Search tips
Search criteria

Results 1-6 (6)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  T cell unresponsiveness in a pediatric cystic fibrosis patient: a case report 
A girl was diagnosed with cystic fibrosis (CF) at birth, with repeatedly positive sweat tests and homozygous F508del mutations of her CF transmembrane conductance regulator (CFTR) gene. From an early age, her lung disease was more severe than her birth cohort peers despite aggressive treatment. At the age of 16 she was listed for lung transplantation, but prior to transplant was not on systemic corticosteroids or other immunosuppressive agents. In response to ex vivo stimulation, her pre-transplant peripheral blood T cells unexpectedly failed to produce detectable levels of IFN-γ, unlike cells from healthy controls or from another girl with CF and lung disease of comparable severity. Furthermore, naïve T cells freshly isolated from her peripheral blood showed a complete block of T cell differentiation into Th1, Th17 and Treg lineages, even in the presence of cytokines known to promote differentiation into the respective lineages. Her serology has been remarkably devoid of evidence of exposure to viruses that have been associated with T cell exhaustion. However, her freshly isolated naïve T cells showed sustained expression of markers of T cell exhaustion, which were further induced upon ex vivo stimulation, pointing to T cell exhaustion as the cause of the failure of naïve T cells to undergo differentiation in response to cytokine stimulation. Although excessive inflammation in CF lung can be both ineffective at clearing certain pathogens as well as destructive to the lung tissue itself, adequate inflammation is a component of an effective overall immune response to microbial pathogens. Our present findings suggest that intrinsic impairment of T cell differentiation may have contributed to the greater severity and more rapid progression of her CF lung disease than of the lung disease of most of her peers.
PMCID: PMC3896844  PMID: 24438707
T cell exhaustion; Cystic fibrosis; Naïve T cells; T cell differentiation
2.  Intrinsic predisposition of naïve cystic fibrosis T cells to differentiate towards a Th17 phenotype 
Respiratory Research  2013;14(1):138.
Cystic fibrosis (CF) is a complex, multi-system, life-shortening, autosomal recessive disease most common among Caucasians. Pulmonary pathology, the major cause of morbidity and mortality in CF, is characterized by dysregulation of cytokines and a vicious cycle of infection and inflammation. This cycle causes a progressive decline in lung function, eventually resulting in respiratory failure and death. The Th17 immune response plays an active role in the pathogenesis of CF pulmonary pathology, but it is not known whether the pathophysiology of CF disease contributes to a heightened Th17 response or whether CF naïve CD4+ T lymphocytes (Th0 cells) intrinsically have a heightened predisposition to Th17 differentiation.
To address this question, Th0 cells were isolated from the peripheral blood of CF mice, human CF subjects and corresponding controls. Murine Th0 cells were isolated from single spleen cell suspensions using fluorescence-activated cell sorting. Lymphocytes from human buffy coats were isolated by gradient centrifugation and Th0 cells were further isolated using a human naïve T cell isolation kit. Th0 cells were then assessed for their capacity to differentiate along Th17, Th1 or Treg lineages in response to corresponding cytokine stimulation. The T cell responses of human peripheral blood cells were also assessed ex vivo using flow cytometry.
Here we identify in both mouse and human CF an intrinsically enhanced predisposition of Th0 cells to differentiate towards a Th17 phenotype, while having a normal propensity for differentiation into Th1 and Treg lineages. Furthermore, we identify an active Th17 response in the peripheral blood of human CF subjects.
We propose that these novel observations offer an explanation, at least in part, for the known increased Th17-associated inflammation of CF and the early signs of inflammation in CF lungs before any evidence of infection. Moreover, these findings point towards direct modulation of T cell responses as a novel potential therapeutic strategy for combating excessive inflammation in CF.
PMCID: PMC3890528  PMID: 24344776
Cystic fibrosis; Naïve T cells; Th17 phenotype
3.  Modulation of Lgl1 by steroid, retinoic acid, and Vitamin D models complex transcriptional regulation during alveolarization 
Pediatric research  2010;67(4):375-381.
Alveolarization depends on circulating glucocorticoid (GC), retinoid (RA) and Vitamin D (VitD). Bronchopulmonary dysplasia (BPD), a leading cause of neonatal morbidity, is associated with arrested alveolarization. In hyperoxia-exposed rats displaying features of BPD, reduced levels of Lgl1 normalize during recovery. We show that GC (100nM) stimulates (7–115 fold) and VitD (100µM) suppresses (2 fold) Lgl1 expression. RA (all trans/9-cis, 10µM) effects are biphasic. From postnatal (PN) days 7–10, RA was stimulatory (2 fold) at 24h, after which effects were inhibitory (3–15 fold). Lgl1 promoter-luciferase reporter assays confirmed that these agents operated at the transcriptional level. Interestingly, the individual inhibitory effects of VitD and RA on GC induction of Lgl1 were abrogated when both agents were present, suggesting that steric hindrance may influence promoter accessibility. Analysis of the proximity (<50 base pairs) of binding sites for overlapping VitD and RA receptors to that of the GC receptor identified 81% of promoters in 66 genes (including Lgl1) important in human lung development compared to 48% in a random set of 1000 genes. Complex integration of the effects of GC, RA, and VitD on gene expression in the postnatal lung is likely to contribute to the timely advance of alveolarization without attendant inflammation.
PMCID: PMC3104505  PMID: 20057335
4.  Estrogen aggravates inflammation in Pseudomonas aeruginosa pneumonia in cystic fibrosis mice 
Respiratory Research  2010;11(1):166.
Among patients with cystic fibrosis (CF), females have worse pulmonary function and survival than males, primarily due to chronic lung inflammation and infection with Pseudomonas aeruginosa (P. aeruginosa). A role for gender hormones in the causation of the CF "gender gap" has been proposed. The female gender hormone 17β-estradiol (E2) plays a complex immunomodulatory role in humans and in animal models of disease, suppressing inflammation in some situations while enhancing it in others. Helper T-cells were long thought to belong exclusively to either T helper type 1 (Th1) or type 2 (Th2) lineages. However, a distinct lineage named Th17 is now recognized that is induced by interleukin (IL)-23 to produce IL-17 and other pro-inflammatory Th17 effector molecules. Recent evidence suggests a central role for the IL-23/IL-17 pathway in the pathogenesis of CF lung inflammation. We used a mouse model to test the hypothesis that E2 aggravates the CF lung inflammation that occurs in response to airway infection with P. aeruginosa by a Th17-mediated mechanism.
Exogenous E2 caused adult male CF mice with pneumonia due to a mucoid CF clinical isolate, the P. aeruginosa strain PA508 (PA508), to develop more severe manifestations of inflammation in both lung tissue and in bronchial alveolar lavage (BAL) fluid, with increased total white blood cell counts and differential and absolute cell counts of polymorphonuclear leukocytes (neutrophils). Inflammatory infiltrates and mucin production were increased on histology. Increased lung tissue mRNA levels for IL-23 and IL-17 were accompanied by elevated protein levels of Th17-associated pro-inflammatory mediators in BAL fluid. The burden of PA508 bacteria was increased in lung tissue homogenate and in BAL fluid, and there was a virtual elimination in lung tissue of mRNA for lactoferrin, an antimicrobial peptide active against P. aeruginosa in vitro.
Our data show that E2 increases the severity of PA508 pneumonia in adult CF male mice, and suggest two potential mechanisms: enhancement of Th17-regulated inflammation and suppression of innate antibacterial defences. Although this animal model does not recapitulate all aspects of human CF lung disease, our present findings argue for further investigation of the effects of E2 on inflammation and infection with P. aeruginosa in the CF lung.
PMCID: PMC3006363  PMID: 21118573
5.  Inflammatory cytokines, goblet cell hyperplasia and altered lung mechanics in Lgl1+/- mice 
Respiratory Research  2009;10(1):83.
Neonatal lung injury, a leading cause of morbidity in prematurely born infants, has been associated with arrested alveolar development and is often accompanied by goblet cell hyperplasia. Genes that regulate alveolarization and inflammation are likely to contribute to susceptibility to neonatal lung injury. We previously cloned Lgl1, a developmentally regulated secreted glycoprotein in the lung. In rat, O2 toxicity caused reduced levels of Lgl1, which normalized during recovery. We report here on the generation of an Lgl1 knockout mouse in order to determine whether deficiency of Lgl1 is associated with arrested alveolarization and contributes to neonatal lung injury.
An Lgl1 knockout mouse was generated by introduction of a neomycin cassette in exon 2 of the Lgl1 gene. To evaluate the pulmonary phenotype of Lgl1+/- mice, we assessed lung morphology, Lgl1 RNA and protein, elastin fibers and lung function. We also analyzed tracheal goblet cells, and expression of mucin, interleukin (IL)-4 and IL-13 as markers of inflammation.
Absence of Lgl1 was lethal prior to lung formation. Postnatal Lgl1+/- lungs displayed delayed histological maturation, goblet cell hyperplasia, fragmented elastin fibers, and elevated expression of TH2 cytokines (IL-4 and IL-13). At one month of age, reduced expression of Lgl1 was associated with elevated tropoelastin expression and altered pulmonary mechanics.
Our findings confirm that Lgl1 is essential for viability and is required for developmental processes that precede lung formation. Lgl1+/- mice display a complex phenotype characterized by delayed histological maturation, features of inflammation in the post-natal period and altered lung mechanics at maturity. Lgl1 haploinsufficiency may contribute to lung disease in prematurity and to increased risk for late-onset respiratory disease.
PMCID: PMC2760518  PMID: 19772569
6.  The angiogenic factor midkine is regulated by dexamethasone and retinoic acid during alveolarization and in alveolar epithelial cells 
Respiratory Research  2009;10(1):77.
A precise balance exists between the actions of endogenous glucocorticoids (GC) and retinoids to promote normal lung development, in particular during alveolarization. The mechanisms controlling this balance are largely unknown, but recent evidence suggests that midkine (MK), a retinoic acid-regulated, pro-angiogenic growth factor, may function as a critical regulator. The purpose of this study was to examine regulation of MK by GC and RA during postnatal alveolar formation in rats.
Newborn rats were treated with dexamethasone (DEX) and/or all-trans-retinoic acid (RA) during the first two weeks of life. Lung morphology was assessed by light microscopy and radial alveolar counts. MK mRNA and protein expression in response to different treatment were determined by Northern and Western blots. In addition, MK protein expression in cultured human alveolar type 2-like cells treated with DEX and RA was also determined.
Lung histology confirmed that DEX treatment inhibited and RA treatment stimulated alveolar formation, whereas concurrent administration of RA with DEX prevented the DEX effects. During normal development, MK expression was maximal during the period of alveolarization from postnatal day 5 (PN5) to PN15. DEX treatment of rat pups decreased, and RA treatment increased lung MK expression, whereas concurrent DEX+RA treatment prevented the DEX-induced decrease in MK expression. Using human alveolar type 2 (AT2)-like cells differentiated in culture, we confirmed that DEX and cAMP decreased, and RA increased MK expression.
We conclude that MK is expressed by AT2 cells, and is differentially regulated by corticosteroid and retinoid treatment in a manner consistent with hormonal effects on alveolarization during postnatal lung development.
PMCID: PMC2739515  PMID: 19698107

Results 1-6 (6)