PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (27)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
Document Types
1.  Predicting Inhaled Corticosteroid Response in Asthma with Two Associated SNPs 
The pharmacogenomics journal  2012;13(4):306-311.
Inhaled corticosteroids are the most commonly used controller medications prescribed for asthma. Two single-nucleotide polymorphisms (SNPs), rs1876828 in CRHR1 and rs37973 in GLCCI1, have previously been associated with corticosteroid efficacy. We studied data from four existing clinical trials of asthmatics who received inhaled corticosteroids and had lung function measured by forced expiratory volume in one second (FEV1) before and after the period of such treatment. We combined the two SNPs rs37973 and rs1876828 into a predictive test of FEV1 change using a Bayesian model, which identified patients with good or poor steroid response (highest or lowest quartile, respectively) with predictive performance of 65.7% (p = 0.039 vs. random) area under the receiver-operator characteristic curve in the training population and 65.9% (p = 0.025 vs. random) in the test population. These findings show that two genetic variants can be combined into a predictive test that achieves similar accuracy and superior replicability compared with single SNP predictors.
doi:10.1038/tpj.2012.15
PMCID: PMC3434304  PMID: 22641026
Pharmacogenetics; Asthma; Glucocorticoids; Predictive Modeling
2.  Genome-wide Association Identifies the T Gene as a Novel Asthma Pharmacogenetic Locus 
Rationale: To date, most studies aimed at discovering genetic factors influencing treatment response in asthma have focused on biologic candidate genes. Genome-wide association studies (GWAS) can rapidly identify novel pharmacogenetic loci.
Objectives: To investigate if GWAS can identify novel pharmacogenetic loci in asthma.
Methods: Using phenotypic and GWAS genotype data available through the NHLBI-funded Single-nucleotide polymorphism Health association-Asthma Resource Project, we analyzed differences in FEV1 in response to inhaled corticosteroids in 418 white subjects with asthma. Of the 444,088 single nucleotide polymorphisms (SNPs) analyzed, the lowest 50 SNPs by P value were genotyped in an independent clinical trial population of 407 subjects with asthma.
Measurements and Main Results: The lowest P value for the GWAS analysis was 2.09 × 10−6. Of the 47 SNPs successfully genotyped in the replication population, three were associated under the same genetic model in the same direction, including two of the top four SNPs ranked by P value. Combined P values for these SNPs were 1.06 × 10−5 for rs3127412 and 6.13 × 10−6 for rs6456042. Although these two were not located within a gene, they were tightly correlated with three variants mapping to potentially functional regions within the T gene. After genotyping, each T gene variant was also associated with lung function response to inhaled corticosteroids in each of the trials associated with rs3127412 and rs6456042 in the initial GWAS analysis. On average, there was a twofold to threefold difference in FEV1 response for those subjects homozygous for the wild-type versus mutant alleles for each T gene SNP.
Conclusions: Genome-wide association has identified the T gene as a novel pharmacogenetic locus for inhaled corticosteroid response in asthma.
doi:10.1164/rccm.201111-2061OC
PMCID: PMC3381232  PMID: 22538805
polymorphism; genome; pharmacogenomics; glucocorticoid
3.  RNA-Seq Transcriptome Profiling Identifies CRISPLD2 as a Glucocorticoid Responsive Gene that Modulates Cytokine Function in Airway Smooth Muscle Cells 
PLoS ONE  2014;9(6):e99625.
Asthma is a chronic inflammatory respiratory disease that affects over 300 million people worldwide. Glucocorticoids are a mainstay therapy for asthma because they exert anti-inflammatory effects in multiple lung tissues, including the airway smooth muscle (ASM). However, the mechanism by which glucocorticoids suppress inflammation in ASM remains poorly understood. Using RNA-Seq, a high-throughput sequencing method, we characterized transcriptomic changes in four primary human ASM cell lines that were treated with dexamethasone—a potent synthetic glucocorticoid (1 µM for 18 hours). Based on a Benjamini-Hochberg corrected p-value <0.05, we identified 316 differentially expressed genes, including both well known (DUSP1, KLF15, PER1, TSC22D3) and less investigated (C7, CCDC69, CRISPLD2) glucocorticoid-responsive genes. CRISPLD2, which encodes a secreted protein previously implicated in lung development and endotoxin regulation, was found to have SNPs that were moderately associated with inhaled corticosteroid resistance and bronchodilator response among asthma patients in two previously conducted genome-wide association studies. Quantitative RT-PCR and Western blotting showed that dexamethasone treatment significantly increased CRISPLD2 mRNA and protein expression in ASM cells. CRISPLD2 expression was also induced by the inflammatory cytokine IL1β, and small interfering RNA-mediated knockdown of CRISPLD2 further increased IL1β-induced expression of IL6 and IL8. Our findings offer a comprehensive view of the effect of a glucocorticoid on the ASM transcriptome and identify CRISPLD2 as an asthma pharmacogenetics candidate gene that regulates anti-inflammatory effects of glucocorticoids in the ASM.
doi:10.1371/journal.pone.0099625
PMCID: PMC4057123  PMID: 24926665
4.  Polygenic Heritability Estimates in Pharmacogenetics: Focus on Asthma and Related Phenotypes 
Pharmacogenetics and genomics  2013;23(6):324-328.
While accurate measures of heritability are needed to understand the pharmacogenetic basis of drug treatment response, these are generally not available, since it is unfeasible to give medications to individuals for which treatment is not indicated. Using a polygenic linear mixed modeling approach, we estimated lower-bounds on asthma heritability and the heritability of two related drug-response phenotypes, bronchodilator response and airway hyperreactivity, using genome-wide SNP data from existing asthma cohorts. Our estimate of the heritability for bronchodilator response is 28.5% (se 16%, p = 0.043) and airway hyperresponsiveness is 51.1% (se 34%, p = 0.064), while we estimate asthma genetic liability at 61.5% (se 16%, p < 0.001). Our results agree with previously published estimates of the heritability of these traits, suggesting that the LMM method is useful for computing the heritability of other pharmacogenetic traits. Furthermore, our results indicate that multiple SNP main-effects, including SNPs as yet unidentified by GWAS methods, together explain a sizable portion of the heritability of these traits.
doi:10.1097/FPC.0b013e3283607acf
PMCID: PMC3767309  PMID: 23532052
Asthma; Pharmacogenetics; Heritability; Bronchodilator Response; Airway Hyperresponsiveness
5.  A polymorphism in the thyroid hormone receptor gene is associated with bronchodilator response in asthmatics 
The pharmacogenomics journal  2012;13(2):130-136.
A pro-asthmatic culture milieu and β2-agonist (isoproterenol) were previously shown to regulate the expression of select transcription factors (TFs) within human airway epithelial and smooth muscle cells. This study tests 1116 single nucleotide polymorphisms (SNPs) across 98 of these TF genes for association with bronchodilator response (BDR) in asthma patients. Genotyping was conducted using the Illumina HumanHap550v3 Beadchip in 403 non-Hispanic White asthmatic children and their parents. SNPs were evaluated for association with BDR using family and population-based analyses. Forty-two SNPs providing p values < 0.1 in both analyses were then genotyped in three adult asthma trials. One SNP 5’ of the thyroid hormone receptor beta gene was associated with BDR in the childhood population and two adult populations (p value = 0.0012). This investigation identified a novel locus for inter-individual variability in BDR and represents a translation of a cellular drug-response study to potential personalization of clinical asthma management.
doi:10.1038/tpj.2011.56
PMCID: PMC3349771  PMID: 22212731
Bronchodilator response; transcription factor; association; thyroid hormone receptor β; asthma; pharmacogenetics
6.  ITGB5 and AGFG1 variants are associated with severity of airway responsiveness 
BMC Medical Genetics  2013;14:86.
Background
Airway hyperresponsiveness (AHR), a primary characteristic of asthma, involves increased airway smooth muscle contractility in response to certain exposures. We sought to determine whether common genetic variants were associated with AHR severity.
Methods
A genome-wide association study (GWAS) of AHR, quantified as the natural log of the dosage of methacholine causing a 20% drop in FEV1, was performed with 994 non-Hispanic white asthmatic subjects from three drug clinical trials: CAMP, CARE, and ACRN. Genotyping was performed on Affymetrix 6.0 arrays, and imputed data based on HapMap Phase 2, was used to measure the association of SNPs with AHR using a linear regression model. Replication of primary findings was attempted in 650 white subjects from DAG, and 3,354 white subjects from LHS. Evidence that the top SNPs were eQTL of their respective genes was sought using expression data available for 419 white CAMP subjects.
Results
The top primary GWAS associations were in rs848788 (P-value 7.2E-07) and rs6731443 (P-value 2.5E-06), located within the ITGB5 and AGFG1 genes, respectively. The AGFG1 result replicated at a nominally significant level in one independent population (LHS P-value 0.012), and the SNP had a nominally significant unadjusted P-value (0.0067) for being an eQTL of AGFG1.
Conclusions
Based on current knowledge of ITGB5 and AGFG1, our results suggest that variants within these genes may be involved in modulating AHR. Future functional studies are required to confirm that our associations represent true biologically significant findings.
doi:10.1186/1471-2350-14-86
PMCID: PMC3765944  PMID: 23984888
Asthma; Airway hyperresponsiveness; Genome-wide association study; ITGB5; AGFG1
7.  Integrative systems biology approaches in asthma pharmacogenomics 
Pharmacogenomics  2012;13(12):1387-1404.
In order to improve therapeutic outcomes, there is a tremendous need to identify patients who are likely to respond to a given asthma treatment. Pharmacogenomic studies have explained a portion of the variability in drug response and provided an increasing list of candidate genes and SNPs. However, as phenotypic variation arises from a network of complex interactions among genetic and environmental factors, rather than individual genes or SNPs, a multidisciplinary, systems-level approach is required in order to understand the inter-relationships among these factors. Systems biology, which seeks to capture interactions between genetic factors and other variables, offers a promising approach to improved therapeutic outcomes in asthma. This aritcle will review and update progress in the pharmacogenomics of asthma and then discuss the application of systems biology approaches to asthma pharmacogenomics.
doi:10.2217/pgs.12.126
PMCID: PMC3553555  PMID: 22966888
asthma; genes; GWAS; network medicine; pharmacogenomics; SNP; systems biology
8.  Genomewide Association between GLCCI1 and Response to Glucocorticoid Therapy in Asthma 
The New England journal of medicine  2011;365(13):1173-1183.
BACKGROUND
The response to treatment for asthma is characterized by wide interindividual variability, with a significant number of patients who have no response. We hypothesized that a genomewide association study would reveal novel pharmacogenetic determinants of the response to inhaled glucocorticoids.
METHODS
We analyzed a small number of statistically powerful variants selected on the basis of a family-based screening algorithm from among 534,290 single-nucleotide polymorphisms (SNPs) to determine changes in lung function in response to inhaled glucocorticoids. A significant, replicated association was found, and we characterized its functional effects.
RESULTS
We identified a significant pharmacogenetic association at SNP rs37972, replicated in four independent populations totaling 935 persons (P = 0.0007), which maps to the glucocorticoid-induced transcript 1 gene (GLCCI1) and is in complete linkage disequilibrium (i.e., perfectly correlated) with rs37973. Both rs37972 and rs37973 are associated with decrements in GLCCI1 expression. In isolated cell systems, the rs37973 variant is associated with significantly decreased luciferase reporter activity. Pooled data from treatment trials indicate reduced lung function in response to inhaled glucocorticoids in subjects with the variant allele (P = 0.0007 for pooled data). Overall, the mean (± SE) increase in forced expiratory volume in 1 second in the treated subjects who were homozygous for the mutant rs37973 allele was only about one third of that seen in similarly treated subjects who were homozygous for the wild-type allele (3.2 ± 1.6% vs. 9.4 ± 1.1%), and their risk of a poor response was significantly higher (odds ratio, 2.36; 95% confidence interval, 1.27 to 4.41), with genotype accounting for about 6.6% of overall inhaled glucocorticoid response variability.
CONCLUSIONS
A functional GLCCI1 variant is associated with substantial decrements in the response to inhaled glucocorticoids in patients with asthma. (Funded by the National Institutes of Health and others; ClinicalTrials.gov number, NCT00000575.)
doi:10.1056/NEJMoa0911353
PMCID: PMC3667396  PMID: 21991891
9.  Integration of Mouse and Human Genome-Wide Association Data Identifies KCNIP4 as an Asthma Gene 
PLoS ONE  2013;8(2):e56179.
Asthma is a common chronic respiratory disease characterized by airway hyperresponsiveness (AHR). The genetics of asthma have been widely studied in mouse and human, and homologous genomic regions have been associated with mouse AHR and human asthma-related phenotypes. Our goal was to identify asthma-related genes by integrating AHR associations in mouse with human genome-wide association study (GWAS) data. We used Efficient Mixed Model Association (EMMA) analysis to conduct a GWAS of baseline AHR measures from males and females of 31 mouse strains. Genes near or containing SNPs with EMMA p-values <0.001 were selected for further study in human GWAS. The results of the previously reported EVE consortium asthma GWAS meta-analysis consisting of 12,958 diverse North American subjects from 9 study centers were used to select a subset of homologous genes with evidence of association with asthma in humans. Following validation attempts in three human asthma GWAS (i.e., Sepracor/LOCCS/LODO/Illumina, GABRIEL, DAG) and two human AHR GWAS (i.e., SHARP, DAG), the Kv channel interacting protein 4 (KCNIP4) gene was identified as nominally associated with both asthma and AHR at a gene- and SNP-level. In EVE, the smallest KCNIP4 association was at rs6833065 (P-value 2.9e-04), while the strongest associations for Sepracor/LOCCS/LODO/Illumina, GABRIEL, DAG were 1.5e-03, 1.0e-03, 3.1e-03 at rs7664617, rs4697177, rs4696975, respectively. At a SNP level, the strongest association across all asthma GWAS was at rs4697177 (P-value 1.1e-04). The smallest P-values for association with AHR were 2.3e-03 at rs11947661 in SHARP and 2.1e-03 at rs402802 in DAG. Functional studies are required to validate the potential involvement of KCNIP4 in modulating asthma susceptibility and/or AHR. Our results suggest that a useful approach to identify genes associated with human asthma is to leverage mouse AHR association data.
doi:10.1371/journal.pone.0056179
PMCID: PMC3572953  PMID: 23457522
10.  Genome-wide association study reveals class I MHC–restricted T cell–associated molecule gene (CRTAM) variants interact with vitamin D levels to affect asthma exacerbations 
Background
It has recently been shown that vitamin D deficiency can increase asthma development and severity and that variations in vitamin D receptor genes are associated with asthma susceptibility.
Objective
We sought to find genetic factors that might interact with vitamin D levels to affect the risk of asthma exacerbation. Methods: We conducted a genome-wide study of gene–vitamin D interaction on asthma exacerbations using population-based and family-based approaches on 403 subjects and trios from the Childhood Asthma Management Program. Twenty-three polymorphisms with significant interactions were studied in a replication analysis in 584 children from a Costa Rican cohort. Results: We identified 3 common variants in the class I MHC–restricted T cell–associated molecule gene (CRTAM) that were associated with an increased rate of asthma exacerbations based on the presence of a low circulating vitamin D level. These results were replicated in a second independent population (unadjusted combined interaction, P =.00028–.00097; combined odds ratio, 3.28–5.38). One variant, rs2272094, is a nonsynonymous coding polymorphism of CRTAM. Functional studies on cell lines confirmed the interaction of vitamin D and rs2272094 on CRTAM expression. CRTAM is highly expressed in activated human CD8+ and natural killer T cells, both of which have been implicated in asthmatic patients.
Conclusion
The findings highlight an important gene-environment interaction that elucidates the role of vitamin D and CD8+ and natural killer T cells in asthma exacerbation in a genome-wide gene-environment interaction study that has been replicated in an independent population. The results suggest the potential importance of maintaining adequate vitamin D levels in subsets of high-risk asthmatic patients.
doi:10.1016/j.jaci.2011.09.034
PMCID: PMC3360942  PMID: 22051697
Gene-environment interaction; genome-wide association study; vitamin D; asthma exacerbation
11.  Genome-Wide Association Analysis in Asthma Subjects Identifies SPATS2L as a Novel Bronchodilator Response Gene 
PLoS Genetics  2012;8(7):e1002824.
Bronchodilator response (BDR) is an important asthma phenotype that measures reversibility of airway obstruction by comparing lung function (i.e. FEV1) before and after the administration of a short-acting β2-agonist, the most common rescue medications used for the treatment of asthma. BDR also serves as a test of β2-agonist efficacy. BDR is a complex trait that is partly under genetic control. A genome-wide association study (GWAS) of BDR, quantified as percent change in baseline FEV1 after administration of a β2-agonist, was performed with 1,644 non-Hispanic white asthmatic subjects from six drug clinical trials: CAMP, LOCCS, LODO, a medication trial conducted by Sepracor, CARE, and ACRN. Data for 469,884 single-nucleotide polymorphisms (SNPs) were used to measure the association of SNPs with BDR using a linear regression model, while adjusting for age, sex, and height. Replication of primary P-values was attempted in 501 white subjects from SARP and 550 white subjects from DAG. Experimental evidence supporting the top gene was obtained via siRNA knockdown and Western blotting analyses. The lowest overall combined P-value was 9.7E-07 for SNP rs295137, near the SPATS2L gene. Among subjects in the primary analysis, those with rs295137 TT genotype had a median BDR of 16.0 (IQR = [6.2, 32.4]), while those with CC or TC genotypes had a median BDR of 10.9 (IQR = [5.0, 22.2]). SPATS2L mRNA knockdown resulted in increased β2-adrenergic receptor levels. Our results suggest that SPATS2L may be an important regulator of β2-adrenergic receptor down-regulation and that there is promise in gaining a better understanding of the biological mechanisms of differential response to β2-agonists through GWAS.
Author Summary
Bronchodilator response (BDR) is an important asthma phenotype that measures reversibility of airway obstruction by comparing lung function before and after the administration of short-acting β2-agonists, common medications used for asthma treatment. We performed a genome-wide association study of BDR with 1,644 white asthmatic subjects from six drug clinical trials and attempted to replicate these findings in 1,051 white subjects from two independent cohorts. The most significant associated variant was near the SPATS2L gene. We knocked down SPATS2L mRNA in human airway smooth muscle cells and found that β2-adrenergic receptor levels increased, suggesting that SPATS2L may be a regulator of BDR. Our results highlight the promise of pursuing GWAS results that do not necessarily reach genome-wide significance and are an example of how results from pharmacogenetic GWAS can be studied functionally.
doi:10.1371/journal.pgen.1002824
PMCID: PMC3390407  PMID: 22792082
12.  Thymic Stromal Lymphopoietin Gene Promoter Polymorphisms Are Associated with Susceptibility to Bronchial Asthma 
Thymic stromal lymphopoietin (TSLP) triggers dendritic cell–mediated T helper (Th) 2 inflammatory responses. A single-nucleotide polymorphism (SNP), rs3806933, in the promoter region of the TSLP gene creates a binding site for the transcription factor activating protein (AP)–1. The variant enhances AP-1 binding to the regulatory element, and increases the promoter–reporter activity of TSLP in response to polyinosinic-polycytidylic acid (poly[I:C]) stimulation in normal human bronchial epithelium (NHBE). We investigated whether polymorphisms including the SNP rs3806933 could affect the susceptibility to and clinical phenotypes of bronchial asthma. We selected three representative (i.e., Tag) SNPs and conducted association studies of the TSLP gene, using two independent populations (639 patients with childhood atopic asthma and 838 control subjects, and 641 patients with adult asthma and 376 control subjects, respectively). We further examined the effects of corticosteroids and a long-acting β2-agonist (salmeterol) on the expression levels of the TSLP gene in response to poly(I:C) in NHBE. We found that the promoter polymorphisms rs3806933 and rs2289276 were significantly associated with disease susceptibility in both childhood atopic and adult asthma. The functional SNP rs3806933 was associated with asthma (meta-analysis, P = 0.000056; odds ratio, 1.29; 95% confidence interval, 1.14–1.47). A genotype of rs2289278 was correlated with pulmonary function. Moreover, the induction of TSLP mRNA and protein expression induced by poly(I:C) in NHBE was synergistically impaired by a corticosteroid and salmeterol. TSLP variants are significantly associated with bronchial asthma and pulmonary function. Thus, TSLP may serve as a therapeutic target molecule for combination therapy.
doi:10.1165/rcmb.2009-0418OC
PMCID: PMC3159073  PMID: 20656951
asthma; TSLP; bronchial epithelial cells; combination therapy; genetic polymorphisms
13.  Regulatory Haplotypes in ARG1 Are Associated with Altered Bronchodilator Response 
Rationale: β2-agonists, the most common treatment for asthma, have a wide interindividual variability in response, which is partially attributed to genetic factors. We previously identified single nucleotide polymorphisms in the arginase 1 (ARG1) gene, which are associated with β2-agonist bronchodilator response (BDR).
Objectives: To identify cis-acting haplotypes in the ARG1 locus that are associated with BDR in patients with asthma and regulate gene expression in vitro.
Methods: We resequenced ARG1 in 96 individuals and identified three common, 5′ haplotypes (denoted 1, 2, and 3). A haplotype-based association analysis of BDR was performed in three independent, adult asthma drug trial populations. Next, each haplotype was cloned into vectors containing a luciferase reporter gene and transfected into human airway epithelial cells (BEAS-2B) to ascertain its effect on gene expression.
Measurements and Main Results: BDR varied by haplotype in each of the three populations with asthma. Individuals with haplotype 1 were more likely to have higher BDR, compared to those with haplotypes 2 and 3, which is supported by odds ratios of 1.25 (95% confidence interval, 1.03–1.71) and 2.18 (95% confidence interval, 1.34–2.52), respectively. Luciferase expression was 50% greater in cells transfected with haplotype 1 compared to haplotypes 2 and 3.
Conclusions: The identified ARG1 haplotypes seem to alter BDR and differentially regulate gene expression with a concordance of decreased BDR and reporter activity from haplotypes 2 and 3. These findings may facilitate pharmacogenetic tests to predict individuals who may benefit from other therapeutic agents in addition to β2-agonists for optimal asthma management.
Clinical trial registered with www.clinicaltrials.gov (NCT00156819, NCT00046644, and NCT00073840).
doi:10.1164/rccm.201005-0758OC
PMCID: PMC3056223  PMID: 20851928
pharmacogenetics; asthma; β2-agonist
14.  Transcriptomic Analysis of Human Lung Development 
Rationale: Current understanding of the molecular regulation of lung development is limited and derives mostly from animal studies.
Objectives: To define global patterns of gene expression during human lung development.
Methods: Genome-wide expression profiling was used to measure the developing lung transcriptome in RNA samples derived from 38 normal human lung tissues at 53 to 154 days post conception. Principal component analysis was used to characterize global expression variation and to identify genes and bioontologic attributes contributing to these variations. Individual gene expression patterns were verified by quantitative reverse transcriptase–polymerase chain reaction analysis.
Measurements and Main Results: Gene expression analysis identified attributes not previously associated with lung development, such as chemokine-immunologic processes. Lung characteristics attributes (e.g., surfactant function) were observed at an earlier-than-anticipated age. We defined a 3,223 gene developing lung characteristic subtranscriptome capable of describing a majority of the process. In gene expression space, the samples formed a time-contiguous trajectory with transition points correlating with histological stages and suggesting the existence of novel molecular substages. Induction of surfactant gene expression characterized a pseudoglandular “molecular phase” transition. Individual gene expression patterns were independently validated. We predicted the age of independent human lung transcriptome profiles with a median absolute error of 5 days, supporting the validity of the data and modeling approach.
Conclusions: This study extends our knowledge of key gene expression patterns and bioontologic attributes underlying early human lung developmental processes. The data also suggest the existence of molecular phases of lung development.
doi:10.1164/rccm.200907-1063OC
PMCID: PMC2797628  PMID: 19815808
microarrays; surfactant; principal component analysis
15.  Clinical Predictors and Outcomes of Consistent Bronchodilator Response in the Childhood Asthma Management Program 
Background
Among asthmatics, bronchodilator response (BDR) to inhaled ß2- adrenergic agonists is variable, and the significance of a consistent response over time is unknown.
Objective
We assessed baseline clinical variables and determined the clinical outcomes associated with a consistently positive BDR over 4 years in children with mild-moderate persistent asthma.
Methods
In the 1,041 participants in the Childhood Asthma Management Program (CAMP), subjects with a change in FEV1 of 12% or greater (and 200mLs) after inhaled ß2 agonist at each of their yearly follow-up visits (consistent BDR) were compared with those who did not have a consistent BDR.
Results
We identified 52 children with consistent BDR over the 4-year trial. Multivariable logistic regression modeling demonstrated that baseline pre-bronchodilator FEV1 (OR=0.71, p<0.0001), log 10 IgE level (OR=1.97, p=0.002), and lack of treatment with inhaled corticosteroids (OR=0.31, p=0.009) were associated with a consistent BDR. Individuals who had a consistent BDR had more hospital visits (p=0.007), required more prednisone bursts (p=0.0007), had increased nocturnal awakenings due to asthma (p<0.0001), and missed more days of school (p=0.03) than non-responders during the 4-year follow-up.
Conclusions
We have identified predictors of consistent BDR and determined that this phenotype is associated with poor clinical outcomes.
doi:10.1016/j.jaci.2008.09.004
PMCID: PMC2947830  PMID: 18848350
asthma; consistent bronchodilator response; outcomes
16.  Genetics and Pharmacogenetics of Leukotriene Pathway 
Leukotrienes are now established contributors to the inflammatory process in asthma and leukotriene modifiers are mainstays in the therapy of asthma. This review focuses on published association studies implicating the role of leukotriene pathway genes in asthma pathogenesis and treatment response, specifically focusing on those genetic variants associated with asthma affection status, the development of aspirin exacerbated respiratory disease, and pharmacogenetic response. While published studies have been limited by small sample sizes and lack of independent replication, multiple loci within multiple leukotriene pathway genes have now been associated in more than one study related to asthma or asthma treatment response. Those specific variants include two variants in ALOX5 that are both associated with response to 5-LO inhibition and to leukotriene receptor antagonists, variants in the two established cysteinyl leukotriene receptor antagonists, CYSLTR1 and CYSLTR2 that are both associated with asthma susceptibility in at least two independent populations, and a LTC4S promoter polymorphism that has been associated with asthma affection status and with asthma exacerbated respiratory disease. Desite these successes, genetic investigations into this pathway remain in their formative stages. Future studies aimed at providing a broader scope of investigation through increased sample sizes and through genome-wide approaches are needed.
doi:10.1016/j.jaci.2009.06.035
PMCID: PMC2794036  PMID: 19665766
Leukotrienes; SNP; asthma, 5-lipoxygenase; zileuton; montelukast; pharmacogenetics
17.  Predictors of poor response during asthma therapy differ with definition of outcome 
Pharmacogenomics  2009;10(8):1231-1242.
Aims
To evaluate phenotypic and genetic variables associated with a poor long-term response to inhaled corticosteroid therapy for asthma, based independently on lung function changes or asthma exacerbations.
Materials & methods
We tested 17 phenotypic variables and polymorphisms in FCER2 and CRHR1 in 311 children (aged 5–12 years) randomized to a 4-year course of inhaled corticosteroid during the Childhood Asthma Management Program (CAMP).
Results
Predictors of recurrent asthma exacerbations are distinct from predictors of poor lung function response. A history of prior asthma exacerbations, younger age and a higher IgE level (p < 0.05) are associated with recurrent exacerbations. By contrast, lower bronchodilator response to albuterol and the minor alleles of RS242941 in CRHR1 and T2206C in FCER2 (p < 0.05) are associated with poor lung function response. Poor lung function response does not increase the risk of exacerbations and vice versa (p = 0.72).
Conclusion
Genetic and phenotypic predictors of a poor long-term response to inhaled corticosteroids differ markedly depending on definition of outcome (based on exacerbations vs lung function). These findings are important in comparing outcomes of clinical trials and in designing future pharmacogenetic studies.
doi:10.2217/PGS.09.86
PMCID: PMC2746392  PMID: 19663668
asthma; corticosteroid; exacerbation; lung function; pharmacogenetics
18.  Pharmacogenetics of asthma 
Purpose of review
Patient response to the asthma drug classes, bronchodilators, inhaled corticosteroids and leukotriene modifiers, are characterized by a large degree of heterogeneity, which is attributable in part to genetic variation. Herein, we review and update the pharmacogenetics and pharmaogenomics of common asthma drugs.
Recent findings
Early studies suggest that bronchodilator reversibility and asthma worsening in patients on continuous short-acting and long-acting β-agonists are related to the Gly16Arg genotype for the ADRB2. More recent studies including genome-wide association studies implicate variants in other genes contribute to bronchodilator response heterogeneity and fail to replicate asthma worsening associated with continuous β-agonist use. Genetic determinants of the safety of long-acting β-agonist require further study. Variants in CRHR1, TBX21, and FCER2 contribute to variability in response for lung function, airways responsiveness, and exacerbations in patients taking inhaled corticosteroids. Variants in ALOX5, LTA4H, LTC4S, ABCC1, CYSLTR2, and SLCO2B1 contribute to variability in response to leukotriene modifiers.
Summary
Identification of novel variants that contribute to response heterogeneity supports future studies of single nucleotide polymorphism discovery and include gene expression and genome-wide association studies. Statistical models that predict the genomics of response to asthma drugs will complement single nucleotide polymorphism discovery in moving toward personalized medicine.
doi:10.1097/MCP.0b013e32831da8be
PMCID: PMC2754311  PMID: 19077707
asthma; genes; personalized medicine; polymorphisms; response heterogeneity
19.  ARG1 Is a Novel Bronchodilator Response Gene 
Rationale: Inhaled β-agonists are one of the most widely used classes of drugs for the treatment of asthma. However, a substantial proportion of patients with asthma do not have a favorable response to these drugs, and identifying genetic determinants of drug response may aid in tailoring treatment for individual patients.
Objectives: To screen variants in candidate genes in the steroid and β-adrenergic pathways for association with response to inhaled β-agonists.
Methods: We genotyped 844 single nucleotide polymorphisms (SNPs) in 111 candidate genes in 209 children and their parents participating in the Childhood Asthma Management Program. We screened the association of these SNPs with acute response to inhaled β-agonists (bronchodilator response [BDR]) using a novel algorithm implemented in a family-based association test that ranked SNPs in order of statistical power. Genes that had SNPs with median power in the highest quartile were then taken for replication analyses in three other asthma cohorts.
Measurements and Main Results: We identified 17 genes from the screening algorithm and genotyped 99 SNPs from these genes in a second population of patients with asthma. We then genotyped 63 SNPs from four genes with significant associations with BDR, for replication in a third and fourth population of patients with asthma. Evidence for association from the four asthma cohorts was combined, and SNPs from ARG1 were significantly associated with BDR. SNP rs2781659 survived Bonferroni correction for multiple testing (combined P value = 0.00048, adjusted P value = 0.047).
Conclusions: These findings identify ARG1 as a novel gene for acute BDR in both children and adults with asthma.
doi:10.1164/rccm.200709-1363OC
PMCID: PMC2556451  PMID: 18617639
pharmacogenetics; asthma; bronchodilator agents
20.  Airway Responsiveness in Mild to Moderate Childhood Asthma 
Rationale: Airway responsiveness is a prognostic marker for asthma symptoms in later life.
Objectives: To evaluate characteristics responsible for persistence of airway responsiveness in children with asthma.
Methods: A total of 1,041 children, initially aged 5–12 years, with mild to moderate persistent asthma enrolled in the Childhood Asthma Management Program (CAMP) were studied prospectively for 8.6 ± 1.8 years with methacholine challenges yearly.
Measurements and Main Results: Least squares geometric mean models were fit to determine effects of sex and age on airway responsiveness (provocative concentration producing 20% decrease in FEV1 [PC20]). Multiple linear regression analysis was performed to determine factors at baseline and over time, which were associated with PC20 at end of follow-up. A total of 7,748 methacholine challenges were analyzed. PC20 increased with age, with boys having greater increase after age 11 years than girls (P < 0.001). The divergence coincided with the mean age for Tanner stage 2. Postpubertal girls had greater airway responsiveness, even after adjustment for FEV1 and other potential confounders. Although multivariable regression analyses noted a variety of factors that influenced airway responsivness in both sexes, a history of hay fever (β= −0.30, P = 0.005), respiratory allergy (β= −0.32, P = 0.006), or recent inhaled corticosteroid usage (β= −0.18, P = 0.02) were associated with decrements in final log PC20 only in girls.
Conclusions: Airway responsiveness (PC20) is more severe in the postpubertal female with asthma than in males. Although there are factors associated with airway responsiveness in both males and females, sex-specific factors may contribute to new insights into asthma pathogenesis.
doi:10.1164/rccm.200708-1174OC
PMCID: PMC2542438  PMID: 18420965
methacholine; PC20; FEV1; bronchoconstriction
21.  Prenatal, perinatal, and heritable influences on cord blood immune responses 
Background
Maternal and perinatal environmental exposures, as well as inherited factors, may influence neonatal immune responses.
Objective
To determine relations of maternal and perinatal exposures to antigen-specific cord blood lymphoproliferative responses.
Methods
In 427 newborns from a Boston pregnancy/birth cohort, lymphoproliferative responses in cord blood mononuclear cells to stimulation with cockroach (Bla g 2), house dust mite (Der f 1), ovalbumin, and mitogen phytohemagglutinin were measured as stimulation index (SI). We used the Wilcoxon rank sum and χ2 tests to evaluate predictors of ovalbumin SI as a continuous ranked or dichotomous outcome. We used t test and Spearman correlation for univariate testing and linear regression to evaluate predictors of natural log-transformed Bla g 2, Der f 1, and phytohemagglutinin SI. Logistic multivariate regression was applied to evaluate predictors of Bla g 2, Der f 1, and phytohemagglutinin SI dichotomized at 2 or at the median for phytohemagglutinin.
Results
Maternal smoking during pregnancy, inadequate or excessive maternal weight gain during pregnancy, neonate black race/ethnicity (compared with white), and Apgar score less than 8 were each independently associated with increased cord blood mononuclear cell proliferative responses to stimulation with Bla g 2 and/or Der f 1. Maternal history of asthma was associated only with increased lymphoproliferative response to ovalbumin stimulation.
Conclusions
Distinct fetal and perinatal exposures and black race/ethnicity may be associated with increased cord blood lymphoproliferative responses. The implications of these findings for future development of allergy or asthma are, as yet, unknown.
PMCID: PMC1562525  PMID: 16597079
22.  Associations of cord blood fatty acids with lymphocyte proliferation, IL-13, and IFN-γ 
Background. N-3 and n-6 polyunsaturated fatty acids (PUFAs) have been hypothesized to have opposing influences on neonatal immune responses that might influence the risk of allergy or asthma. However, both n-3 eicosapentaenoic acid (EPA) and n-6 arachidonic acid (AA) are required for normal fetal development.
Objective. We evaluated whether cord blood fatty acid levels were related to neonatal immune responses and whether n-3 and n-6 PUFA responses differed.
Methods. We examined the relation of cord blood plasma n-3 and n-6 PUFAs (n = 192) to antigen- and mitogen-stimulated cord blood lymphocyte proliferation (n = 191) and cytokine (IL-13 and IFN-γ; n = 167) secretion in a US birth cohort.
Results. Higher levels of n-6 linoleic acid were correlated with higher IL-13 levels in response to Bla g 2 (cockroach, P = .009) and Der f 1 (dust mite, P = .02). Higher n-3 EPA and n-6 AA levels were each correlated with reduced lymphocyte proliferation and IFN-γ levels in response to Bla g 2 and Der f 1 stimulation. Controlling for potential confounders, EPA and AA had similar independent effects on reduced allergen-stimulated IFN-γ levels. If neonates had either EPA or AA levels in the highest quartile, their Der f 1 IFN-γ levels were 90% lower (P = .0001) than those with both EPA and AA levels in the lowest 3 quartiles. Reduced AA/EPA ratio was associated with reduced allergen-stimulated IFN-γ level.
Conclusion. Increased levels of fetal n-3 EPA and n-6 AA might have similar effects on attenuation of cord blood lymphocyte proliferation and IFN-γ secretion.
Clinical implications. The implications of these findings for
doi:10.1016/j.jaci.2005.12.1322
PMCID: PMC1508138  PMID: 16630954
Asthma; child; cord blood; cytokine; fatty acids; lymphocyte proliferation; AA: Arachidonic acid; BMI: Body mass index; CBMC: Cord blood mononuclear cell; CI: Confidence interval; DHA: Docosohexaenoic acid; EPA: Eicosapentaenoic acid; FA: Fatty acid; LA: Linoleic acid; NICU: Neonatal intensive care unit; OVA: Ovalbumin; PG: Prostaglandin; PUFA: Polyunsaturated fatty acid; SI: Stimulation index
23.  Cord Blood Cytokines and Acute Lower Respiratory Illnesses in the First Year of Life 
Pediatrics  2006;119(1):e171-e178.
OBJECTIVES
Little is known about the relation between cytokine profile at birth and acute lower respiratory illnesses in the first year of life. The purpose of this work was to examine the relation between cytokine secretions by cord blood mononuclear cells and acute lower respiratory illness in a birth cohort of 297 children.
METHODS
Cord blood mononuclear cells were isolated, and secretion of interferon-γ, interleukin-13, interleukin-10, and tumor necrosis factor-α at baseline and in response to allergens (Blatella germanica 2 and Dermatophagoides farinae 1) and mitogen (phytohemagglutinin) were quantified using enzyme-linked immunosorbent assay. Acute lower respiratory illness was defined as a parental report of a diagnosis of bronchiolitis, pneumonia, bronchitis, and/or croup by a health care professional in the first year of life. Differences in the levels of cord blood cytokines between children with and without acute lower respiratory illness were examined using 2-sample Wilcoxon tests. Logistic regression models were used to examine the relation between various categories of cord blood cytokines and acute lower respiratory illness.
RESULTS
Median levels of interferon-γ secreted by cord blood mononuclear cells in response to Blatella germanica 2 and Dermatophagoides farinae 1 were higher among children without acute lower respiratory illness as compared with children with acute lower respiratory illness. After adjustment for other covariates, the odds of acute lower respiratory illness was reduced among children in the top category (at or more than the median of detectable values) of interferon-γ level, significantly so in response to Blatella germanica 2.
CONCLUSIONS
In a cohort of children from the general population, we found that upregulated interferon-γ secretion at birth is associated with reduced risk of acute lower respiratory illness in the first year of life.
doi:10.1542/peds.2006-0524
PMCID: PMC1994927  PMID: 17145902
lower respiratory illnesses; cytokines; neonates; IFN-γ
24.  Maternal antioxidant intake in pregnancy and wheezing illnesses in children at 2 y of age2 
Background
Low intakes of dietary antioxidants may contribute to increases in asthma and allergy.
Objective
We investigated the association of maternal total intakes (foods + supplements) of 10 antioxidant nutrients during pregnancy with wheezing and eczema in 2-y-old children.
Design
Subjects were 1290 mother-child pairs in an ongoing cohort study. Maternal dietary and supplement intakes were assessed by using a validated food-frequency questionnaire administered in the first and second trimesters. Antioxidant nutrient intakes were calculated, and the mean for each nutrient was considered to be the exposure during pregnancy. The outcomes of interest were any wheezing by the child during either the first or second year of life, recurrent wheezing in both years, and eczema in either the first or second year.
Results
No association was observed between maternal total intake of any antioxidant nutrient and eczema. In multivariate logistic regression models, the highest quartile compared with the lowest quartile of maternal total intakes of vitamin E [odds ratio (OR): 0.70; 95% CI: 0.48, 1.03] and zinc (OR: 0.59; 95% CI: 0.41, 0.88) was inversely associated with any wheezing at 2 y of age (P for trend = 0.06 and 0.01 over quartiles of intake for vitamin E and zinc, respectively). Similar results were obtained for recurrent wheezing at 2 y of age with vitamin E (OR: 0.49; 95% CI: 0.27, 0.90) and zinc (OR: 0.49; 95% CI: 0.27, 0.87) (P for trend = 0.05 and 0.06 over quartiles of intake for vitamin E and zinc, respectively).
Conclusion
Our results suggest that higher maternal total intakes of antioxidants during pregnancy may decrease the risks for wheezing illnesses in early childhood.
PMCID: PMC1994925  PMID: 17023719
Asthma; diet; antioxidants; eczema; childhood wheezing
25.  Influence of Leukotriene Pathway Polymorphisms on Response to Montelukast in Asthma 
Rationale: Interpatient variability in montelukast response may be related to variation in leukotriene pathway candidate genes.
Objective: To determine associations between polymorphisms in leukotriene pathway candidate genes with outcomes in patients with asthma receiving montelukast for 6 mo who participated in a clinical trial.
Methods: Polymorphisms were typed using Sequenom matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass array spectrometry and published methods; haplotypes were imputed using single nucleotide polymorphism–expectation maximization (SNP-EM). Analysis of variance and logistic regression models were used to test for changes in outcomes by genotype. In addition, χ2 and likelihood ratio tests were used to test for differences between groups. Case-control comparisons were analyzed using the SNP-EM Omnibus likelihood ratio test.
Measurements: Outcomes were asthma exacerbation rate and changes in FEV1 compared with baseline.
Results: DNA was collected from 252 participants: 69% were white, 26% were African American. Twenty-eight SNPs in the ALOX5, LTA4H, LTC4S, MRP1, and cysLT1R genes, and an ALOX5 repeat polymorphism were successfully typed. There were racial disparities in allele frequencies in 17 SNPs and in the repeat polymorphism. Association analyses were performed in 61 whites. Associations were found between genotypes of SNPs in the ALOX5 (rs2115819) and MRP1 (rs119774) genes and changes in FEV1 (p < 0.05), and between two SNPs in LTC4S (rs730012) and in LTA4H (rs2660845) genes for exacerbation rates. Mutant ALOX5 repeat polymorphism was associated with decreased exacerbation rates. There was strong linkage disequilibrium between ALOX5 SNPs. Associations between ALOX5 haplotypes and risk of exacerbations were found.
Conclusions: Genetic variation in leukotriene pathway candidate genes contributes to variability in montelukast response.
doi:10.1164/rccm.200509-1412OC
PMCID: PMC2662939  PMID: 16293801
antiinflammatory; montelukast; pharmacodynamic; pharmacogenetic

Results 1-25 (27)