PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (63)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
Document Types
1.  Genome-wide association analysis in East Asians identifies breast cancer susceptibility loci at 1q32.1, 5q14.3 and 15q26.1 
Nature genetics  2014;46(8):886-890.
In a three-stage genome-wide association study among East Asian women including 22,780 cases and 24,181 controls, we identified three novel genetic loci associated with breast cancer risk, including rs4951011 at 1q32.1 (in intron 2 of the ZC3H11A gene, P = 8.82 × 10−9), rs10474352 at 5q14.3 (near the ARRDC3 gene, P = 1.67 × 10−9), and rs2290203 at 15q26.1 (in intron 14 of the PRC1 gene, P = 4.25 × 10−8). These associations were replicated in European-ancestry populations including 16,003 cases and 41,335 controls (P = 0.030, 0.004, and 0.010, respectively). Data from the ENCODE project suggest that variants rs4951011 and rs10474352 may be located in an enhancer region and transcription factor binding sites, respectively. This study provides additional insights into the genetics and biology of breast cancer.
doi:10.1038/ng.3041
PMCID: PMC4127632  PMID: 25038754
3.  Integrated Analysis of Whole Genome and Transcriptome Sequencing Reveals Diverse Transcriptomic Aberrations Driven by Somatic Genomic Changes in Liver Cancers 
PLoS ONE  2014;9(12):e114263.
Recent studies applying high-throughput sequencing technologies have identified several recurrently mutated genes and pathways in multiple cancer genomes. However, transcriptional consequences from these genomic alterations in cancer genome remain unclear. In this study, we performed integrated and comparative analyses of whole genomes and transcriptomes of 22 hepatitis B virus (HBV)-related hepatocellular carcinomas (HCCs) and their matched controls. Comparison of whole genome sequence (WGS) and RNA-Seq revealed much evidence that various types of genomic mutations triggered diverse transcriptional changes. Not only splice-site mutations, but also silent mutations in coding regions, deep intronic mutations and structural changes caused splicing aberrations. HBV integrations generated diverse patterns of virus-human fusion transcripts depending on affected gene, such as TERT, CDK15, FN1 and MLL4. Structural variations could drive over-expression of genes such as WNT ligands, with/without creating gene fusions. Furthermore, by taking account of genomic mutations causing transcriptional aberrations, we could improve the sensitivity of deleterious mutation detection in known cancer driver genes (TP53, AXIN1, ARID2, RPS6KA3), and identified recurrent disruptions in putative cancer driver genes such as HNF4A, CPS1, TSC1 and THRAP3 in HCCs. These findings indicate genomic alterations in cancer genome have diverse transcriptomic effects, and integrated analysis of WGS and RNA-Seq can facilitate the interpretation of a large number of genomic alterations detected in cancer genome.
doi:10.1371/journal.pone.0114263
PMCID: PMC4272259  PMID: 25526364
4.  Large-scale genetic study in East Asians identifies six new loci associated with colorectal cancer risk 
Nature genetics  2014;46(6):533-542.
Known genetic loci explain only a small proportion of the familial relative risk of colorectal cancer (CRC). We conducted the largest genome-wide association study in East Asians with 14,963 CRC cases and 31,945 controls and identified six new loci associated with CRC risk (P = 3.42 × 10−8 to 9.22 × 10−21) at 10q22.3, 10q25.2, 11q12.2, 12p13.31, 17p13.3 and 19q13.2. Two of these loci map to genes (TCF7L2 and TGFB1) with established roles in colorectal tumorigenesis. Four other loci are located in or near genes involved in transcription regulation (ZMIZ1), genome maintenance (FEN1), fatty acid metabolism (FADS1 and FADS2), cancer cell motility and metastasis (CD9) and cell growth and differentiation (NXN). We also found suggestive evidence for three additional loci associated with CRC risk near genome-wide significance at 8q24.11, 10q21.1 and 10q24.2. Furthermore, we replicated 22 previously reported CRC loci. Our study provides insights into the genetic basis of CRC and suggests new biological pathways.
doi:10.1038/ng.2985
PMCID: PMC4068797  PMID: 24836286
5.  Polymorphisms of genes involved in lipid metabolism and risk of chronic kidney disease in Japanese - cross-sectional data from the J-MICC study 
Background
Chronic kidney disease (CKD) is known to be one of the causes of cardiovascular disease and end-stage renal disease. Among the several treatable risk factors of CKD, that of dyslipidemia is relatively controversial. To clarify the association of polymorphisms in genes involved in lipid metabolism with the risk of CKD in the Japanese population, we used cross-sectional data from the Japan Multi-Institutional Collaborative Cohort (J-MICC) Study.
Methods
A total of 3,268 men and women, aged 35–69 years, were selected from J-MICC Study participants for inclusion in this study. Twenty-eight candidate single nucleotide polymorphisms (SNPs) were selected in 17 genes associated with the risk of lipid metabolism disorders, and genotyping of the subjects was conducted using the multiplex PCR-based invader assay. The prevalence of CKD was determined for stages 3–5 (defined as estimated glomerular filtration rate <60 ml/min/1.73 m2).
Results
Logistic regression analysis revealed that SNPs APOA5 T − 1131C (rs662799), APOA5 T1259C (rs2266788), TOMM40 A/G (rs157580), and CETP TaqIB (rs708272) were significantly associated with CKD risk in those individuals genotyped, with age- and sex-adjusted odds ratios (ORs) per minor allele (and 95% confidence intervals (CIs)) of OR 1.22 (95% CI: 1.06–1.39), 1.19 (1.03–1.37), 1.27 (1.12–1.45), and 0.81 (0.71–0.92), respectively. Analysis of the gene–environment interaction revealed that body mass index (BMI) was a significant effect modifier for APOA5 T − 1131C (rs662799) and a marginally significant effect modifier for APOA5 T/C (rs2266788), with the interaction between BMI ≥30 and individuals with at least one minor allele of each genotype of OR 10.43 (95% CI: 1.29–84.19) and 3.36 (0.87–13.01), respectively.
Conclusions
Four polymorphisms in APOA5, TOMM40, and CETP were shown to be significantly associated with CKD risk, and a significant interaction between the two APOA5 SNPs and BMI on CKD risk was also demonstrated. This suggests the future possibility of personalized risk estimation for this life-limiting disease.
Electronic supplementary material
The online version of this article (doi:10.1186/1476-511X-13-162) contains supplementary material, which is available to authorized users.
doi:10.1186/1476-511X-13-162
PMCID: PMC4210508  PMID: 25311932
Lipid metabolism; Chronic kidney disease; Single nucleotide polymorphism
6.  Genetic variants associated with angiotensin-converting enzyme inhibitor-associated angioedema 
Pharmacogenetics and genomics  2013;23(9):470-478.
Objective
The objective of this study was to identify genetic variants associated with angiotensin-converting enzyme (ACE) inhibitor-associated angioedema.
Participants and methods
We carried out a genome-wide association study in 175 individuals with ACE inhibitor-associated angioedema and 489 ACE inhibitor-exposed controls from Nashville (Tennessee) and Marshfield (Wisconsin). We tested for replication in 19 cases and 57 controls who participated in Ongoing Telmisartan Alone and in Combination with Ramipril Global Endpoint Trial (ONTARGET).
Results
There were no genome-wide significant associations of any single-nucleotide polymorphism (SNP) with angioedema. Sixteen SNPs in African Americans and 41 SNPs in European Americans were associated moderately with angioedema (P<10−4) and evaluated for association in ONTARGET. The T allele of rs500766 in PRKCQ was associated with a reduced risk, whereas the G allele of rs2724635 in ETV6 was associated with an increased risk of ACE inhibitor-associated angioedema in the Nashville/Marshfield sample and ONTARGET. In a candidate gene analysis, rs989692 in the gene encoding neprilysin (MME), an enzyme that degrades bradykinin and substance P, was significantly associated with angioedema in ONTARGET and Nashville/Marshfield African Americans.
Conclusion
Unlike other serious adverse drug effects, ACE inhibitor-associated angioedema is not associated with a variant with a large effect size. Variants in MME and genes involved in immune regulation may be associated with ACE inhibitor-associated angioedema.
doi:10.1097/FPC.0b013e328363c137
PMCID: PMC3904664  PMID: 23838604
adverse drug event; angioedema; angiotensin-converting enzyme; neprilysin
7.  Genetic variants associated with warfarin dose in African-American individuals: a genome-wide association study 
Lancet  2013;382(9894):790-796.
Summary
Background
VKORC1 and CYP2C9 are important contributors to warfarin dose variability, but explain less variability for individuals of African descent than for those of European or Asian descent. We aimed to identify additional variants contributing to warfarin dose requirements in African Americans.
Methods
We did a genome-wide association study of discovery and replication cohorts. Samples from African-American adults (aged ≥18 years) who were taking a stable maintenance dose of warfarin were obtained at International Warfarin Pharmacogenetics Consortium (IWPC) sites and the University of Alabama at Birmingham (Birmingham, AL, USA). Patients enrolled at IWPC sites but who were not used for discovery made up the independent replication cohort. All participants were genotyped. We did a stepwise conditional analysis, conditioning first for VKORC1 −1639G→A, followed by the composite genotype of CYP2C9*2 and CYP2C9*3. We prespecified a genome-wide significance threshold of p<5×10−8 in the discovery cohort and p<0·0038 in the replication cohort.
Findings
The discovery cohort contained 533 participants and the replication cohort 432 participants. After the prespecified conditioning in the discovery cohort, we identified an association between a novel single nucleotide polymorphism in the CYP2C cluster on chromosome 10 (rs12777823) and warfarin dose requirement that reached genome-wide significance (p=1·51×10−8). This association was confirmed in the replication cohort (p=5·04×10−5); analysis of the two cohorts together produced a p value of 4·5×10−12. Individuals heterozygous for the rs12777823 A allele need a dose reduction of 6·92 mg/week and those homozygous 9·34 mg/week. Regression analysis showed that the inclusion of rs12777823 significantly improves warfarin dose variability explained by the IWPC dosing algorithm (21% relative improvement).
Interpretation
A novel CYP2C single nucleotide polymorphism exerts a clinically relevant effect on warfarin dose in African Americans, independent of CYP2C9*2 and CYP2C9*3. Incorporation of this variant into pharmacogenetic dosing algorithms could improve warfarin dose prediction in this population.
Funding
National Institutes of Health, American Heart Association, Howard Hughes Medical Institute, Wisconsin Network for Health Research, and the Wellcome Trust.
doi:10.1016/S0140-6736(13)60681-9
PMCID: PMC3759580  PMID: 23755828
8.  Genetics of rheumatoid arthritis contributes to biology and drug discovery 
Okada, Yukinori | Wu, Di | Trynka, Gosia | Raj, Towfique | Terao, Chikashi | Ikari, Katsunori | Kochi, Yuta | Ohmura, Koichiro | Suzuki, Akari | Yoshida, Shinji | Graham, Robert R. | Manoharan, Arun | Ortmann, Ward | Bhangale, Tushar | Denny, Joshua C. | Carroll, Robert J. | Eyler, Anne E. | Greenberg, Jeffrey D. | Kremer, Joel M. | Pappas, Dimitrios A. | Jiang, Lei | Yin, Jian | Ye, Lingying | Su, Ding-Feng | Yang, Jian | Xie, Gang | Keystone, Ed | Westra, Harm-Jan | Esko, Tõnu | Metspalu, Andres | Zhou, Xuezhong | Gupta, Namrata | Mirel, Daniel | Stahl, Eli A. | Diogo, Dorothée | Cui, Jing | Liao, Katherine | Guo, Michael H. | Myouzen, Keiko | Kawaguchi, Takahisa | Coenen, Marieke J.H. | van Riel, Piet L.C.M. | van de Laar, Mart A.F.J. | Guchelaar, Henk-Jan | Huizinga, Tom W.J. | Dieudé, Philippe | Mariette, Xavier | Bridges, S. Louis | Zhernakova, Alexandra | Toes, Rene E.M. | Tak, Paul P. | Miceli-Richard, Corinne | Bang, So-Young | Lee, Hye-Soon | Martin, Javier | Gonzalez-Gay, Miguel A. | Rodriguez-Rodriguez, Luis | Rantapää-Dahlqvist, Solbritt | Ärlestig, Lisbeth | Choi, Hyon K. | Kamatani, Yoichiro | Galan, Pilar | Lathrop, Mark | Eyre, Steve | Bowes, John | Barton, Anne | de Vries, Niek | Moreland, Larry W. | Criswell, Lindsey A. | Karlson, Elizabeth W. | Taniguchi, Atsuo | Yamada, Ryo | Kubo, Michiaki | Liu, Jun S. | Bae, Sang-Cheol | Worthington, Jane | Padyukov, Leonid | Klareskog, Lars | Gregersen, Peter K. | Raychaudhuri, Soumya | Stranger, Barbara E. | De Jager, Philip L. | Franke, Lude | Visscher, Peter M. | Brown, Matthew A. | Yamanaka, Hisashi | Mimori, Tsuneyo | Takahashi, Atsushi | Xu, Huji | Behrens, Timothy W. | Siminovitch, Katherine A. | Momohara, Shigeki | Matsuda, Fumihiko | Yamamoto, Kazuhiko | Plenge, Robert M.
Nature  2013;506(7488):376-381.
A major challenge in human genetics is to devise a systematic strategy to integrate disease-associated variants with diverse genomic and biological datasets to provide insight into disease pathogenesis and guide drug discovery for complex traits such as rheumatoid arthritis (RA)1. Here, we performed a genome-wide association study (GWAS) meta-analysis in a total of >100,000 subjects of European and Asian ancestries (29,880 RA cases and 73,758 controls), by evaluating ~10 million single nucleotide polymorphisms (SNPs). We discovered 42 novel RA risk loci at a genome-wide level of significance, bringing the total to 1012–4. We devised an in-silico pipeline using established bioinformatics methods based on functional annotation5, cis-acting expression quantitative trait loci (cis-eQTL)6, and pathway analyses7–9 – as well as novel methods based on genetic overlap with human primary immunodeficiency (PID), hematological cancer somatic mutations and knock-out mouse phenotypes – to identify 98 biological candidate genes at these 101 risk loci. We demonstrate that these genes are the targets of approved therapies for RA, and further suggest that drugs approved for other indications may be repurposed for the treatment of RA. Together, this comprehensive genetic study sheds light on fundamental genes, pathways and cell types that contribute to RA pathogenesis, and provides empirical evidence that the genetics of RA can provide important information for drug discovery.
doi:10.1038/nature12873
PMCID: PMC3944098  PMID: 24390342
9.  Selective Estrogen Receptor Modulators and Pharmacogenomic Variation in ZNF423 Regulation of BRCA1 Expression: Individualized Breast Cancer Prevention 
Cancer discovery  2013;3(7):812-825.
The selective estrogen receptor modulators (SERMs) tamoxifen and raloxifene can reduce the occurrence of breast cancer in high risk women by 50%, but this FDA-approved prevention therapy is not often used. We attempted to identify genetic factors that contribute to variation in SERM breast cancer prevention using DNA from the NSABP P-1 and P-2 breast cancer prevention trials. An initial discovery genome-wide association study identified common single nucleotide polymorphisms (SNPs) in or near the ZNF423 and CTSO genes that were associated with breast cancer risk during SERM therapy. We then showed that both ZNF423 and CTSO participated in the estrogen-dependent induction of BRCA1 expression, in both cases with SNP-dependent variation in induction. ZNF423 appeared to be an estrogen-inducible BRCA1 transcription factor. The odds ratio for differences in breast cancer risk during SERM therapy for subjects homozygous for both protective or both risk alleles for ZNF423 and CTSO was 5.71.
doi:10.1158/2159-8290.CD-13-0038
PMCID: PMC3710533  PMID: 23764426
tamoxifen; raloxifene; breast cancer prevention; ZNF423; CTSO; BRCA1; single nucleotide polymorphisms; genome-wide association study
10.  Impact of polymorphisms in drug pathway genes on disease-free survival in adults with acute myeloid leukemia 
Journal of human genetics  2013;58(6):353-361.
Acute myeloid leukemia (AML) is a clinically heterogeneous disease, with 5-year disease-free survival (DFS) ranging from under 10% to over 70% for distinct groups of patients. At our institution, cytarabine, etoposide and busulfan are used in first or second remission patients treated with a 2-step approach to autologous stem cell transplantation (ASCT). In this study, we tested the hypothesis that polymorphisms in the pharmacokinetic and pharmacodynamic pathway genes of these drugs are associated with DFS in AML patients. A total of 1659 variants in 42 genes were analyzed for their association with DFS using a Cox proportional hazards model. 154 genetically European patients were used for the primary analysis. An intronic SNP in ABCC3 (rs4148405) was associated with a significantly shorter DFS (HR=3.2, p=5.6 x 10(-6)) in our primary cohort. In addition a SNP in the GSTM1-GSTM5 locus, rs3754446, was significantly associated with a shorter DFS in all patients (HR=1.8, p=0.001 for 154 European ancestry; HR=1.7, p=0.028 for 125 non-European patients). Thus for the first time, genetic variants in drug pathway genes are shown to be associated with DFS in AML patients treated with chemotherapy-based autologous ASCT.
doi:10.1038/jhg.2013.38
PMCID: PMC4068832  PMID: 23677058
11.  Genome-wide association analysis of red blood cell traits in African Americans: the COGENT Network 
Human Molecular Genetics  2013;22(12):2529-2538.
Laboratory red blood cell (RBC) measurements are clinically important, heritable and differ among ethnic groups. To identify genetic variants that contribute to RBC phenotypes in African Americans (AAs), we conducted a genome-wide association study in up to ∼16 500 AAs. The alpha-globin locus on chromosome 16pter [lead SNP rs13335629 in ITFG3 gene; P < 1E−13 for hemoglobin (Hgb), RBC count, mean corpuscular volume (MCV), MCH and MCHC] and the G6PD locus on Xq28 [lead SNP rs1050828; P < 1E − 13 for Hgb, hematocrit (Hct), MCV, RBC count and red cell distribution width (RDW)] were each associated with multiple RBC traits. At the alpha-globin region, both the common African 3.7 kb deletion and common single nucleotide polymorphisms (SNPs) appear to contribute independently to RBC phenotypes among AAs. In the 2p21 region, we identified a novel variant of PRKCE distinctly associated with Hct in AAs. In a genome-wide admixture mapping scan, local European ancestry at the 6p22 region containing HFE and LRRC16A was associated with higher Hgb. LRRC16A has been previously associated with the platelet count and mean platelet volume in AAs, but not with Hgb. Finally, we extended to AAs the findings of association of erythrocyte traits with several loci previously reported in Europeans and/or Asians, including CD164 and HBS1L-MYB. In summary, this large-scale genome-wide analysis in AAs has extended the importance of several RBC-associated genetic loci to AAs and identified allelic heterogeneity and pleiotropy at several previously known genetic loci associated with blood cell traits in AAs.
doi:10.1093/hmg/ddt087
PMCID: PMC3658166  PMID: 23446634
12.  Pharmacogenomics of selective serotonin reuptake inhibitor treatment for major depressive disorder: genome-wide associations and functional genomics 
The pharmacogenomics journal  2012;13(5):456-463.
A genome-wide association (GWA) study of treatment outcomes (response and remission) of selective serotonin reuptake inhibitors (SSRIs) was conducted using 529 subjects with major depressive disorder (MDD). While no SNP associations reached the genome-wide level of significance, 14 SNPs of interest were identified for functional analysis. The rs11144870 SNP in riboflavin kinase (RFK) gene on chromosome 9 was associated with eight week treatment response (OR = 0.42, p = 1.04×10−6). The rs915120 SNP in the G protein-coupled receptor kinase 5 (GRK5) gene on chromosome 10 was associated with eight week remission (OR = 0.50, p = 1.15×10−5). Both SNPs were shown to influence transcription by a reporter gene assay and to alter nuclear protein binding using an electrophoretic mobility shift assay. This report represents an example of joining functional genomics with traditional GWA study results derived from a GWA analysis of SSRI treatment outcomes. The goal of this analytic strategy is to provide insights into the potential relevance of biologically plausible observed associations.
doi:10.1038/tpj.2012.32
PMCID: PMC3941038  PMID: 22907730
selective serotonin reuptake inhibitors; SSRI; genome-wide association study; GWA; functional genomics; major depressive disorder
13.  The Construction of Risk Prediction Models Using GWAS Data and Its Application to a Type 2 Diabetes Prospective Cohort 
PLoS ONE  2014;9(3):e92549.
Recent genome-wide association studies (GWAS) have identified several novel single nucleotide polymorphisms (SNPs) associated with type 2 diabetes (T2D). Various models using clinical and/or genetic risk factors have been developed for T2D risk prediction. However, analysis considering algorithms for genetic risk factor detection and regression methods for model construction in combination with interactions of risk factors has not been investigated. Here, using genotype data of 7,360 Japanese individuals, we investigated risk prediction models, considering the algorithms, regression methods and interactions. The best model identified was based on a Bayes factor approach and the lasso method. Using nine SNPs and clinical factors, this method achieved an area under a receiver operating characteristic curve (AUC) of 0.8057 on an independent test set. With the addition of a pair of interaction factors, the model was further improved (p-value 0.0011, AUC 0.8085). Application of our model to prospective cohort data showed significantly better outcome in disease-free survival, according to the log-rank trend test comparing Kaplan-Meier survival curves (). While the major contribution was from clinical factors rather than the genetic factors, consideration of genetic risk factors contributed to an observable, though small, increase in predictive ability. This is the first report to apply risk prediction models constructed from GWAS data to a T2D prospective cohort. Our study shows our model to be effective in prospective prediction and has the potential to contribute to practical clinical use in T2D.
doi:10.1371/journal.pone.0092549
PMCID: PMC3961382  PMID: 24651836
14.  Integration of cell line and clinical trial genome-wide analyses supports a polygenic architecture of paclitaxel-induced sensory peripheral neuropathy 
Purpose
We sought to demonstrate the relevance of a lymphoblastoid cell line (LCL) model in the discovery of clinically relevant genetic variants affecting chemotherapeutic response by comparing LCL genome-wide association study (GWAS) results to clinical GWAS results.
Experimental Design
A GWAS of paclitaxel-induced cytotoxicity was performed in 247 LCLs from the HapMap Project and compared to a GWAS of sensory peripheral neuropathy in breast cancer patients (n=855) treated with paclitaxel in the Cancer and Leukemia Group B (CALGB) 40101 trial. Significant enrichment was assessed by permutation resampling analysis.
Results
We observed an enrichment of LCL cytotoxicity-associated single nucleotide polymorphisms (SNPs) in the sensory peripheral neuropathy-associated SNPs from the clinical trial with concordant allelic directions of effect (empirical P = 0.007). Of the 24 SNPs that overlap between the clinical trial (P < 0.05) and the preclinical cytotoxicity study (P < 0.001), 19 of them are expression quantitative trait loci (eQTLs), which is a significant enrichment of this functional class (empirical P = 0.0447). One of these eQTLs is located in RFX2, which encodes a member of the DNA-binding regulatory factor X family. Decreased expression of this gene by siRNA resulted in increased sensitivity of NS-1 (rat pheochromocytoma) cells to paclitaxel as measured by reduced neurite outgrowth and increased cytotoxicity, functionally validating the involvement of RFX2 in nerve cell response to paclitaxel.
Conclusions
The enrichment results and functional example imply that cellular models of chemotherapeutic toxicity may capture components of the underlying polygenic architecture of related traits in patients.
doi:10.1158/1078-0432.CCR-12-2618
PMCID: PMC3549006  PMID: 23204130
pharmacogenomics; clinical trial; cell lines; paclitaxel; genome-wide association
15.  High density genotyping study identifies four new susceptibility loci for atopic dermatitis 
Nature genetics  2013;45(7):808-812.
Atopic dermatitis is a common inflammatory skin disease with a strong heritable component. Pathogenetic models consider keratinocyte differentiation defects and immune alterations as scaffolds1, and recent data indicate a role for autoreactivity in at least a subgroup of patients2. With filaggrin (FLG) a major locus causing a skin barrier deficiency was identified3. To better define risk variants and identify additional susceptibility loci, we densely genotyped 2,425 German cases and 5,449 controls using the Immunochip array, followed by replication in 7,196 cases and 15,480 controls from Germany, Ireland, Japan and China. We identified 4 new susceptibility loci for atopic dermatitis and replicated previous associations. This brings the number of atopic dermatitis risk loci reported in individuals of European ancestry to 11. We estimate that these susceptibility loci together account for 14.4% of the heritability for atopic dermatitis.
doi:10.1038/ng.2642
PMCID: PMC3797441  PMID: 23727859
16.  Gene-Gene Combination Effect and Interactions among ABCA1, APOA1, SR-B1, and CETP Polymorphisms for Serum High-Density Lipoprotein-Cholesterol in the Japanese Population 
PLoS ONE  2013;8(12):e82046.
Background/Objective
Gene-gene interactions in the reverse cholesterol transport system for high-density lipoprotein-cholesterol (HDL-C) are poorly understood. The present study observed gene-gene combination effect and interactions between single nucleotide polymorphisms (SNPs) in ABCA1, APOA1, SR-B1, and CETP in serum HDL-C from a cross-sectional study in the Japanese population.
Methods
The study population comprised 1,535 men and 1,515 women aged 35–69 years who were enrolled in the Japan Multi-Institutional Collaborative Cohort (J-MICC) Study. We selected 13 SNPs in the ABCA1, APOA1, CETP, and SR-B1 genes in the reverse cholesterol transport system. The effects of genetic and environmental factors were assessed using general linear and logistic regression models after adjusting for age, sex, and region.
Principal Findings
Alcohol consumption and daily activity were positively associated with HDL-C levels, whereas smoking had a negative relationship. The T allele of CETP, rs3764261, was correlated with higher HDL-C levels and had the highest coefficient (2.93 mg/dL/allele) among the 13 SNPs, which was statistically significant after applying the Bonferroni correction (p<0.001). Gene-gene combination analysis revealed that CETP rs3764261 was associated with high HDL-C levels with any combination of SNPs from ABCA1, APOA1, and SR-B1, although no gene-gene interaction was apparent. An increasing trend for serum HDL-C was also observed with an increasing number of alleles (p<0.001).
Conclusions
The present study identified a multiplier effect from a polymorphism in CETP with ABCA1, APOA1, and SR-B1, as well as a dose-dependence according to the number of alleles present.
doi:10.1371/journal.pone.0082046
PMCID: PMC3869658  PMID: 24376512
17.  HLA-DQB1*03 Confers Susceptibility to Chronic Hepatitis C in Japanese: A Genome-Wide Association Study 
PLoS ONE  2013;8(12):e84226.
Hepatitis C virus (HCV) establishes a chronic infection in 70-80% of infected individuals. Many researchers have examined the effect of human leukocyte antigen (HLA) on viral persistence because of its critical role in the immune response against exposure to HCV, but almost all studies have proven to be inconclusive. To identify genetic risk factors for chronic HCV infection, we analyzed 458,207 single nucleotide polymorphisms (SNPs) in 481 chronic HCV patients and 2,963 controls in a Japanese cohort. Next, we performed a replication study with an independent panel of 4,358 cases and 1,114 controls. We further confirmed the association in 1,379 cases and 25,817 controls. In the GWAS phase, we found 17 SNPs that showed suggestive association (P < 1 × 10-5). After the first replication study, we found one intronic SNP in the HLA-DQ locus associated with chronic HCV infection, and when we combined the two studies, the association reached the level of genome-wide significance. In the second replication study, we again confirmed the association (Pcombined = 3.59 × 10−16, odds ratio [OR] = 0.79). Subsequent analysis revealed another SNP, rs1130380, with a stronger association (OR=0.72). This nucleotide substitution causes an amino acid substitution (R55P) in the HLA-DQB1 protein specific to the DQB1*03 allele, which is common worldwide. In addition, we confirmed an association with the previously reported IFNL3-IFNL4 locus and propose that the effect of DQB1*03 on HCV persistence might be affected by the IFNL4 polymorphism. Our findings suggest that a common amino acid substitution in HLA-DQB1 affects susceptibility to chronic infection with HCV in the Japanese population and may not be independent of the IFNL4 genotype.
doi:10.1371/journal.pone.0084226
PMCID: PMC3871580  PMID: 24376798
18.  Common variants at CDKAL1 and KLF9 are associated with body mass index in East Asian populations 
Nature genetics  2012;44(3):10.1038/ng.1086.
Obesity is a disorder with complex genetic etiology, and its epidemic is a worldwide problem. Although multiple genetic loci associated with body mass index (BMI), the most common measure of obesity, have been identified in European populations, few studies have focused on Asian populations. Here, we report a genome-wide association study (GWAS) and replication studies with 62,245 East Asian subjects, which identified two novel BMI-associated loci in the CDKAL1 locus at 6p22 (rs2206734, P = 1.4 × 10−11) and the KLF9 locus at 9q21 (rs11142387, P = 1.3 × 10−9), as well as previously reported loci (the SEC16B, BDNF, FTO, MC4R, and GIPR loci; P < 5.0 × 10−8). We subsequently performed gene–gene interaction analysis and identified an interaction (P = 2.0 × 10−8) between SNPs in the KLF9 locus (rs11142387) and the GDF8 locus at 2q32 (rs13034723). These findings should provide useful insights into the etiology of obesity.
doi:10.1038/ng.1086
PMCID: PMC3838874  PMID: 22344221
19.  Polymorphisms in PPAR Genes (PPARD, PPARG, and PPARGC1A) and the Risk of Chronic Kidney Disease in Japanese: Cross-Sectional Data from the J-MICC Study 
PPAR Research  2013;2013:980471.
Chronic kidney disease (CKD) is well known as a strong risk factor for both end stage renal disease and cardiovascular disease. To clarify the association of polymorphisms in the PPAR genes (PPARD, PPARG, and PPARGC1A) with the risk of CKD in Japanese, we examined this association among the Japanese subjects using the cross-sectional data of J-MICC (Japan Multi-Institutional Collaborative Cohort) Study. The subjects for this analysis were 3,285 men and women, aged 35–69 years, selected from J-MICC Study participants; genotyping was conducted by multiplex polymerase chain reaction-based Invader assay. The prevalence of CKD was determined for CKD stages 3–5 (defined as eGFR < 60 ml/min/1.73 m2). Participants with CKD accounted for 17.3% of the study population. When those with PPARD T-842C T/T were defined as reference, those with PPARD T-842C T/C and C/C demonstrated the OR for CKD of 1.26 (95%CI 1.04–1.53) and 1.31 (95%CI 0.83–2.06), respectively. There were no significant associations between the polymorphisms in other PPAR genes and the risk of CKD. The present study found a significantly increased risk of CKD in those with the C allele of PPARD T-842C, which may suggest the possibility of personalized risk estimation of this life-limiting disease in the near future.
doi:10.1155/2013/980471
PMCID: PMC3830885  PMID: 24288525
20.  Genome Wide Analysis of Drug-Induced Torsades de Pointes: Lack of Common Variants with Large Effect Sizes 
PLoS ONE  2013;8(11):e78511.
Marked prolongation of the QT interval on the electrocardiogram associated with the polymorphic ventricular tachycardia Torsades de Pointes is a serious adverse event during treatment with antiarrhythmic drugs and other culprit medications, and is a common cause for drug relabeling and withdrawal. Although clinical risk factors have been identified, the syndrome remains unpredictable in an individual patient. Here we used genome-wide association analysis to search for common predisposing genetic variants. Cases of drug-induced Torsades de Pointes (diTdP), treatment tolerant controls, and general population controls were ascertained across multiple sites using common definitions, and genotyped on the Illumina 610k or 1M-Duo BeadChips. Principal Components Analysis was used to select 216 Northwestern European diTdP cases and 771 ancestry-matched controls, including treatment-tolerant and general population subjects. With these sample sizes, there is 80% power to detect a variant at genome-wide significance with minor allele frequency of 10% and conferring an odds ratio of ≥2.7. Tests of association were carried out for each single nucleotide polymorphism (SNP) by logistic regression adjusting for gender and population structure. No SNP reached genome wide-significance; the variant with the lowest P value was rs2276314, a non-synonymous coding variant in C18orf21 (p  =  3×10−7, odds ratio = 2, 95% confidence intervals: 1.5–2.6). The haplotype formed by rs2276314 and a second SNP, rs767531, was significantly more frequent in controls than cases (p  =  3×10−9). Expanding the number of controls and a gene-based analysis did not yield significant associations. This study argues that common genomic variants do not contribute importantly to risk for drug-induced Torsades de Pointes across multiple drugs.
doi:10.1371/journal.pone.0078511
PMCID: PMC3819377  PMID: 24223155
21.  Genome-Wide Association Study of Breast Cancer in the Japanese Population 
PLoS ONE  2013;8(10):e76463.
Breast cancer is the most common malignancy among women in worldwide including Japan. Several studies have identified common genetic variants to be associated with the risk of breast cancer. Due to the complex linkage disequilibrium structure and various environmental exposures in different populations, it is essential to identify variants associated with breast cancer in each population, which subsequently facilitate the better understanding of mammary carcinogenesis. In this study, we conducted a genome-wide association study (GWAS) as well as whole-genome imputation with 2,642 cases and 2,099 unaffected female controls. We further examined 13 suggestive loci (P<1.0×10−5) using an independent sample set of 2,885 cases and 3,395 controls and successfully validated two previously-reported loci, rs2981578 (combined P-value of 1.31×10−12, OR = 1.23; 95% CI = 1.16–.30) on chromosome 10q26 (FGFR2), rs3803662 (combined P-value of 2.79×10−11, OR = 1.21; 95% CI = 1.15–.28) and rs12922061 (combined P-value of 3.97×10−10, OR = 1.23; 95% CI = 1.15–.31) on chromosome 16q12 (TOX3-LOC643714). Weighted genetic risk score on the basis of three significantly associated variants and two previously reported breast cancer associated loci in East Asian population revealed that individuals who carry the most risk alleles in category 5 have 2.2 times higher risk of developing breast cancer in the Japanese population than those who carry the least risk alleles in reference category 1. Although we could not identify additional loci associated with breast cancer, our study utilized one of the largest sample sizes reported to date, and provided genetic status that represent the Japanese population. Further local and international collaborative study is essential to identify additional genetic variants that could lead to a better, accurate prediction for breast cancer.
doi:10.1371/journal.pone.0076463
PMCID: PMC3797071  PMID: 24143190
22.  Correction: Genome Wide Association Study of Age at Menarche in the Japanese Population 
PLoS ONE  2013;8(10):10.1371/annotation/1238450b-9ba4-4afb-aee3-a3c11b4f5ea1.
doi:10.1371/annotation/1238450b-9ba4-4afb-aee3-a3c11b4f5ea1
PMCID: PMC3794065
23.  Lumbar disc degeneration is linked to a carbohydrate sulfotransferase 3 variant 
The Journal of Clinical Investigation  2013;123(11):4909-4917.
Lumbar disc degeneration (LDD) is associated with both genetic and environmental factors and affects many people worldwide. A hallmark of LDD is loss of proteoglycan and water content in the nucleus pulposus of intervertebral discs. While some genetic determinants have been reported, the etiology of LDD is largely unknown. Here we report the findings from linkage and association studies on a total of 32,642 subjects consisting of 4,043 LDD cases and 28,599 control subjects. We identified carbohydrate sulfotransferase 3 (CHST3), an enzyme that catalyzes proteoglycan sulfation, as a susceptibility gene for LDD. The strongest genome-wide linkage peak encompassed CHST3 from a Southern Chinese family–based data set, while a genome-wide association was observed at rs4148941 in the gene in a meta-analysis using multiethnic population cohorts. rs4148941 lies within a potential microRNA-513a-5p (miR-513a-5p) binding site. Interaction between miR-513a-5p and mRNA transcribed from the susceptibility allele (A allele) of rs4148941 was enhanced in vitro compared with transcripts from other alleles. Additionally, expression of CHST3 mRNA was significantly reduced in the intervertebral disc cells of human subjects carrying the A allele of rs4148941. Together, our data provide new insights into the etiology of LDD, implicating an interplay between genetic risk factors and miRNA.
doi:10.1172/JCI69277
PMCID: PMC3809787  PMID: 24216480
24.  A Genome-Wide Association Study Identifies Novel Loci for Paclitaxel-Induced Sensory Peripheral Neuropathy in CALGB 40101 
Purpose
Sensory peripheral neuropathy is a common and sometimes debilitating toxicity associated with paclitaxel therapy. This study aims to identify genetic risk factors for development of this toxicity.
Experimental Design
A prospective pharmacogenetic analysis of primary breast cancer patients randomized to the paclitaxel arm of CALGB 40101 was used to identify genetic predictors of the onset and severity of sensory peripheral neuropathy. A genome-wide association study in 855 subjects of European ancestry was performed and findings were replicated in additional European (n = 154) and African American (n = 117) subjects.
Results
A single nucleotide polymorphism in FGD4 was associated with the onset of sensory peripheral neuropathy in the discovery cohort (rs10771973; HR, 1.57; 95% CI, 1.30–1.91; P = 2.6 × 10−6) and in a European (HR, 1.72; 95% CI, 1.06–2.80; P = 0.013) and African American (HR, 1.93; 95% CI, 1.13-3.28; P = 6.7 × 10−3) replication cohort. There is also evidence that markers in additional genes, including EPHA5 (rs7349683) and FZD3 (rs10771973), were associated with the onset or severity of paclitaxel-induced sensory peripheral neuropathy.
Conclusions
A genome-wide association study has identified novel genetic markers of paclitaxel-induced sensory peripheral neuropathy, including a common polymorphism in FGD4, a congenital peripheral neuropathy gene. These findings suggest that genetic variation may contribute to variation in development of this toxicity. Validation of these findings may allow for the identification of patients at increased risk of peripheral neuropathy and inform the use of an alternative to paclitaxel and/or the clinical management of this toxicity.
doi:10.1158/1078-0432.CCR-12-1590
PMCID: PMC3445665  PMID: 22843789
paclitaxel; peripheral neuropathy; breast cancer; pharmacogenetics; genome-wide association study
25.  A genome-wide association study of chemotherapy-induced alopecia in breast cancer patients 
Introduction
Chemotherapy-induced alopecia is one of the most common adverse events caused by conventional cytotoxic chemotherapy, yet there has been very little progress in the prevention or treatment of this side effect. Although this is not a life-threatening event, alopecia is very psychologically difficult for many women to manage. In order to improve the quality of life for these women, it is important to elucidate the molecular mechanisms of chemotherapy-induced alopecia and develop ways to effectively prevent and/or treat it. To identify the genetic risk factors associated with chemotherapy-induced alopecia, we conducted a genome-wide association study (GWAS) using DNA samples from breast cancer patients who were treated with chemotherapy.
Methods
We performed a case-control association study of 303 individuals who developed grade 2 alopecia, and compared them with 880 breast cancer patients who did not show hair loss after being treated with conventional chemotherapy. In addition, we separately analyzed a subset of patients who received specific combination therapies by GWASs and applied the weighted genetic risk scoring (wGRS) system to investigate the cumulative effects of the associated SNPs.
Results
We identified an SNP significantly associated with drug-induced grade 2 alopecia (rs3820706 in CACNB4 (calcium channel voltage-dependent subunit beta 4) on 2q23, P = 8.13 × 10-9, OR = 3.71) and detected several SNPs that showed some suggestive associations by subgroup analyses. We also classified patients into four groups on the basis of wGRS analysis and found that patients who classified in the highest risk group showed 443 times higher risk of antimicrotubule agents-induced alopecia than the lowest risk group.
Conclusions
Our study suggests several associated genes and should shed some light on the molecular mechanism of alopecia in chemotherapy-treated breast cancer patients and hopefully will contribute to development of interventions that will improve the quality of life (QOL) of cancer patients.
doi:10.1186/bcr3475
PMCID: PMC3978764  PMID: 24025145

Results 1-25 (63)