Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
author:("Ahn, Sug-john")
1.  Changes in Biochemical and Phenotypic Properties of Streptococcus mutans during Growth with Aeration▿ † 
Oxygen has a potent influence on the expression of genes and the activity of physiological and biochemical pathways in bacteria. We have found that oxygen significantly altered virulence-related phenotypic properties of Streptococcus mutans, the primary etiological agent of human dental caries. Transport of glucose, fructose, or mannose by the sugar:phosphotransferase system was significantly enhanced by growth under aerobic conditions, whereas aeration caused an extended lag phase and slower growth of S. mutans in medium containing glucose, fructose, or mannose as the carbohydrate source. Aeration resulted in a decrease in the glycolytic rate and enhanced the production of intracellular storage polysaccharides. Although aeration decreased the acid tolerance of S. mutans, aerobically grown cells had higher F-ATPase activity. Aeration altered biofilm architecture but did not change the ability of S. mutans to interact with salivary agglutinin. Growth in air resulted in enhanced cell-associated glucosyltransferase (Gtf) activity at the expense of cell-free Gtf activity. These results demonstrate that S. mutans can dramatically alter its pathogenic potential in response to exposure to oxygen, suggesting that the phenotype of the organism may be highly variable in the human oral cavity depending on the maturity of the dental plaque biofilm.
PMCID: PMC2675223  PMID: 19251884
2.  Characteristics of Biofilm Formation by Streptococcus mutans in the Presence of Saliva▿  
Infection and Immunity  2008;76(9):4259-4268.
Interactions between salivary agglutinin and the adhesin P1 of Streptococcus mutans contribute to bacterial aggregation and mediate sucrose-independent adherence to tooth surfaces. We have examined biofilm formation by S. mutans UA159, and derivative strains carrying mutations affecting the localization or expression of P1, in the presence of fluid-phase or adsorbed saliva or salivary agglutinin preparations. Whole saliva- and salivary agglutinin-induced aggregation of S. mutans was adversely affected by the loss of P1 and sortase (SrtA) but not by the loss of trigger factor (RopA). Fluid-phase salivary agglutinin and, to a lesser extent, immobilized agglutinin inhibited biofilm development by S. mutans in the absence of sucrose, and whole saliva was more effective at decreasing biofilm formation than salivary agglutinin. Inhibition of biofilm development by salivary agglutinin was differently influenced by particular mutations, with the P1-deficient strain displaying a greater inhibition of biofilm development than the SrtA- or RopA-deficient strains. As expected, biofilm-forming capacities of all strains in the presence of salivary preparations were markedly enhanced in the presence of sucrose, although biofilm formation by the mutants was less efficient than that by the parental strain. Aeration strongly inhibited biofilm development, and the presence of salivary components did not restore biofilm formation in aerated conditions. The results disclose a potent ability of salivary constituents to moderate biofilm formation by S. mutans through P1-dependent and P1-independent pathways.
PMCID: PMC2519434  PMID: 18625741

Results 1-2 (2)