PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-7 (7)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  A Role for Wnt Signaling Genes in the Pathogenesis of Impaired Lung Function in Asthma 
Rationale: Animal models demonstrate that aberrant gene expression in utero can result in abnormal pulmonary phenotypes.
Objectives: We sought to identify genes that are differentially expressed during in utero airway development and test the hypothesis that variants in these genes influence lung function in patients with asthma.
Methods: Stage 1 (Gene Expression): Differential gene expression analysis across the pseudoglandular (n = 27) and canalicular (n = 9) stages of human lung development was performed using regularized t tests with multiple comparison adjustments. Stage 2 (Genetic Association): Genetic association analyses of lung function (FEV1, FVC, and FEV1/FVC) for variants in five differentially expressed genes were conducted in 403 parent-child trios from the Childhood Asthma Management Program (CAMP). Associations were replicated in 583 parent-child trios from the Genetics of Asthma in Costa Rica study.
Measurements and Main Results: Of the 1,776 differentially expressed genes between the pseudoglandular (gestational age: 7–16 wk) and the canalicular (gestational age: 17–26 wk) stages, we selected 5 genes in the Wnt pathway for association testing. Thirteen single nucleotide polymorphisms in three genes demonstrated association with lung function in CAMP (P < 0.05), and associations for two of these genes were replicated in the Costa Ricans: Wnt1-inducible signaling pathway protein 1 with FEV1 (combined P = 0.0005) and FVC (combined P = 0.0004), and Wnt inhibitory factor 1 with FVC (combined P = 0.003) and FEV1/FVC (combined P = 0.003).
Conclusions: Wnt signaling genes are associated with impaired lung function in two childhood asthma cohorts. Furthermore, gene expression profiling of human fetal lung development can be used to identify genes implicated in the pathogenesis of lung function impairment in individuals with asthma.
doi:10.1164/rccm.200907-1009OC
PMCID: PMC2822972  PMID: 19926868
asthma; lung development; lung function; genetic variation; gene expression
2.  Comprehensive genetic assessment of a functional TLR9 promoter polymorphism: no replicable association with asthma or asthma-related phenotypes 
BMC Medical Genetics  2011;12:26.
Background
Prior studies suggest a role for a variant (rs5743836) in the promoter of toll-like receptor 9 (TLR9) in asthma and other inflammatory diseases. We performed detailed genetic association studies of the functional variant rs5743836 with asthma susceptibility and asthma-related phenotypes in three independent cohorts.
Methods
rs5743836 was genotyped in two family-based cohorts of children with asthma and a case-control study of adult asthmatics. Association analyses were performed using chi square, family-based and population-based testing. A luciferase assay was performed to investigate whether rs5743836 genotype influences TLR9 promoter activity.
Results
Contrary to prior reports, rs5743836 was not associated with asthma in any of the three cohorts. Marginally significant associations were found with FEV1 and FVC (p = 0.003 and p = 0.008, respectively) in one of the family-based cohorts, but these associations were not significant after correcting for multiple comparisons. Higher promoter activity of the CC genotype was demonstrated by luciferase assay, confirming the functional importance of this variant.
Conclusion
Although rs5743836 confers regulatory effects on TLR9 transcription, this variant does not appear to be an important asthma-susceptibility locus.
doi:10.1186/1471-2350-12-26
PMCID: PMC3048492  PMID: 21324137
3.  TSLP Polymorphisms are Associated with Asthma in a Sex-Specific Fashion 
Allergy  2010;65(12):1566-1575.
Background
Single nucleotide polymorphisms (SNPs) in thymic stromal lymphopoietin (TSLP) have been associated with IgE (in girls) and asthma (in general). We sought to determine whether TSLP SNPs are associated with asthma in a sex-specific fashion.
Methods
We conducted regular and sex-stratified analyses of association between SNPs in TSLP and asthma in families of asthmatic children in Costa Rica. Significant findings were replicated in white and African-American participants in the Childhood Asthma Management Program, in African Americans in the Genomic Research on Asthma in the African Diaspora study, in whites and Hispanics in the Children’s Health Study, and in whites in the Framingham Heart Study (FHS).
Main Results
Two SNPs in TSLP (rs1837253 and rs2289276) were significantly associated with a reduced risk of asthma in combined analyses of all cohorts (p values of 2×10−5 and 1×10−5, respectively). In a sex-stratified analysis, the T allele of rs1837253 was significantly associated with a reduced risk of asthma in males only (p= 3×10−6). Alternately, the T allele of rs2289276 was significantly associated with a reduced risk of asthma in females only (p= 2×10−4). Findings for rs2289276 were consistent in all cohorts except the FHS.
Conclusions
TSLP variants are associated with asthma in a sex-specific fashion.
doi:10.1111/j.1398-9995.2010.02415.x
PMCID: PMC2970693  PMID: 20560908
asthma; genetic association; sex-specific; thymic stromal lymphopoietin; TSLP
4.  Variants in TGFB1, Dust Mite Exposure, and Disease Severity in Children with Asthma 
Rationale: Polymorphisms in the gene for transforming growth factor-β1 (TGFB1) have been associated with asthma, but not with airway responsiveness or disease exacerbations in subjects with asthma.
Objectives: To test for association between single nucleotide polymorphisms (SNPs) in TGFB1 and markers of asthma severity in childhood.
Methods: We tested for the association between nine SNPs in TGFB1 and indicators of asthma severity (lung function, airway responsiveness, and disease exacerbations) in two cohorts: 416 Costa Rican parent-child trios and 465 families of non-Hispanic white children in the Childhood Asthma Management Program (CAMP). We also tested for the interaction between these polymorphisms and exposure to dust mite allergen on asthma severity.
Measurements and Main Results: The A allele of promoter SNP rs2241712 was associated with increased airway responsiveness in Costa Rica (P = 0.0006) and CAMP (P = 0.005), and the C allele of an SNP in the promoter region (rs1800469) was associated with increased airway responsiveness in both cohorts (P ≤ 0.01). Dust mite exposure modified the effect of the C allele of exonic SNP rs1800471 on airway responsiveness (P = 0.03 for interactions in both cohorts). The T allele of a coding SNP (rs1982073) was associated with a reduced risk of asthma exacerbations in Costa Rica (P = 0.009) and CAMP (P = 0.005). Dust mite exposure also significantly modified the effect of the A allele of the promoter SNP rs2241712 on asthma exacerbations in both cohorts.
Conclusions: SNPs in TGFB1 are associated with airway responsiveness and disease exacerbations in children with asthma. Moreover, dust mite exposure may modify the effect of TGFB1 SNPs on airway responsiveness and asthma exacerbations.
doi:10.1164/rccm.200808-1268OC
PMCID: PMC2648908  PMID: 19096005
airway responsiveness; asthma; dust mite allergen; single nucleotide polymorphisms; transforming growth factor-β1
5.  Genome‐wide linkage analysis of pulmonary function in families of children with asthma in Costa Rica 
Thorax  2006;62(3):224-230.
Background
Although asthma is highly prevalent among certain Hispanic subgroups, genetic determinants of asthma and asthma‐related traits have not been conclusively identified in Hispanic populations. A study was undertaken to identify genomic regions containing susceptibility loci for pulmonary function and bronchodilator responsiveness (BDR) in Costa Ricans.
Methods
Eight extended pedigrees were ascertained through schoolchildren with asthma in the Central Valley of Costa Rica. Short tandem repeat (STR) markers were genotyped throughout the genome at an average spacing of 8.2 cM. Multipoint variance component linkage analyses of forced expiratory volume in 1 second (FEV1) and FEV1/ forced vital capacity (FVC; both pre‐bronchodilator and post‐bronchodilator) and BDR were performed in these eight families (pre‐bronchodilator spirometry, n = 640; post‐bronchodilator spirometry and BDR, n = 624). Nine additional STR markers were genotyped on chromosome 7. Secondary analyses were repeated after stratification by cigarette smoking.
Results
Among all subjects, the highest logarithm of the odds of linkage (LOD) score for FEV1 (post‐bronchodilator) was found on chromosome 7q34–35 (LOD = 2.45, including the additional markers). The highest LOD scores for FEV1/FVC (pre‐bronchodilator) and BDR were found on chromosomes 2q (LOD = 1.53) and 9p (LOD = 1.53), respectively. Among former and current smokers there was near‐significant evidence of linkage to FEV1/FVC (post‐bronchodilator) on chromosome 5p (LOD = 3.27) and suggestive evidence of linkage to FEV1 on chromosomes 3q (pre‐bronchodilator, LOD = 2.74) and 4q (post‐bronchodilator, LOD = 2.66).
Conclusions
In eight families of children with asthma in Costa Rica, there is suggestive evidence of linkage to FEV1 on chromosome 7q34–35. In these families, FEV1/FVC may be influenced by an interaction between cigarette smoking and a locus (loci) on chromosome 5p.
doi:10.1136/thx.2006.067934
PMCID: PMC2117166  PMID: 17099076
6.  Sex-stratified Linkage Analysis Identifies a Female-specific Locus for IgE to Cockroach in Costa Ricans 
Rationale: The basis for gender influences on allergen-specific IgEs is unclear.
Objectives: To perform regular and sex-stratified genomewide linkage analyses of IgE to each of three allergens (Ascaris lumbricoides, Blatella germanica [German cockroach]), and Dermatophagoides pteronyssinus [dust mite]) and to conduct an association study of a candidate gene in a linked genomic region.
Methods: Genomewide linkage analyses of allergen-specific IgEs were conducted in 653 members of eight large families of Costa Rican children with asthma. An analysis of the association between single-nucleotide polymorphisms in thymic stromal lymphopoietin (TSLP) and IgE measurements was conducted in 417 parent–child trios in Costa Rica. Significant results were replicated in 470 families of white children in the Childhood Asthma Management Program (CAMP).
Measurements and Main Results: Among all subjects, there was suggestive evidence of linkage (LOD ⩾ 2.72) to IgE to Ascaris (on chromosome 7q) and IgE to dust mite (on chromosomes 7p and 12q). In a sex-stratified analysis, there was significant evidence of linkage to IgE to cockroach on chromosome 5q23 (peak LOD, 4.14 at 127 cM) in female subjects. TSLP is located within the 1.5 LOD-unit support interval for this linkage peak and has female-specific effects on lung disease in mice. In a sex-stratified analysis, the T allele of single-nucleotide polymorphism rs2289276 in TSLP was associated with reductions in IgE to cockroach (in Costa Rican girls) and total IgE (in girls in Costa Rica and in CAMP; P value for sex-by-genotype interaction, <0.01 in both studies).
Conclusions: Consistent with findings in murine models, a variant in TSLP may have female-specific effects on allergic phenotypes.
doi:10.1164/rccm.200711-1697OC
PMCID: PMC2292826  PMID: 18244952
immunoglobulin E; linkage; thymic stromal lymphopoietin; single-nucleotide polymorphisms
7.  Comprehensive Testing of Positionally Cloned Asthma Genes in Two Populations 
Rationale: Replication of gene-disease associations has become a requirement in complex trait genetics.
Objectives: In studies of childhood asthma from two different ethnic groups, we attempted to replicate associations with five potential asthma susceptibility genes previously identified by positional cloning.
Methods: We analyzed two family-based samples ascertained through an asthmatic proband: 497 European-American children from the Childhood Asthma Management Program and 439 Hispanic children from the Central Valley of Costa Rica. We genotyped 98 linkage disequilibrium–tagging single-nucleotide polymorphisms (SNPs) in five genes: ADAM33, DPP10, GPR154 (HUGO name: NPSR1), HLA-G, and the PHF11 locus (includes genes SETDB2 and RCBTB1). SNPs were tested for association with asthma and two intermediate phenotypes: airway hyperresponsiveness and total serum immunoglobulin E levels.
Measurements and Main Results: Despite differing ancestries, linkage disequilibrium patterns were similar in both cohorts. Of the five evaluated genes, SNP-level replication was found only for GPR154 (NPSR1). In this gene, three SNPs were associated with asthma in both cohorts, although the opposite alleles were associated in either study. Weak evidence for locus-level replication with asthma was found in the PHF11 locus, although there was no overlap in the associated SNP across the two cohorts. No consistent associations were observed for the three other genes.
Conclusions: These results provide some further support for the role of genetic variation in GPR154 (NPSR1) and PHF11 in asthma susceptibility and also highlight the challenges of replicating genetic associations in complex traits such as asthma, even for genes identified by linkage analysis.
doi:10.1164/rccm.200704-592OC
PMCID: PMC2048676  PMID: 17702965
bronchial hyperreactivity; immunoglobulin E; linkage disequilibrium; NPSR1; single-nucleotide polymorphism

Results 1-7 (7)