Search tips
Search criteria

Results 1-22 (22)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
1.  Vitamin B12 and older adults 
Purpose of review
To review the prevalence, causes and functional significance of vitamin B12 deficiency in vulnerable subpopulations including older adults and the developing embryo.
Recent findings
It is becoming increasingly recognized that the susceptibility to vitamin B12 deficiency may change throughout the life cycle, with the developing embryo and older adults exhibiting elevated risk. Recent data implicate low vitamin B12 status as a risk factor for birth defects resulting from improper neural tube development. The potential for vitamin supplementation and/or food fortification to ameliorate the risk of deficiency in these subpopulations is discussed.
The prevalence and impact of vitamin B12 deficiency varies throughout the life cycle, with older adults and potentially the developing embryo having the greatest risk and susceptibility. Additional research is needed to develop effective public health interventions that address the unique causes of this nutritional deficiency, which differ among at-risk subpopulations.
PMCID: PMC5130103  PMID: 19904199
anemia; birth defects; cobalamin; older adults; vitamin B12
2.  Dietary folic acid protects against genotoxicity in the red blood cells of mice 
Mutation research  2015;779:105-111.
Folate is an essential B vitamin required for the de novo synthesis of purines, thymidylate and methionine. Folate deficiency can lead to mutations and genome instability, and has been shown to exacerbate the genotoxic potential of environmental toxins. We hypothesized that a folic acid (FA) deficient diet would induce genotoxicity in mice as measured by the Pig-a mutant phenotype (CD24−) and micronuclei (MN) in reticulocytes (RET) and red blood cells/normochromatic erythrocytes (RBC/NCE). Male Balb/c mice were fed a FA deficient (0 mg/kg), control (2 mg/kg) or supplemented (6 mg/kg) diet from weaning for 18 wk. Mice fed the deficient diet had 70% lower liver folate (p < 0.001), 1.8 fold higher MN-RET (p < 0.001), and 1.5 fold higher MN-NCE (p < 0.001) than mice fed the control diet. RETCD24− and RBCCD24− frequencies were not different between mice fed the deficient and control diets. Compared to mice fed the FA supplemented diet, mice fed the deficient diet had 73% lower liver folate (p < 0.001), a 2.0 fold increase in MN-RET (p < 0.001), a 1.6 fold increase in MN-NCE (p < 0.001) and 3.8 fold increase in RBCCD24− frequency (p = 0.011). RETCD24− frequency did not differ between mice fed the deficient and supplemented diets. Our data suggest that FA adequacy protects against mutagenesis at the Pig-a locus and MN induction in the red blood cells of mice.
PMCID: PMC5094184  PMID: 26177356
Folic acid; Genome stability; Mutation; Micronucleus; Pig-a gene; Genotoxicity
3.  Vitamin B-12 and Perinatal Health123 
Advances in Nutrition  2015;6(5):552-563.
Vitamin B-12 deficiency (<148 pmol/L) is associated with adverse maternal and neonatal outcomes, including developmental anomalies, spontaneous abortions, preeclampsia, and low birth weight (<2500 g). The importance of adequate vitamin B-12 status periconceptionally and during pregnancy cannot be overemphasized, given its fundamental role in neural myelination, brain development, and growth. Infants born to vitamin B-12-deficient women may be at increased risk of neural tube closure defects, and maternal vitamin B-12 insufficiency (<200 pmol/L) can impair infant growth, psychomotor function, and brain development, which may be irreversible. However, the underlying causal mechanisms are unknown. This review was conducted to examine the evidence that links maternal vitamin B-12 status and perinatal outcomes. Despite the high prevalence of vitamin B-12 deficiency and associated risk of pregnancy complications, few prospective studies and, to our knowledge, only 1 randomized trial have examined the effects of vitamin B-12 supplementation during pregnancy. The role of vitamin B-12 in the etiology of adverse perinatal outcomes needs to be elucidated to inform public health interventions.
PMCID: PMC4561829  PMID: 26374177
vitamin B-12; cobalamin; one-carbon metabolism; pregnancy; child health
4.  Sensitizing cancer cells: Is it really all about U? 
Cancer cell  2012;22(1):3-4.
In this issue of Cancer Cell, Hu et al. report that TMPK and RNR, two key enzymes in deoxyribonucleotide biosynthesis, co-localize to damaged DNA and produce nucleotides necessary for DNA repair while suppressing uracil incorporation. TMPK inhibition disrupts this balance and selectively sensitizes cancer cells to low-dose chemotherapy.
PMCID: PMC4939884  PMID: 22789532
5.  New insights into the metabolic and nutritional determinants of severe combined immunodeficiency 
Rare Diseases  2015;3(1):e1112479.
Human mutations in MTHFD1 have recently been identified in patients with severe combined immunodeficiency (SCID). SCID results from inborn errors of metabolism that cause impaired T- and B-cell proliferation and function. One of the most common causes of SCID is adenosine deaminase (ADA) deficiency, which ultimately inhibits DNA synthesis and cell division. MTHFD1 has been shown to translocate to the nucleus during S-phase of the cell cycle; this localization is critical for synthesis of thymidyate (dTMP or the “T” base in DNA) and subsequent progression through the cell cycle and cell proliferation. Identification of MTHFD1 mutations that are associated with SCID highlights the potential importance of adequate dTMP synthesis in the etiology of SCID.
PMCID: PMC4817835  PMID: 27123375
Folate; homocysteine; MTHFD1; severe combined immunodeficiency; thymidylate
6.  5,10-Methenyltetrahydrofolate Synthetase Activity is Increased in Tumors and Modifies the Efficacy of Antipurine LY309887 
Methenyltetrahydrofolate synthetase (MTHFS) expression enhances folate-dependent de novo purine biosynthesis. In this study, the effect of increased MTHFS expression on the efficacy of the glycinamide ribonucleotide formyltransferase (GARFT) inhibitor LY309887 was investigated in SH-SY5Y neuroblastoma. GARFT catalyzes the incorporation of formate, in the form of 10-formyltetrahydrofolate, into the C8 position of the purine ring during de novo purine biosynthesis. SH-SY5Y neuroblastoma with increased MTHFS expression displayed a 4-fold resistance to the GARFT inhibitor LY309887, but did not exhibit resistance to the thymidylate synthase inhibitor Pemetrexed. This finding supports a mechanism whereby MTHFS increases the availability of 10-formyltetrahydrofolate for GARFT. MTHFS expression is elevated in animal tumor tissues compared to surrounding normal tissue, consistent with the dependence of transformed cells on de novo purine biosynthesis. The level of MTHFS expression in tumors may predict the efficacy of antipurine agents that target GARFT.
PMCID: PMC4467886  PMID: 19022216
folate metabolism; methenyltetrahydrofolate synthetase; purine biosynthesis; LY309887; antifolate; glycinamide ribonucleotide formyltransferase
7.  Insights into Metabolic Mechanisms Underlying Folate-Responsive Neural Tube Defects: A Minireview 
Neural tube defects (NTDs), including anencephaly and spina bifida, arise from the failure of neurulation during early embryonic development. Neural tube defects are common birth defects with a heterogenous and multifactorial etiology with interacting genetic and environmental risk factors. Although the mechanisms resulting in failure of neural tube closure are unknown, up to 70% of NTDs can be prevented by maternal folic acid supplementation. However, the metabolic mechanisms underlying the association between folic acid and NTD pathogenesis have not been identified. This review summarizes our current understanding of the mechanisms by which impairments in folate metabolism might ultimately lead to failure of neural tube closure, with an emphasis on untangling the relative contributions of nutritional deficiency and genetic risk factors to NTD pathogenesis.
PMCID: PMC4435943  PMID: 19180567
folate; neural tube defect; metabolism; genetics; thymidylate
8.  Vitamin B-61 
Advances in Nutrition  2015;6(1):132-133.
PMCID: PMC4288272  PMID: 25593152
9.  Modeling cellular compartmentation in one-carbon metabolism 
Folate-mediated one-carbon metabolism (FOCM) is associated with risk for numerous pathological states including birth defects, cancers, and chronic diseases. Although the enzymes that constitute the biological pathways have been well described and their interdependency through the shared use of folate cofactors appreciated, the biological mechanisms underlying disease etiologies remain elusive. The FOCM network is highly sensitive to nutritional status of several B-vitamins and numerous penetrant gene variants that alter network outputs, but current computational approaches do not fully capture the dynamics and stochastic noise of the system. Combining the stochastic approach with a rule-based representation will help model the intrinsic noise displayed by FOCM, address the limited flexibility of standard simulation methods for coarse-graining the FOCM-associated biochemical processes, and manage the combinatorial complexity emerging from reactions within FOCM that would otherwise be intractable.
PMCID: PMC4437664  PMID: 23408533
10.  Polymorphisms in 1-Carbon Metabolism, Epigenetics and Folate-Related Pathologies 
Folate-mediated 1-carbon metabolism is a network of interconnected metabolic pathways necessary for the synthesis of purine nucleotides, thymidylate and the remethylation of homocysteine to methionine. Disruptions in this pathway influence both DNA synthesis and stability and chromatin methylation, and result from nutritional deficiencies and common gene variants. The mechanisms underlying folate-associated pathologies and developmental anomalies have yet to be established. This review focuses on the relationships among folate-mediated 1-carbon metabolism, chromatin methylation and human disease, and the role of gene-nutrient interactions in modifying epigenetic processes.
PMCID: PMC3696357  PMID: 22353665
Epigenetics; Folate; Genetic variation; Methylation; One-carbon metabolism
11.  Shmt1 Heterozygosity Impairs Folate-Dependent Thymidylate Synthesis Capacity and Modifies Risk of Apcmin-Mediated Intestinal Cancer Risk 
Cancer research  2011;71(6):2098-2107.
Folate-mediated one-carbon metabolism is required for the de novo synthesis of purines, thymidylate, and S-adenosylmethionine, the primary cellular methyl donor. Impairments in folate metabolism diminish cellular methylation potential and genome stability, which are risk factors for colorectal cancer (CRC). Cytoplasmic serine hydroxymethyltransferase (SHMT1) regulates the partitioning of folate-activated one-carbons between thymidylate and S-adenosylmethionine biosynthesis. Therefore, changes in SHMT1 expression enable the determination of the specific contributions made by thymidylate and S-adenosylmethionine biosynthesis to CRC risk. Shmt1 hemizygosity was associated with a decreased capacity for thymidylate synthesis, due to down regulation of enzymes in its biosynthetic pathway, namely thymidylate synthase and cytoplasmic thymidine kinase. Significant Shmt1-dependent changes to methylation capacity, gene expression and purine synthesis were not observed. Shmt1 hemizygosity was associated with increased risk for intestinal cancer in Apcmin/+ mice through a gene-by-diet interaction, indicating that the capacity for thymidylate synthesis modifies susceptibility to intestinal cancer in Apcmin/+ mice.
PMCID: PMC3059437  PMID: 21406397
Cytoplasmic serine hydroxymethyltransferase; thymidylate synthesis; folate; colon cancer; Apc
12.  Mthfs is an Essential Gene in Mice and a Component of the Purinosome 
Tetrahydrofolates (THF) are a family of cofactors that function as one-carbon donors in folate-dependent one-carbon metabolism, a metabolic network required for the de novo synthesis of purines, thymidylate, and for the remethylation of homocysteine to methionine in the cytoplasm. 5-FormylTHF is not a cofactor in one-carbon metabolism, but serves as a storage form of THF cofactors. 5-formylTHF is mobilized back into the THF cofactor pool by methenyltetrahydrofolate synthetase (MTHFS), which catalyzes the irreversible and ATP-dependent conversion 5-formyltetrahydrofolate to 5,10-methenyltetrahydrofolate. Mthfs is not an essential gene in Arabidopsis, but MTHFS expression is elevated in animal tumors, enhances de novo purine synthesis, confers partial resistance to antifolate purine synthesis inhibitors and increases rates of folate catabolism in mammalian cell cultures. However, the mechanisms underlying these effects of MTHFS expression have yet to be established. The purpose of this study was to investigate the role and essentiality of MTHFS in mice. Mthfs was disrupted through the insertion of a gene trap vector between exons 1 and 2. Mthfsgt/+ mice were fertile and viable. No Mthfsgt/gt embryos were recovered from Mthfsgt/+ intercrosses, indicating Mthfs is an essential gene in mice. Tissue MTHFS protein levels are decreased in both Mthfsgt/+ and Mthfs+/+ mice placed on a folate and choline deficient diet, and mouse embryonic fibroblasts from Mthfsgt/+ embryos exhibit decreased capacity for de novo purine synthesis without impairment in de novo thymidylate synthesis. MTHFS was shown to co-localize with two enzymes of the de novo purine synthesis pathway in HeLa cells in a cell cycle-dependent manner, and to be modified by the small ubiquitin-like modifier (SUMO) protein. Mutation of the consensus SUMO modification sites on MTHFS eliminated co-localization of MTHFS with the de novo purine biosynthesis pathway under purine-deficient conditions. The results from this study indicate that MTHFS enhances purine biosynthesis by delivering 10-formylTHF to the purinosome in a SUMO-dependent fashion.
PMCID: PMC3268590  PMID: 22303332
folate; MTHFS; purinosome; SHMT; 5-formyltetrahydrofolate; purine biosynthesis; leucovorin; SUMO
13.  Effect of Vitamin B6 Availability on Serine Hydroxymethyltransferase in MCF-7 Cells 
Folate-activated one-carbon units are derived from serine through the activity of the pyridoxal-phosphate (PLP)-dependent isozymes of serine hydroxymethyltransferase (SHMT). The effect of vitamin B6 availability on the activity and expression of the human mitochondrial and cytoplasmic SHMT isozymes was investigated in human MCF-7 cells. Cells were cultured for 6 months in vitamin B6 replete (4.9 μM pyridoxine) minimal essential medium (αMEM) or vitamin B6-deficient medium containing 49 nM, 4.9 nM or 0.49 nM pyridoxine. Total cellular PLP levels and SHMT activity were reduced 72% and 7% respectively when medium pyridoxine was decreased from 4.9 μM to 49 nM. Cells cultured in medium containing 4.9 nM pyridoxine exhibited 75%, 27% and 60% reduced levels of PLP, SHMT activity and S-adenosylmethionine, respectively compared to cells cultured in αMEM. Cytoplasmic SHMT activity and protein levels, but not mRNA levels, were decreased in cells cultured in vitamin B6 deficient medium, whereas mitochondrial SHMT activity and protein levels were less sensitive to vitamin B6 availability. PLP bound to cytoplasmic SHMT with a Kd = 850 nM, a value two orders of magnitude lower than previously reported for the bovine cytoplasmic SHMT isozyme. Collectively, these data indicate that vitamin B6 restriction decreases the activity and stability of SHMT, and that the cytoplasmic isozyme is more sensitive to vitamin B6 deficiency than the mitochondrial isozyme in MCF-7 cells.
PMCID: PMC1976282  PMID: 17482557
serine hydroxymethyltransferase; vitamin B6; pyridoxal-phosphate; one-carbon metabolism; homocysteine; folate
14.  Inhibition of 5,10-Methenyltetrahydrofolate Synthetase 
The interaction of 5-formyltetrahydrofolate analogs with murine methenyltetrahydrofolate synthetase (MTHFS) was investigated using steady-state kinetics, molecular modeling, and site-directed mutagenesis. MTHFS catalyzes the irreversible cyclization of 5-formyltetrahydrofolate to 5,10-methenyltetrahydrofolate. Folate analogs that cannot undergo the rate-limiting step in catalysis were inhibitors of murine MTHFS. 5-formyltetrahydrohomofolate was an effective inhibitor of murine MTHFS (Ki = 0.7 μM), whereas 5-formyl, 10-methyltetrahydrofolate was a weak inhibitor (Ki = 10 μM). The former, but not the latter, was slowly phosphorylated by MTHFS. 5-formyltetrahydrohomofolate was not a substrate for murine MTHFS, but was metabolized when the MTHFS active site Y151 was mutated to Ala. MTHFS active site residues do not directly facilitate N10 attack on the on the N5-iminium phosphate intermediate, but rather restrict N10 motion around N5. Inhibitors specifically designed to block N10 attack appear to be less effective than the natural 10-formyltetrahydrofolate polyglutamate inhibitors.
PMCID: PMC1850231  PMID: 17250800
15.  Methenyltetrahydrofolate Synthetase is a High-Affinity Catecholamine-Binding Protein1 
Recombinant mouse 5,10-methenyltetrahydrofolate synthetase (MTHFS) was expressed in Escherichia coli and shown to co-purify with a chromophore that had a λmax at 320 nm. The chromophore remained bound to MTHFS during extensive dialysis, but dissociated from MTHFS when its substrate, 5-formyltetrahydrofolate, was bound. The chromophore was identified as an oxidized catecholamine by mass spectrometry and absorption spectroscopy. Purified recombinant mouse MTHFS and rabbit liver MTHFS proteins were shown to bind oxidized N-acetyldopamine (NADA) tightly. The addition of NADA to cell culture medium accelerated markedly folate turnover and decreased both folate accumulation and total cellular folate concentrations in MCF-7 cells. Expression of the MTHFS cDNA in MCF-7 cells increased the concentration of NADA required to deplete cellular folate. The results of this study are the first to identify a link between catecholamines and one-carbon metabolism and demonstrate that NADA accelerates folate turnover and impairs cellular folate accumulation in MCF-7 cells.
PMCID: PMC1769337  PMID: 17055997
5; 10-methenyltetrahydrofolate synthetase; MTHFS; catecholamines; folate; 5-formyltetrahydrofolate; N-acetyldopamine; one-carbon metabolism; NADA; MTHFS - 5,10 - methenyltetrahydrofolate synthetase; DHF - dihydrofolate; THF - tetrahydrofolate; NADA - N-acetyldopamine; oxNADA - oxidized N-acetyldopamine; AdoMet - S-adenosylmethionine; pABG - para-aminobenzoyl(poly)glutamate; ESI-MS - electrospray ionization mass spectrometry; MALDI-TOF - matrix-assisted laser desorption ionization, time-of-flight; ICP-MS - inductively coupled plasma mass spectrometry; MS - mass spectrometry; E. coli - Escherichia coli; αMEM - α-minimal essential medium
17.  Trafficking of Intracellular Folates12 
Advances in Nutrition  2011;2(4):325-331.
The role of metabolic compartmentation in spatially organizing metabolic enzymes into pathways, regulating flux through metabolic pathways, and controlling the partitioning of metabolic intermediates among pathways is appreciated, but our understanding of the mechanisms that establish metabolic architecture and mediate communication and regulation among interconnected metabolic pathways and networks is still incomplete. This review discusses recent advancements in our understanding of metabolic compartmentation within the pathways that constitute the folate-mediated one-carbon metabolic network and emerging evidence for a need to regulate the trafficking of folates among compartmentalized metabolic pathways.
PMCID: PMC3125682  PMID: 22332074
18.  Mthfd1 is a modifier of chemically induced intestinal carcinogenesis 
Carcinogenesis  2010;32(3):427-433.
The causal metabolic pathways underlying associations between folate and risk for colorectal cancer (CRC) have yet to be established. Folate-mediated one-carbon metabolism is required for the de novo synthesis of purines, thymidylate and methionine. Methionine is converted to S-adenosylmethionine (AdoMet), the major one-carbon donor for cellular methylation reactions. Impairments in folate metabolism can modify DNA synthesis, genomic stability and gene expression, characteristics associated with tumorigenesis. The Mthfd1 gene product, C1-tetrahydrofolate synthase, is a trifunctional enzyme that generates one-carbon substituted tetrahydrofolate cofactors for one-carbon metabolism. In this study, we use Mthfd1gt/+ mice, which demonstrate a 50% reduction in C1-tetrahydrofolate synthase, to determine its influence on tumor development in two mouse models of intestinal cancer, crosses between Mthfd1gt/+ and Apcmin/+ mice and azoxymethane (AOM)-induced colon cancer in Mthfd1gt/+ mice. Mthfd1 hemizygosity did not affect colon tumor incidence, number or load in Apcmin/+ mice. However, Mthfd1 deficiency increased tumor incidence 2.5-fold, tumor number 3.5-fold and tumor load 2-fold in AOM-treated mice. DNA uracil content in the colon was lower in Mthfd1gt/+ mice, indicating that thymidylate biosynthesis capacity does not play a significant role in AOM-induced colon tumorigenesis. Mthfd1 deficiency-modified cellular methylation potential, as indicated by the AdoMet: S-adenosylhomocysteine ratio and gene expression profiles, suggesting that changes in the transcriptome and/or decreased de novo purine biosynthesis and associated mutability cause cellular transformation in the AOM CRC model. This study emphasizes the impact and complexity of gene–nutrient interactions with respect to the relationships among folate metabolism and colon cancer initiation and progression.
PMCID: PMC3047240  PMID: 21156972
19.  Folate network genetic variation, plasma homocysteine, and global genomic methylation content: a genetic association study 
BMC Medical Genetics  2011;12:150.
Sequence variants in genes functioning in folate-mediated one-carbon metabolism are hypothesized to lead to changes in levels of homocysteine and DNA methylation, which, in turn, are associated with risk of cardiovascular disease.
330 SNPs in 52 genes were studied in relation to plasma homocysteine and global genomic DNA methylation. SNPs were selected based on functional effects and gene coverage, and assays were completed on the Illumina Goldengate platform. Age-, smoking-, and nutrient-adjusted genotype--phenotype associations were estimated in regression models.
Using a nominal P ≤ 0.005 threshold for statistical significance, 20 SNPs were associated with plasma homocysteine, 8 with Alu methylation, and 1 with LINE-1 methylation. Using a more stringent false discovery rate threshold, SNPs in FTCD, SLC19A1, and SLC19A3 genes remained associated with plasma homocysteine. Gene by vitamin B-6 interactions were identified for both Alu and LINE-1 methylation, and epistatic interactions with the MTHFR rs1801133 SNP were identified for the plasma homocysteine phenotype. Pleiotropy involving the MTHFD1L and SARDH genes for both plasma homocysteine and Alu methylation phenotypes was identified.
No single gene was associated with all three phenotypes, and the set of the most statistically significant SNPs predictive of homocysteine or Alu or LINE-1 methylation was unique to each phenotype. Genetic variation in folate-mediated one-carbon metabolism, other than the well-known effects of the MTHFR c.665C>T (known as c.677 C>T, rs1801133, p.Ala222Val), is predictive of cardiovascular disease biomarkers.
PMCID: PMC3266217  PMID: 22103680
20.  No association between cSHMT genotypes and risk of breast cancer in the Nurses’ Health Study 
Increased breast cancer risk has been observed with both low folate status and a functional polymorphism in methylenetetrahydrofolate reductase (MTHFR 677C→T). Cytoplasmic serine hydroxymethyltransferase (cSHMT) affects the flow of one-carbon units through the folate metabolic network, but there is little research on a role for genetic variation in cSHMT in determining breast cancer risk.
A nested case-control study within the Nurses’ Health Study was used to investigate an association between cSHMT (1420C→T) and breast cancer risk.
No evidence for an association of cSHMT genotype and breast cancer was 10 observed. There was also no evidence of a gene-gene interaction between cSHMT and MTHFR.
There was no evidence of an association between cSHMT genotype and breast cancer occurrence. Further research in populations with differing average folate intake may be needed to fully understand the interactions of folate nutrition, sequence variation in folate genes, and breast cancer risk.
PMCID: PMC3033771  PMID: 19707223
breast cancer; cSHMT; MTHFR; folate
21.  High resolution mapping and positional cloning of ENU-induced mutations in the Rw region of mouse chromosome 5 
BMC Genetics  2010;11:106.
Forward genetic screens in mice provide an unbiased means to identify genes and other functional genetic elements in the genome. Previously, a large scale ENU mutagenesis screen was conducted to query the functional content of a ~50 Mb region of the mouse genome on proximal Chr 5. The majority of phenotypic mutants recovered were embryonic lethals.
We report the high resolution genetic mapping, complementation analyses, and positional cloning of mutations in the target region. The collection of identified alleles include several with known or presumed functions for which no mutant models have been reported (Tbc1d14, Nol14, Tyms, Cad, Fbxl5, Haus3), and mutations in genes we or others previously reported (Tapt1, Rest, Ugdh, Paxip1, Hmx1, Otoe, Nsun7). We also confirmed the causative nature of a homeotic mutation with a targeted allele, mapped a lethal mutation to a large gene desert, and localized a spermiogenesis mutation to a region in which no annotated genes have coding mutations. The mutation in Tbc1d14 provides the first implication of a critical developmental role for RAB-GAP-mediated protein transport in early embryogenesis.
This collection of alleles contributes to the goal of assigning biological functions to all known genes, as well as identifying novel functional elements that would be missed by reverse genetic approaches.
PMCID: PMC3009607  PMID: 21118569
22.  SHMT1 and SHMT2 Are Functionally Redundant in Nuclear De novo Thymidylate Biosynthesis 
PLoS ONE  2009;4(6):e5839.
The three enzymes that constitute the de novo thymidylate synthesis pathway in mammals, cytoplasmic serine hydroxymethyltransferase (SHMT1), thymidylate synthase (TYMS) and dihydrofolate reductase (DHFR) undergo sumoylation and nuclear import during S-phase. In this study, we demonstrate that purified intact mouse liver nuclei convert dUMP to dTMP in the presence of NADPH and serine. Neither nuclear extracts nor intact nuclei exposed to aminomethylphosphonate, a SHMT inhibitor, exhibit thymidylate synthesis activity. Nuclei isolated from Shmt1−/− mouse livers retained 25% of thymidylate synthesis activity exhibited by nuclei isolated from wild type mice. This residual activity was due to the presence of a cytoplasmic/nuclear isozyme of SHMT encoded by Shmt2. Shmt2 is shown to encode two transcripts, one which encodes a protein that localizes exclusively to the mitochondria (SHMT2), and a second transcript that lacks exon 1 and encodes a protein that localizes to the cytoplasm and nucleus during S-phase (SHMT2α). The ability of Shmt2 to encode a cytoplasmic isozyme of SHMT may account for the viability of Shmt1−/− mice and provide redundancy that permitted the expansion of the human SHMT1 L474F polymorphism that impairs SHMT1 sumoylation and nuclear translocation.
PMCID: PMC2688753  PMID: 19513116

Results 1-22 (22)