to successfully refold urea-denatured CtsR but not aggregated proteins. We suggest that ClpL recognizes primarily soluble but denatured substrates and prevents the formation of large protein aggregates. We also found that in vivo, the C-terminal D2-small domain of ClpL is essential for the observed chaperone activity. Since ClpL widely contributes to various cellular functions, we speculate that ClpL chaperone activity is necessary to maintain cellular homeostasis.
doi:10.1128/JB.01743-12
PMCID: PMC3554016  PMID: 23204456
6.  An Extracelluar Protease, SepM, Generates Functional Competence-Stimulating Peptide in Streptococcus mutans UA159 
Journal of Bacteriology  2012;194(21):5886-5896.
Cell-cell communication in Gram-positive bacteria often depends on the production of extracellular peptides. The cariogenic bacterium Streptococcus mutans employs so-called competence-stimulating peptide (CSP) to stimulate mutacin (bacteriocin) production and competence development through the activation of the ComDE two-component pathway. In S. mutans, CSP is secreted as a 21-residue peptide; however, mass spectrometric analysis of culture supernatant indicates the presence of an 18-residue proteolytically cleaved species. In this study, using a transposon mutagenesis screening, we identified a cell surface protease that is involved in the processing of 21-residue CSP to generate the 18-residue CSP. We named this protease SepM for streptococcal extracellular protease required for mutacin production. We showed that the truncated 18-residue peptide is the biologically active form and that the specific postexport cleavage is a prerequisite to activate the ComDE two-component signal transduction pathway. We also showed that the CSP and the mutacins are exported outside the cell by the same ABC transporter, NlmTE. Our study further confirmed that the ComDE two-component system is absolutely necessary for mutacin production in S. mutans.
doi:10.1128/JB.01381-12
PMCID: PMC3486099  PMID: 22923597
7.  A Six-Month Prospective Study to Find Out the Treatment Outcome, Prognosis and Offending Drugs in Toxic Epidermal Necrolysis from an Urban Institution in Kolkata 
Indian Journal of Dermatology  2013;58(3):191-193.
Toxic epidermal necrolysis is the life-threatening dermatological emergency, most often an adverse cutaneous drug reaction with high mortality. A 6-month prospective study was conducted in our institution to find out the offending drugs, to assess the prognosis on admission using SCORTEN: Severity of illness score and to find out the treatment outcome. Anticonvulsants, NSAIDs and sulphonamides are the common offending agents; but in our study, 2 were due to homeopathic medicines. Out of 20 patients, on the date of admission SCORTEN prognostic score was 2 in 11 patients, 3 in 8 patients and 4 in 1 patient. Eighteen patients were treated with dexamethasone intramuscular injection and 2 patients got intravenous immunoglobulin (IVIG). All patients survived without any mortality. Though improvement was slightly faster with IVIG, early administration of corticosteroids was also of encouraging efficacy and should be considered in developing countries due to low cost. No mortality in our study suggests need to validate the SCORTEN index in our country in a large number of patients.
doi:10.4103/0019-5154.110826
PMCID: PMC3667280  PMID: 23723468
SCORTEN; treatment outcome; toxic epidermal necrolysis
8.  Complete Genome Sequence of Streptococcus mutans GS-5, a Serotype c Strain 
Journal of Bacteriology  2012;194(17):4787-4788.
Streptococcus mutans, a principal causative agent of dental caries, is considered to be the most cariogenic among all oral streptococci. Of the four S. mutans serotypes (c, e, f, and k), serotype c strains predominate in the oral cavity. Here, we present the complete genome sequence of S. mutans GS-5, a serotype c strain originally isolated from human carious lesions, which is extensively used as a laboratory strain worldwide.
doi:10.1128/JB.01106-12
PMCID: PMC3415521  PMID: 22887682
9.  SMU.152 Acts as an Immunity Protein for Mutacin IV 
Journal of Bacteriology  2012;194(13):3486-3494.
Streptococcus mutans, a principal causative agent of dental caries, secretes antimicrobial peptides known as mutacins to suppress the growth of competing species to establish a successful colonization. S. mutans UA159, a sequenced strain, produces at least two major mutacins, mutacins IV and V. Mutacin IV is a two-peptide mutacin encoded by nlmAB genes, which are mapped just upstream of a putative immunity-encoding gene SMU.152. Here we explored the function of SMU.152 as an immunity protein. We observed that overexpression of SMU.152 in two sensitive host strains converted the strains to become immune to mutacin IV. To identify the residues that are important for immunity function, we sequentially deleted residues from the C-terminal region of SMU.152. We observed that deletion of as few as seven amino acids, all of which are highly charged (KRRSKNK), drastically reduced the immunity function of the protein. Furthermore, we identified two other putative immunity proteins, SMU.1909 and SMU.925, which lack the last four charged residues (SKNK) that are present in SMU.152 but contain the KRR residues. Synthetic addition of SKNK residues to either SMU.1909 or SMU.925 to reconstitute the KRRSKNK motif and expressing these constructs in sensitive cells rendered the cells resistant to mutacin IV. We also demonstrated that deletion of Man-PTS system from a sensitive strain made the cells partially resistant to mutacin IV, indicating that the Man-PTS system plays a role in mutacin IV recognition.
doi:10.1128/JB.00194-12
PMCID: PMC3434736  PMID: 22505686
10.  CovR Alleviates Transcriptional Silencing by a Nucleoid-Associated Histone-Like Protein in Streptococcus mutans 
Journal of Bacteriology  2012;194(8):2050-2061.
In Streptococcus mutans, the global response regulator CovR plays an important role in biofilm formation, stress tolerance response, and caries production. We have previously demonstrated that CovR activates a large gene cluster, which is a part of a genomic island, TnSmu2. In this article, we have further characterized CovR at the molecular level to understand the gene activation mechanism. Toward this end, we mapped the transcription start site of the operon that lies upstream of the SMU.1348 gene (PSMU.1348), the first gene of the cluster. We constructed a transcriptional reporter fusion and showed that CovR induces expression from PSMU.1348. We also demonstrated that purified CovR protects the sequence surrounding the −10 region of PSMU.1348. In an in vitro transcription assay, we showed that histone-like protein (HLP), a homologue of Escherichia coli HU protein, represses transcription from PSMU.1348. In vivo overexpression of HLP in trans also represses transcription from PSMU.1348. Addition of CovR to the HLP-repressed PSMU.1348 resulted in increased transcription from the promoter, suggesting a role for CovR in countering HLP silencing. Moreover, addition of SMU.1349, a transcriptional activator of the operon, to the in vitro assay further stimulated the transcription. Based on our in vivo and in vitro results, we propose a model for transcriptional activation of the operon.
doi:10.1128/JB.06812-11
PMCID: PMC3318465  PMID: 22343292
11.  CtsR Regulation in mcsAB-Deficient Gram-Positive Bacteria 
Journal of Bacteriology  2012;194(6):1361-1368.
CtsR is an important repressor that modulates the transcription of class III stress genes in Gram-positive bacteria. In Bacillus subtilis, a model Gram-positive organism, the DNA binding activity of CtsR is regulated by McsAB-mediated phosphorylation of the protein where phosphorylated CtsR is a substrate for degradation by the ClpCP complex. Surprisingly, the mcsAB genes are absent from many Gram-positive bacteria, including streptococci; therefore, how CtsR activity is modulated in those bacteria remains unknown. Here we show that the posttranslational modulation of CtsR activity is different in Streptococcus mutans, a dental pathogen. We observed that of all of the Clp-related proteins, only ClpL is involved in the degradation of CtsR. Neither ClpP nor ClpC had any effect on the degradation of CtsR. We also found that phosphorylation of CtsR on a conserved arginine residue within the winged helix-turn-helix domain is necessary for modulation of the repressor activity of CtsR, as demonstrated by both in vitro and in vivo assays. We speculate that CtsR is regulated posttranslationally by a different mechanism in S. mutans and possibly in other streptococci.
doi:10.1128/JB.06746-11
PMCID: PMC3294867  PMID: 22247503
12.  Regulation of Transcription by SMU.1349, a TetR Family Regulator, in Streptococcus mutans▿† 
Journal of Bacteriology  2011;193(23):6605-6613.
The TetR family of transcriptional regulators is ubiquitous in bacteria, where it plays an important role in bacterial gene expression. Streptococcus mutans, a Gram-positive pathogen considered to be the primary etiological agent in the formation of dental caries, encodes at least 18 TetR regulators. Here we characterized one such TetR regulator, SMU.1349, encoded by the TnSmu2 operon, which appeared to be acquired by the organism via horizontal gene transfer. SMU.1349 is transcribed divergently from the rest of the genes encoded by the operon. By the use of a transcriptional reporter system and semiquantitative reverse transcription-PCR (RT-PCR), we demonstrated that SMU.1349 activates the transcription of several genes that are encoded within the TnSmu2 operon. Gel mobility shift and DNase I footprinting assays with purified SMU.1349 protein demonstrated binding to the intergenic region between SMU.1349 and the TnSmu2 operon; therefore, SMU.1349 is directly involved in gene transcription. Using purified S. mutans RpoD and Escherichia coli RNA polymerase, we also demonstrated in an in vitro transcription assay that SMU.1349 could activate transcription from the TnSmu2 operon promoter. Furthermore, we showed that SMU.1349 could also repress transcription from its own promoter by binding to the intergenic region, suggesting that SMU.1349 acts as both an activator and a repressor. Thus, unlike most of the TetR family proteins, which generally function as transcriptional repressors, SMU.1349 is unique in that it can function as both.
doi:10.1128/JB.06122-11
PMCID: PMC3232899  PMID: 21965566
14.  Role of VltAB, an ABC Transporter Complex, in Viologen Tolerance in Streptococcus mutans▿ †  
Streptococcus mutans, a Gram-positive organism, is the primary causative agent in the formation of dental caries in humans. To persist in the oral cavity, S. mutans must be able to tolerate rapid environmental fluctuations and exposure to various toxic chemicals. However, the mechanisms underlying the ability of this cariogenic pathogen to survive and proliferate under harsh environmental conditions remain largely unknown. Here, we wanted to understand the mechanisms by which S. mutans withstands exposure to methyl viologen (MV), a quaternary ammonium compound (QAC) that generates superoxide radicals in the cell. To elucidate the essential genes for MV tolerance, screening of ∼3,500 mutants generated by ISS1 mutagenesis, revealed 15 MV-sensitive mutants. Among them, five and four independent insertions had occurred in SMU.905 and SMU.906 genes, respectively. These two genes are appeared to be organized in an operon and encode a putative ABC transporter complex; we designated the genes as vltA and vltB, for viologen transporter. To verify our results, vltA was deleted by using an antibiotic resistance marker; the mutant was just as sensitive to MV as the ISS1 insertion mutants. Furthermore, vltA and vltB mutants were also sensitive to other viologen compounds such as benzyl and ethyl viologens. Complementation assays were also carried out to confirm the role of VltA and VltB in viologen tolerance. Sensitivity to various drugs, including a wide range of QACs, was evaluated. It appears that a functional VltA is also required for full resistance toward acriflavin, ethidium bromide, and safranin; all are well-known QACs. These results indicate that VltA/B constitute a heterodimeric multidrug efflux pump of the ABC family. BLAST-P analysis suggests that homologs of VltA/B are widely present in streptococci, enterococci, and other important Gram-positive pathogens.
doi:10.1128/AAC.01094-10
PMCID: PMC3067168  PMID: 21282456
15.  Mutacins from Streptococcus mutans UA159 Are Active against Multiple Streptococcal Species ▿  
Streptococcus mutans UA159, whose genome is completely sequenced, produces two nonlantibiotic mutacins, mutacin IV (encoded by nlmAB) and mutacin V (encoded by nlmC). In this study, we investigated the contribution of nlmA and nlmB to mutacin IV activity and demonstrated by performing genetic studies as well as by using semipurified molecules that, in contrast to a previous report, both of these genes are required for optimum mutacin IV activity. We also showed that mutacin IV is active against multiple Streptococcus species. In contrast, mutacin V displayed a narrower inhibitory range than mutacin IV. Our results suggest that mutacin IV and mutacin V may act synergistically to inhibit various organisms.
doi:10.1128/AEM.02320-10
PMCID: PMC3067413  PMID: 21296932
16.  A comparative study of efficacy and safety of arformoterol and salbutamol nebulization as rescue therapy in acute non-severe asthma 
Indian Journal of Pharmacology  2011;43(4):463-465.
Arformoterol, a long-acting beta-2 agonist, has a rapid onset and long duration of action. Its role as rescue medication in acute asthma attack is undetermined. To compare the efficacy and tolerability of arformoterol with salbutamol nebulization, a study was conducted among 50 patients with acute non-severe asthma. Patients were randomly assigned to group 1 (n = 25) and group 2 (n = 25) who received three doses of salbutamol and arformoterol nebulization, respectively, at 20-min intervals. The peak expiratory flow rate (PEFR) was measured at the baseline and 5 min after each dose. The demographics and baseline characteristics were comparable between the two groups. The mean PEFR significantly increased in both these groups when compared with the baseline. The increases in the PEFR in two groups were similar after the third dose. The adverse effects in both these groups were minor. Arformoterol was as effective and safe as salbutamol in acute non-severe asthma.
doi:10.4103/0253-7613.83123
PMCID: PMC3153715  PMID: 21845007
Acute asthma; arformoterol; bronchodilator; relief medication; salbutamol
17.  CovR-Controlled Global Regulation of Gene Expression in Streptococcus mutans 
PLoS ONE  2011;6(5):e20127.
CovR/S is a two-component signal transduction system (TCS) that controls the expression of various virulence related genes in many streptococci. However, in the dental pathogen Streptococcus mutans, the response regulator CovR appears to be an orphan since the cognate sensor kinase CovS is absent. In this study, we explored the global transcriptional regulation by CovR in S. mutans. Comparison of the transcriptome profiles of the wild-type strain UA159 with its isogenic covR deleted strain IBS10 indicated that at least 128 genes (∼6.5% of the genome) were differentially regulated. Among these genes, 69 were down regulated, while 59 were up regulated in the IBS10 strain. The S. mutans CovR regulon included competence genes, virulence related genes, and genes encoded within two genomic islands (GI). Genes encoded by the GI TnSmu2 were found to be dramatically reduced in IBS10, while genes encoded by the GI TnSmu1 were up regulated in the mutant. The microarray data were further confirmed by real-time RT-PCR analyses. Furthermore, direct regulation of some of the differentially expressed genes was demonstrated by electrophoretic mobility shift assays using purified CovR protein. A proteomic study was also carried out that showed a general perturbation of protein expression in the mutant strain. Our results indicate that CovR truly plays a significant role in the regulation of several virulence related traits in this pathogenic streptococcus.
doi:10.1371/journal.pone.0020127
PMCID: PMC3105014  PMID: 21655290
18.  A Self-deleting Cre-lox-ermAM Cassette, CHESHIRE, for marker-less gene deletion in Streptococcus pneumoniae 
Although targeted mutagenesis of Streptococcus pneumoniae is readily accomplished with the aid of natural genetic transformation and chimeric donor DNA constructs assembled in vitro, the drug resistance markers often employed for selection of recombinant products can themselves be undesirable by-products of the genetic manipulation. A new cassette carrying the erythromycin-resistance marker ermAM is described that can be used as a temporary marker for selection of desired recombinants. The cassette may subsequently be removed at will by virtue of an embedded fucose-regulated Cre recombinase gene and terminal lox66 and lox71 Cre recognition sites, with retention of 34 bp from the cassette as an inert residual double-mutant lox72 site.
doi:10.1016/j.mimet.2009.10.007
PMCID: PMC2814315  PMID: 19850089
19.  Activation of the SMU.1882 Transcription by CovR in Streptococcus mutans 
PLoS ONE  2010;5(11):e15528.
In Streptococcus mutans, the global response regulator CovR plays an important role in biofilm formation, stress-tolerance response, and caries production. We have previously shown that CovR acts as a transcriptional repressor by binding to the upstream promoter regions of its target genes. Here, we report that in vivo, CovR activates the transcription of SMU.1882, which encodes a small peptide containing a double-glycine motif. We also show that SMU.1882 is transcriptionally linked to comA that encodes a putative ABC transporter protein. Several genes from man gene clusters that encode mannose phosphotranferase system flank SMU.1882 -comA genes. Genomic comparison with other streptococci indicates that SMU.1882 is uniquely present in S. mutans, while the man operon is conserved among all streptococci, suggesting that a genetic rearrangement might have taken place at this locus. With the use of a transcriptional reporter system and semi-quantitative RT-PCR, we demonstrated the transcriptional regulation of SMU.1882 by CovR. In vitro gel shift and DNase I foot-printing analyses with purified CovR suggest that CovR binds to a large region surrounding the -10 region of the P1882. Using this information and comparing with other CovR regulated promoters, we have developed a putative consensus binding sequence for CovR. Although CovR binds to P1882, in vitro experiments using purified S. mutans RpoD, E. coli RNA polymerase, and CovR did not activate transcription from this promoter. Thus, we speculate that in vivo, CovR may interfere with the binding of a repressor or requires a cofactor.
doi:10.1371/journal.pone.0015528
PMCID: PMC2989922  PMID: 21124877
20.  ClpP of Streptococcus mutans Differentially Regulates Expression of Genomic Islands, Mutacin Production, and Antibiotic Tolerance▿ †  
Journal of Bacteriology  2009;192(5):1312-1323.
Streptococcus mutans is the primary etiological agent of human dental caries and, at times, of infective endocarditis. Within the oral cavity, the pathogen is subjected to conditions of stress. A well-conserved protein complex named ClpP (caseinolytic protease) plays a vital role in adaptation under stress conditions. To gain a better understanding of the global role of the ClpP protease in cellular homeostasis, a transcriptome analysis was performed using a ΔclpP mutant strain. The expression levels of more than 100 genes were up- or downregulated in the ΔclpP mutant compared to the wild type. Notably, the expression of genes in several genomic islands, such as TnSmu1 and TnSmu2, was differentially modulated in the ΔclpP mutant strain. ClpP deficiency also increased the expression of genes associated with a putative CRISPR locus. Furthermore, several stress-related genes and genes encoding bacteriocin-related peptides and many transcription factors were also found to be altered in the ΔclpP mutant strain. A comparative analysis of the two-dimensional protein profile of the wild type and the ΔclpP mutant strains showed altered protein profiles. Comparison of the transcriptome data with the proteomic data identified four common gene products, suggesting that the observed altered protein expression of these genes could be due to altered transcription. The results presented here indicate that ClpP-mediated proteolysis plays an important global role in the regulation of several important traits in this pathogen.
doi:10.1128/JB.01350-09
PMCID: PMC2820848  PMID: 20038588
21.  Studies on comparison of the efficacy of terbinafine 1% cream and butenafine 1% cream for the treatment of Tinea cruris 
Background:
In this study, 76 male patients aged between 18 and 61 years affected with Tinea cruris attending the outpatient department of NRS Medical College during a 1-year period were selected.
Materials and Methods:
The patients were divided into two groups as Regimen I (n 37) and Regimen II (n 39) who were treated with Terbinafine (gr I) cream and Butenafine (gr II) cream, respectively.
Results:
The predominant pathogen was found to be Trichophyton rubrum in 99% of cases. Mycological cure, overall cure and effective treatment were evaluated on 7, 14 and 42 days.
Conclusions:
From the study, it was found that Butenafine produced the quickest result and primary efficacy end points were much higher with Butenafine cream than that of Terbinafine cream and this difference was statistically significant (P < 0.01).
doi:10.4103/2229-5178.73249
PMCID: PMC3481417  PMID: 23130183
Tinea cruris; butenafine cream; terbinafine cream
22.  A Phenotypic microarray analysis of Streptococcus mutans liaS mutant 
Microbiology (Reading, England)  2009;155(Pt 1):61.
Streptococcus mutans, a bioflim-forming gram-positive bacterium that resides in the human oral cavity, is considered to be the primary etiological agent of human dental caries. A cell-envelope stress sensing histidine kinase, LiaS, is considered to be important for expression of virulence factors such as glucan-binding protein C and mutacin production. In this communication, a liaS mutant was subjected to phenotypic microarray (PM) analysis of about 2000 phenotypes that includes utilization of various carbon, nitrogen, phosphate, and sulfur sources; osmolytes; metabolic inhibitors; and susceptibility to toxic compounds, including several types of antibiotics. Compared to the parental strain UA159, the liaS mutant strain (IBS148) was more tolerant to various inhibitors that target protein synthesis, DNA synthesis, and cell-wall biosynthesis. Some of the key findings of the PM analysis were confirmed in independent growth studies and by using antibiotic discs and E-test strips for susceptibility testing.
doi:10.1099/mic.0.023077-0
PMCID: PMC2814309  PMID: 19118347
23.  3′-Phosphoadenosine-5′-Phosphate Phosphatase Activity Is Required for Superoxide Stress Tolerance in Streptococcus mutans▿  
Journal of Bacteriology  2009;191(13):4330-4340.
Aerobic microorganisms have evolved different strategies to withstand environmental oxidative stresses generated by various reactive oxygen species (ROS). For the facultative anaerobic human oral pathogen Streptococcus mutans, the mechanisms used to protect against ROS are not fully understood, since it does not possess catalase, an enzyme that degrades hydrogen peroxide. In order to elucidate the genes that are essential for superoxide stress response, methyl viologen (MV)-sensitive mutants of S. mutans were generated via ISS1 mutagenesis. Screening of approximately 2,500 mutants revealed six MV-sensitive mutants, each containing an insertion in one of five genes, including a highly conserved hypothetical gene, SMU.1297. Sequence analysis suggests that SMU.1297 encodes a hypothetical protein with a high degree of homology to the Bacillus subtilis YtqI protein, which possesses an oligoribonuclease activity that cleaves nano-RNAs and a phosphatase activity that degrades 3′-phosphoadenosine-5′-phosphate (pAp) and 3′-phosphoadenosine-5′-phosphosulfate (pApS) to produce AMP; the latter activity is similar to the activity of the Escherichia coli CysQ protein, which is required for sulfur assimilation. SMU.1297 was deleted using a markerless Cre-loxP-based strategy; the SMU.1297 deletion mutant was just as sensitive to MV as the ISS1 insertion mutant. Complementation of the deletion mutant with wild-type SMU.1297, in trans, restored the parental phenotype. Biochemical analyses with purified SMU.1297 protein demonstrated that it has pAp phosphatase activity similar to that of YtqI but apparently lacks an oligoribonuclease activity. The ability of SMU.1297 to dephosphorylate pApS in vivo was confirmed by complementation of an E. coli cysQ mutant with SMU.1297 in trans. Thus, our results suggest that SMU.1297 is involved in superoxide stress tolerance in S. mutans. Furthermore, the distribution of homologs of SMU.1297 in streptococci indicates that this protein is essential for superoxide stress tolerance in these organisms.
doi:10.1128/JB.00184-09
PMCID: PMC2698468  PMID: 19429620
24.  Transcription of clpP Is Enhanced by a Unique Tandem Repeat Sequence in Streptococcus mutans▿  
Journal of Bacteriology  2008;191(3):1056-1065.
Streptococcus mutans, the primary causative agent of human dental caries, contains a single copy of the gene encoding ClpP, the chief intracellular protease responsible for tolerance to various environmental stresses. To better understand the role of ClpP in stress response, we investigated the regulation of clpP expression in S. mutans. Using semiquantitative reverse transcription-PCR analysis, we observed that, under nonstressed conditions, clpP expression is somewhat constant throughout the growth phases, although it gradually decreases as cells enter the late stationary phase. The half-life of the clpP transcript was found to be less than 1 minute. Sequence analysis of the clpP locus reveals the presence of a 50-bp tandem repeat sequence located immediately upstream of the clpP promoter (PclpP). PCR and DNA sequence analyses suggest that the number of tandem repeat units can vary from as few as two to as many as nine, depending on the particular S. mutans isolate. Further analysis, using a transcriptional reporter fusion consisting of PclpP fused to a promoterless gusA gene, indicates that the presence of the repeat sequence region within PclpP results in an approximately fivefold increase in expression from PclpP compared to the repeat-free transcriptional reporter fusion. CtsR, a transcriptional repressor that negatively regulates clpP expression, has no effect on this repeat-mediated induction of clpP transcription. Furthermore, the repeat sequence is not necessary for the induction of clpP under stress conditions. Database searches indicate that the region containing the tandem repeats is absent in the clpP loci in other bacteria, including other closely related Streptococcus spp., suggesting that the repeat sequences are specific for the induction of clpP expression in S. mutans. We speculate that a host-specific transcriptional activator might be involved in the upregulation of clpP expression in S. mutans.
doi:10.1128/JB.01436-08
PMCID: PMC2632101  PMID: 19047352
25.  Modulation of covR Expression in Streptococcus mutans UA159 ▿  
Journal of Bacteriology  2008;190(13):4478-4488.
The biofilm-forming Streptococcus mutans is a gram-positive bacterium that resides in the human oral cavity and is considered to be the primary etiological agent in the formation of dental caries. The global response regulator CovR, which lacks a cognate sensor kinase, is essential for the pathogenesis and biofilm formation of this bacterium, but it is not clear how covR expression is regulated in S. mutans. In this communication, we present the results of our studies examining various factors that regulate the expression of covR in S. mutans UA159. The results of Southern hybridization and PCR analysis indicated that CovR is an orphan response regulator in various isolates of S. mutans. The transcriptional start site for covR was found to be 221 base pairs upstream of the ATG start codon, and site-directed mutagenesis of the upstream TATAAT box confirmed our findings. The expression of covR is growth phase dependent, with maximal expression observed during exponential-growth phase. While changes to the growth temperature did not significantly affect the expression of covR, increasing the pH or the concentration of Mg2+ in the growth medium leads to an increase in covR expression. The results of semiquantitative reverse transcriptase PCR analysis and in vivo transcriptional-fusion reporter assays indicated that CovR autoregulates its own expression; this was verified by the results of electrophoretic mobility shift assays and DNase I protection assays, which demonstrated direct binding of CovR to the promoter region. Apparently, regulation by Mg2+ and the autoregulation of covR are not linked. A detailed analysis of the regulation of CovR may lead to a better understanding of the pathogenesis of S. mutans, as well as providing further insight into the prevention of dental caries.
doi:10.1128/JB.01961-07
PMCID: PMC2446802  PMID: 18469111

Results 1-25 (35)