Search tips
Search criteria

Results 1-6 (6)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
author:("Xu, jingning")
1.  Inducible costimulatory molecule deficiency induced imbalance of Treg and Th17/Th2 delays rejection reaction in mice undergoing allogeneic tracheal transplantation 
Objective: This study aimed to investigate the role of inducible costimulatory molecule (ICOS) pathway in the rejection reaction of mice undergoing allogeneic tracheal transplantation. Methods: The bronchus was separated from wide-type (WT) BalB/c mice and transplanted into WT BalB/c mice, C57 mice and icos-/- mice to prepare the obliterative bronchiolitis (OB) animal model. The transplanted bronchus was pathologically examined; flow cytometry was done to detect the T cell subsets and activity of the bronchus and spleen of recipient mice. Results: 21 d after transplantation, evident rejection reaction was observed and the proportion of Th2 and Th17 cells increased significantly in the bronchus and spleen in C57 mice receiving allogeneic tracheal transplantation when compared with mice with autologous transplantation, but the proportion of Treg cells was comparable between them. When compared with WT BalB/c mice, the proportion of Th2, Th17 and Treg cells reduced markedly and rejection reaction was attenuated in icos-/- mice receiving tracheal transplantation, although rejection reaction was still noted. Conclusion: icos knockout may delay the rejection reaction after tracheal transplantation, which might be ascribed to the imbalance among Th2, Th17 and Treg cells.
PMCID: PMC4297345  PMID: 25628788
Lung transplantation; inducible costimulatory molecule; chronic rejection; bronchiolitis obliterans; Th2; Th17
2.  Bidirectional Regulation of Neutrophil Migration by MAP Kinases 
Nature immunology  2012;13(5):457-464.
To kill invading bacteria, neutrophils must interpret spatial cues, migrate, and reach target sites. Although initiation of chemotactic migration has been extensively studied, little is known about its termination. Here we report that two mitogen-activated protein kinases played opposing roles in neutrophil trafficking. The extracellular signal-regulated kinase (Erk) potentiated G protein-coupled receptor kinase GRK2 activity and inhibited neutrophil migration, whereas p38 MAPK acted as a non-canonical GRK that phosphorylated the formyl peptide receptor FPR1 and facilitated neutrophil migration by blocking GRK2 function. Therefore, the dynamic balance between Erk and p38 MAPK controls neutrophil “stop” and “go” behaviors, ensuring neutrophils precisely reach their final destination as the first line of host-defense.
PMCID: PMC3330201  PMID: 22447027
3.  Association of corticotropin releasing hormone receptor 2 (CRHR2) genetic variants with acute bronchodilator response in asthma 
Pharmacogenetics and genomics  2008;18(5):373-382.
Corticotropin - releasing hormone receptor 2 (CRHR2) participates in smooth muscle relaxation response and may influence acute airway bronchodilator response to short – acting β2 agonist treatment of asthma. We aim to assess associations between genetic variants of CRHR2 and acute bronchodilator response in asthma.
We investigated 28 single nucleotide polymorphisms in CRHR2 for associations with acute bronchodilator response to albuterol in 607 Caucasian asthmatic subjects recruited as part of the Childhood Asthma Management Program (CAMP). Replication was conducted in two Caucasian adult asthma cohorts – a cohort of 427 subjects enrolled in a completed clinical trial conducted by Sepracor Inc. (MA, USA) and a cohort of 152 subjects enrolled in the Clinical Trial of Low-Dose Theopylline and Montelukast (LODO) conducted by the American Lung Association Asthma Clinical Research Centers.
Five variants were significantly associated with acute bronchodilator response in at least one cohort (p-value ≤ 0.05). Variant rs7793837 was associated in CAMP and LODO (p-value = 0.05 and 0.03, respectively) and haplotype blocks residing at the 5’ end of CRHR2 were associated with response in all three cohorts.
We report for the first time, at the gene level, replicated associations between CRHR2 and acute bronchodilator response. While no single variant was significantly associated in all three cohorts, the findings that variants at the 5’ end of CRHR2 are associated in each of three cohorts strongly suggest that the causative variants reside in this region and its genetic effect, although present, is likely to be weak.
PMCID: PMC3208318  PMID: 18408560
Asthma; genetics; corticotrophin releasing hormone receptor 2; CRHR2; bronchodilator response; polymorphism; β2 adrenergic receptor agonist
4.  Nonmuscle myosin light-chain kinase mediates neutrophil transmigration in sepsis-induced lung inflammation by activating β2 integrins 
Nature immunology  2008;9(8):880-886.
Nonmuscle myosin light-chain kinase (MYLK) mediates increased lung vascular endothelial permeability in lipopolysaccharideinduced lung inflammatory injury, the chief cause of the acute respiratory distress syndrome. In a lung injury model, we demonstrate here that MYLK was also essential for neutrophil transmigration, but that this function was mostly independent of myosin II regulatory light chain, the only known substrate of MYLK. Instead, MYLK in neutrophils was required for the recruitment and activation of the tyrosine kinase Pyk2, which mediated full activation of β2 integrins. Our results demonstrate that MYLK-mediated activation of β2 integrins through Pyk2 links β2 integrin signaling to the actin motile machinery of neutrophils.
PMCID: PMC2553242  PMID: 18587400
5.  Proteolytic exposure of a cryptic site within collagen type IV is required for angiogenesis and tumor growth in vivo 
The Journal of Cell Biology  2001;154(5):1069-1080.
Evidence is provided that proteolytic cleavage of collagen type IV results in the exposure of a functionally important cryptic site hidden within its triple helical structure. Exposure of this cryptic site was associated with angiogenic, but not quiescent, blood vessels and was required for angiogenesis in vivo. Exposure of the HUIV26 epitope was associated with a loss of α1β1 integrin binding and the gain of αvβ3 binding. A monoclonal antibody (HUIV26) directed to this site disrupts integrin-dependent endothelial cell interactions and potently inhibits angiogenesis and tumor growth. Together, these studies suggest a novel mechanism by which proteolysis contributes to angiogenesis by exposing hidden regulatory elements within matrix-immobilized collagen type IV.
PMCID: PMC2196184  PMID: 11535623
angiogenesis; ECM; cryptic sites; tumor; migration
6.  Identification of the Cytoplasmic Regions of Fibroblast Growth Factor (FGF) Receptor 1 Which Play Important Roles in Induction of Neurite Outgrowth in PC12 Cells by FGF-1 
Molecular and Cellular Biology  1998;18(7):3762-3770.
Fibroblast growth factor 1 (FGF-1) induces neurite outgrowth in PC12 cells. Recently, we have shown that the FGF receptor 1 (FGFR-1) is much more potent than FGFR-3 in induction of neurite outgrowth. To identify the cytoplasmic regions of FGFR-1 that are responsible for the induction of neurite outgrowth in PC12 cells, we took advantage of this difference and prepared receptor chimeras containing different regions of the FGFR-1 introduced into the FGFR-3 protein. The chimeric receptors were introduced into FGF-nonresponsive variant PC12 cells (fnr-PC12 cells), and their ability to mediate FGF-stimulated neurite outgrowth of the cells was assessed. The juxtamembrane (JM) and carboxy-terminal (COOH) regions of FGFR-1 were identified as conferring robust and moderate abilities, respectively, for induction of neurite outgrowth to FGFR-3. Analysis of FGF-stimulated activation of signal transduction revealed that the JM region of FGFR-1 conferred strong and sustained tyrosine phosphorylation of several cellular proteins and activation of MAP kinase. The SNT/FRS2 protein was demonstrated to be one of the cellular substrates preferentially phosphorylated by chimeras containing the JM domain of FGFR-1. SNT/FRS2 links FGF signaling to the MAP kinase pathway. Thus, the ability of FGFR-1 JM domain chimeras to induce strong sustained phosphorylation of this protein would explain the ability of these chimeras to activate MAP kinase and hence neurite outgrowth. The role of the COOH region of FGFR-1 in induction of neurite outgrowth involved the tyrosine residue at amino acid position 764, a site required for phospholipase C gamma binding and activation, whereas the JM region functioned primarily through a non-phosphotyrosine-dependent mechanism. In contrast, assessment of the chimeras in the pre-B lymphoid cell line BaF3 for FGF-1-induced mitogenesis revealed that the JM region did not play a role in this cell type. These data indicate that FGFR signaling can be regulated at the level of intracellular interactions and that signaling pathways for neurite outgrowth and mitogenesis use different regions of the FGFR.
PMCID: PMC108959  PMID: 9632759

Results 1-6 (6)