PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (42)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
1.  Identification of PCDH1 as a Novel Susceptibility Gene for Bronchial Hyperresponsiveness 
Rationale: Asthma is a chronic inflammatory airway disease that affects more than 300 million individuals worldwide. Asthma is caused by interaction of genetic and environmental factors. Bronchial hyperresponsiveness (BHR) is a hallmark of asthma and results from increased sensitivity of the airways to physical or chemical stimulants. BHR and asthma are linked to chromosome 5q31-q33.
Objectives: To identify a gene for BHR on chromosome 5q31-q33.
Methods: In 200 Dutch families with asthma, linkage analysis and fine mapping were performed, and the Protocadherin 1 gene (PCDH1) was identified. PCDH1 was resequenced in 96 subjects from ethnically diverse populations to identify novel sequence variants. Subsequent replication studies were undertaken in seven populations from The Netherlands, the United Kingdom, and the United States, including two general population samples, two family samples, and three case-control samples. PCDH1 mRNA and protein expression was investigated using polymerase chain reaction, Western blotting, and immunohistochemistry.
Measurements and Main Results: In seven out of eight populations (n = 6,168) from The Netherlands, United Kingdom, and United States, PCHD1 gene variants were significantly associated with BHR (P values, 0.005–0.05) This association was present in both families with asthma and general populations. PCDH1 mRNA and protein were expressed in airway epithelial cells and in macrophages.
Conclusions: PCDH1 is a novel gene for BHR in adults and children. The identification of PCDH1 as a BHR susceptibility gene may suggest that a structural defect in the integrity of the airway epithelium, the first line of defense against inhaled substances, contributes to the development of BHR.
doi:10.1164/rccm.200810-1621OC
PMCID: PMC2778155  PMID: 19729670
bronchial hyperresponsiveness; asthma genetics; protocadherin-1; cell adhesion; airway epithelium
2.  Fractional exhaled nitric oxide in childhood is associated with 17q11.2-q12 and 17q12-q21 variants 
Background
The fractional concentration of nitric oxide in exhaled air (FeNO) is a biomarker of eosinophilic airway inflammation and associated with childhood asthma. Identification of common genetic variants associated with childhood FeNO may help to define biological mechanisms related to specific asthma phenotypes.
Objective
To identify genetic variants associated with childhood FeNO, and their relation with asthma.
Methods
FeNO was measured in children aged 5 to 15 years. In 14 genome-wide association (GWA) studies (N = 8,858), we examined the associations of ~2.5 million single nucleotide polymorphisms (SNPs) with FeNO. Subsequently, we assessed whether significant SNPs were expression quantitative trait loci (eQTLs) in genome-wide expression datasets of lymphoblastoid cell lines (N = 1,830), and were related with asthma in a previously published GWA dataset (cases: n=10,365; controls: n=16,110).
Results
We identified 3 SNPs associated with FeNO: rs3751972 in LYR motif containing 9 (LYRM9) (P = 1.97×10−10) and rs944722 in inducible nitric oxide synthase 2 (NOS2) (P = 1.28×10−9) both located at 17q11.2-q12, and rs8069176 near gasdermin B (GSDMB) (P = 1.88×10−8) at 17q12-q21. We found a cis eQTL for the transcript soluble galactoside-binding lectin 9 (LGALS9) that is in linkage disequilibrium with rs944722. Rs8069176 was associated with GSDMB and ORM1-like 3 (ORMDL3) expression. Rs8069176 at 17q12-q21, and not rs3751972 and rs944722 at 17q11.2-q12, were associated with physician-diagnosed asthma.
Conclusion
This study identified 3 variants associated with FeNO, explaining 0.95% of the variance. Identification of functional SNPs and haplotypes in these regions might provide novel insight in the regulation of FeNO. This study highlights that both shared and distinct genetic factors affect FeNO and childhood asthma.
doi:10.1016/j.jaci.2013.08.053
PMCID: PMC4334587  PMID: 24315451
airway inflammation; asthma phenotypes; biomarker; genetics; genome-wide association study
4.  BMI, waist circumference at 8 and 12 years of age and FVC and FEV1 at 12 years of age; the PIAMA birth cohort study 
Background
In adults, overweight is associated with reduced lung function, in children evidence on this association is conflicting. We examined the association of body mass index (BMI) and waist circumference (WC) at age 12, and of persistently (at ages 8 and 12 years) high BMI and large WC, with forced vital capacity (FVC) and forced expiratory volume in 1 second (FEV1) at age 12.
Methods
Height, weight, WC and FVC and FEV1 were measured during a medical examination in 1288 12-year-olds participating in the PIAMA birth cohort study. 1090 children also had BMI and WC measured at age 8. The associations between BMI and WC and FVC, FEV1, and FEV1/FVC ratio were studied using local and linear regression analyses, separately for girls and boys. The regression models were adjusted for age, height, and pubertal development and maternal educational level.
Results
High BMI and large WC (sd-score >90th percentile) were associated with higher FVC; in girls these associations were statistically significant (4.6% (95% CI: 1.5, 7.9) and 3.6% (95% CI: 0.6, 6.8) respectively in adjusted models). Similar associations were observed for persistently high BMI or large WC: girls with a high BMI or large WC at both 8 and 12 years had statistically significantly higher FVC at age 12 years (BMI: 4.9% (95% CI 0.9, 9.1), WC: 5.0% (95% CI 0.7, 9.6)) than girls with normal BMI or WC at both ages. No statistically significant associations were observed between (persistently) high BMI or large WC and FEV1. The FEV1/FVC ratio was statistically significantly lower in children with a high BMI or large WC than in children with a normal BMI or WC. Girls and boys with a persistently high BMI or large WC status had statistically significantly lower FEV1/FVC ratios.
Conclusion
At 12 years of age, a persistently high BMI or large WC is not yet associated with lower FVC and FEV1, suggesting that this association, that is commonly observed in adults, develops at a later age.
Electronic supplementary material
The online version of this article (doi:10.1186/s12890-015-0032-0) contains supplementary material, which is available to authorized users.
doi:10.1186/s12890-015-0032-0
PMCID: PMC4409985  PMID: 25896340
Birth cohort; Lung volume; Overweight
5.  Change in HbA1c Levels between the Age of 8 Years and the Age of 12 Years in Dutch Children without Diabetes: The PIAMA Birth Cohort Study 
PLoS ONE  2015;10(4):e0119615.
Objective
HbA1c is associated with cardiovascular risk in persons without diabetes and cardiovascular risk accumulates over the life course. Therefore, insight in factors determining HbA1c from childhood onwards is important. We investigated (lifestyle) determinants of HbA1c at age 12 years and the effects of growth on change in HbA1c and the tracking of HbA1c between the age of 8 and 12 years.
Study Design and Methods
Anthropometric measurements were taken and HbA1c levels were assessed in 955 children without diabetes aged around 12 years participating in the PIAMA birth cohort study. In 363 of these children HbA1c was also measured at age 8 years. Data on parents and children were collected prospectively by questionnaires.
Results
We found no significant association between known risk factors for diabetes and HbA1c at age 12 years. Mean(SD) change in HbA1c between ages 8 and 12 years was 0.6(0.7) mmol/mol per year (or 0.1(0.1) %/yr). Anthropometric measures at age 8 and their change between age 8 and 12 years were not associated with the change in HbA1c. 68.9% of the children remained in the same quintile or had an HbA1c one quintile higher or lower at age 8 years compared to age 12 years.
Conclusion
The lack of association between known risk factors for diabetes and HbA1c suggest that HbA1c in children without diabetes is relatively unaffected by factors associated with glycaemia. HbA1c at age 8 years is by far the most important predictor of HbA1c at age 12. Therefore, the ranking of HbA1c levels appear to be fairly stable over time.
doi:10.1371/journal.pone.0119615
PMCID: PMC4395421  PMID: 25875773
6.  Difference in the Breast Milk Proteome between Allergic and Non-Allergic Mothers 
PLoS ONE  2015;10(3):e0122234.
Background
Breastfeeding has been linked to a reduction in the prevalence of allergy and asthma. However, studies on this relationship vary in outcome, which may partly be related to differences in breast milk composition. In particular breast milk composition may differ between allergic and non-allergic mothers. Important components that may be involved are breast milk proteins, as these are known to regulate immune development in the newborn. The objective of this study was therefore to explore differences in the proteins of breast milk from 20 allergic and non-allergic mothers. The results from this comparison may then be used to generate hypotheses on proteins associated with allergy in their offspring.
Methods
Milk samples from allergic and non-allergic mothers were obtained from the PIAMA project, a prospective birth cohort study on incidence, risk factors, and prevention of asthma and inhalant allergy. Non-targeted proteomics technology, based on liquid chromatography and mass spectrometry, was used to compare breast milk from allergic and non-allergic mothers.
Results
Nineteen proteins, out of a total of 364 proteins identified in both groups, differed significantly in concentration between the breast milk of allergic and non-allergic mothers. Protease inhibitors and apolipoproteins were present in much higher concentrations in breast milk of allergic than non-allergic mothers. These proteins have been suggested to be linked to allergy and asthma.
Conclusions
The non-targeted milk proteomic analysis employed has provided new targets for future studies on the relation between breast milk composition and allergy.
doi:10.1371/journal.pone.0122234
PMCID: PMC4370490  PMID: 25798592
7.  An ADAM33 Polymorphism Associates with Progression of Preschool Wheeze into Childhood Asthma: A Prospective Case-Control Study with Replication in a Birth Cohort Study 
PLoS ONE  2015;10(3):e0119349.
Background
The influence of asthma candidate genes on the development from wheeze to asthma in young children still needs to be defined.
Objective
To link genetic variants in asthma candidate genes to progression of wheeze to persistent wheeze into childhood asthma.
Materials and Methods
In a prospective study, children with recurrent wheeze from the ADEM (Asthma DEtection and Monitoring) study were followed until the age of six. At that age a classification (transient wheeze or asthma) was based on symptoms, lung function and medication use. In 198 children the relationship between this classification and 30 polymorphisms in 16 asthma candidate genes was assessed by logistic regression. In case of an association based on a p<0.10, replication analysis was performed in an independent birth cohort study (KOALA study, n = 248 included for the present analysis).
Results
In the ADEM study, the minor alleles of ADAM33 rs511898 and rs528557 and the ORMDL3/GSDMB rs7216389 polymorphisms were negatively associated, whereas the minor alleles of IL4 rs2243250 and rs2070874 polymorphisms were positively associated with childhood asthma. When replicated in the KOALA study, ADAM33 rs528557 showed a negative association of the CG/GG-genotype with progression of recurrent wheeze into childhood asthma (0.50 (0.26-0.97) p = 0.04) and no association with preschool wheeze.
Conclusion
Polymorphisms in ADAM33, ORMDL3/GSDMB and IL4 were associated with childhood asthma in a group of children with recurrent wheeze. The replication of the negative association of the CG/GG-genotype of rs528557 ADAM33 with childhood asthma in an independent birth cohort study confirms that a compromised ADAM33 gene may be implicated in the progression of wheeze into childhood asthma.
doi:10.1371/journal.pone.0119349
PMCID: PMC4358930  PMID: 25768087
8.  Common genes underlying asthma and COPD? Genome-wide analysis on the Dutch hypothesis 
The European respiratory journal  2014;44(4):860-872.
Asthma and chronic obstructive pulmonary disease (COPD) are thought to share a genetic background (“Dutch hypothesis”).
We investigated whether asthma and COPD have common underlying genetic factors, performing genome-wide association studies for both asthma and COPD and combining the results in meta-analyses.
Three loci showed potential involvement in both diseases: chr2p24.3, chr5q23.1 and chr13q14.2, containing DDX1, COMMD10 (both participating in the NFκβ pathway) and GNG5P5, respectively. SNP rs9534578 in GNG5P5 reached genome-wide significance after first stage replication (p=9.96·*10−9). The second stage replication in seven independent cohorts provided no significant replication. eQTL analysis in blood and lung on the top 20 associated SNPs identified two SNPs in COMMD10 influencing gene expression.
Inflammatory processes differ in asthma and COPD and are mediated by NFκβ, which could be driven by the same underlying genes, COMMD10 and DDX1. None of the SNPs reached genome-wide significance. Our eQTL studies support a functional role of two COMMD10 SNPs, since they influence gene expression in both blood cells and lung tissue. Our findings either suggest that there is no common genetic component in asthma and COPD or, alternatively, different environmental factors, like lifestyle and occupation in different countries and continents may have obscured the genetic common contribution.
doi:10.1183/09031936.00001914
PMCID: PMC4217133  PMID: 24993907
9.  A novel common variant in DCST2 is associated with length in early life and height in adulthood 
van der Valk, Ralf J.P. | Kreiner-Møller, Eskil | Kooijman, Marjolein N. | Guxens, Mònica | Stergiakouli, Evangelia | Sääf, Annika | Bradfield, Jonathan P. | Geller, Frank | Hayes, M. Geoffrey | Cousminer, Diana L. | Körner, Antje | Thiering, Elisabeth | Curtin, John A. | Myhre, Ronny | Huikari, Ville | Joro, Raimo | Kerkhof, Marjan | Warrington, Nicole M. | Pitkänen, Niina | Ntalla, Ioanna | Horikoshi, Momoko | Veijola, Riitta | Freathy, Rachel M. | Teo, Yik-Ying | Barton, Sheila J. | Evans, David M. | Kemp, John P. | St Pourcain, Beate | Ring, Susan M. | Davey Smith, George | Bergström, Anna | Kull, Inger | Hakonarson, Hakon | Mentch, Frank D. | Bisgaard, Hans | Chawes, Bo | Stokholm, Jakob | Waage, Johannes | Eriksen, Patrick | Sevelsted, Astrid | Melbye, Mads | van Duijn, Cornelia M. | Medina-Gomez, Carolina | Hofman, Albert | de Jongste, Johan C. | Taal, H. Rob | Uitterlinden, André G. | Armstrong, Loren L. | Eriksson, Johan | Palotie, Aarno | Bustamante, Mariona | Estivill, Xavier | Gonzalez, Juan R. | Llop, Sabrina | Kiess, Wieland | Mahajan, Anubha | Flexeder, Claudia | Tiesler, Carla M.T. | Murray, Clare S. | Simpson, Angela | Magnus, Per | Sengpiel, Verena | Hartikainen, Anna-Liisa | Keinanen-Kiukaanniemi, Sirkka | Lewin, Alexandra | Da Silva Couto Alves, Alexessander | Blakemore, Alexandra I. | Buxton, Jessica L. | Kaakinen, Marika | Rodriguez, Alina | Sebert, Sylvain | Vaarasmaki, Marja | Lakka, Timo | Lindi, Virpi | Gehring, Ulrike | Postma, Dirkje S. | Ang, Wei | Newnham, John P. | Lyytikäinen, Leo-Pekka | Pahkala, Katja | Raitakari, Olli T. | Panoutsopoulou, Kalliope | Zeggini, Eleftheria | Boomsma, Dorret I. | Groen-Blokhuis, Maria | Ilonen, Jorma | Franke, Lude | Hirschhorn, Joel N. | Pers, Tune H. | Liang, Liming | Huang, Jinyan | Hocher, Berthold | Knip, Mikael | Saw, Seang-Mei | Holloway, John W. | Melén, Erik | Grant, Struan F.A. | Feenstra, Bjarke | Lowe, William L. | Widén, Elisabeth | Sergeyev, Elena | Grallert, Harald | Custovic, Adnan | Jacobsson, Bo | Jarvelin, Marjo-Riitta | Atalay, Mustafa | Koppelman, Gerard H. | Pennell, Craig E. | Niinikoski, Harri | Dedoussis, George V. | Mccarthy, Mark I. | Frayling, Timothy M. | Sunyer, Jordi | Timpson, Nicholas J. | Rivadeneira, Fernando | Bønnelykke, Klaus | Jaddoe, Vincent W.V.
Human Molecular Genetics  2014;24(4):1155-1168.
Common genetic variants have been identified for adult height, but not much is known about the genetics of skeletal growth in early life. To identify common genetic variants that influence fetal skeletal growth, we meta-analyzed 22 genome-wide association studies (Stage 1; N = 28 459). We identified seven independent top single nucleotide polymorphisms (SNPs) (P < 1 × 10−6) for birth length, of which three were novel and four were in or near loci known to be associated with adult height (LCORL, PTCH1, GPR126 and HMGA2). The three novel SNPs were followed-up in nine replication studies (Stage 2; N = 11 995), with rs905938 in DC-STAMP domain containing 2 (DCST2) genome-wide significantly associated with birth length in a joint analysis (Stages 1 + 2; β = 0.046, SE = 0.008, P = 2.46 × 10−8, explained variance = 0.05%). Rs905938 was also associated with infant length (N = 28 228; P = 5.54 × 10−4) and adult height (N = 127 513; P = 1.45 × 10−5). DCST2 is a DC-STAMP-like protein family member and DC-STAMP is an osteoclast cell-fusion regulator. Polygenic scores based on 180 SNPs previously associated with human adult stature explained 0.13% of variance in birth length. The same SNPs explained 2.95% of the variance of infant length. Of the 180 known adult height loci, 11 were genome-wide significantly associated with infant length (SF3B4, LCORL, SPAG17, C6orf173, PTCH1, GDF5, ZNFX1, HHIP, ACAN, HLA locus and HMGA2). This study highlights that common variation in DCST2 influences variation in early growth and adult height.
doi:10.1093/hmg/ddu510
PMCID: PMC4447786  PMID: 25281659
10.  Mouse Protocadherin-1 Gene Expression Is Regulated by Cigarette Smoke Exposure In Vivo 
PLoS ONE  2014;9(7):e98197.
Protocadherin-1 (PCDH1) is a novel susceptibility gene for airway hyperresponsiveness, first identified in families exposed to cigarette smoke and is expressed in bronchial epithelial cells. Here, we asked how mouse Pcdh1 expression is regulated in lung structural cells in vivo under physiological conditions, and in both short-term cigarette smoke exposure models characterized by airway inflammation and hyperresponsiveness and chronic cigarette smoke exposure models. Pcdh1 gene-structure was investigated by Rapid Amplification of cDNA Ends. Pcdh1 mRNA and protein expression was investigated by qRT-PCR, western blotting using isoform-specific antibodies. We observed 87% conservation of the Pcdh1 nucleotide sequence, and 96% conservation of the Pcdh1 protein sequence between men and mice. We identified a novel Pcdh1 isoform encoding only the intracellular signalling motifs. Cigarette smoke exposure for 4 consecutive days markedly reduced Pcdh1 mRNA expression in lung tissue (3 to 4-fold), while neutrophilia and airway hyperresponsiveness was induced. Moreover, Pcdh1 mRNA expression in lung tissue was reduced already 6 hours after an acute cigarette-smoke exposure in mice. Chronic exposure to cigarette smoke induced loss of Pcdh1 protein in lung tissue after 2 months, while Pcdh1 protein levels were no longer reduced after 9 months of cigarette smoke exposure. We conclude that Pcdh1 is highly homologous to human PCDH1, encodes two transmembrane proteins and one intracellular protein, and is regulated by cigarette smoke exposure in vivo.
doi:10.1371/journal.pone.0098197
PMCID: PMC4081120  PMID: 24992194
11.  Genome-wide association and longitudinal analyses reveal genetic loci linking pubertal height growth, pubertal timing and childhood adiposity 
Human Molecular Genetics  2013;22(13):2735-2747.
The pubertal height growth spurt is a distinctive feature of childhood growth reflecting both the central onset of puberty and local growth factors. Although little is known about the underlying genetics, growth variability during puberty correlates with adult risks for hormone-dependent cancer and adverse cardiometabolic health. The only gene so far associated with pubertal height growth, LIN28B, pleiotropically influences childhood growth, puberty and cancer progression, pointing to shared underlying mechanisms. To discover genetic loci influencing pubertal height and growth and to place them in context of overall growth and maturation, we performed genome-wide association meta-analyses in 18 737 European samples utilizing longitudinally collected height measurements. We found significant associations (P < 1.67 × 10−8) at 10 loci, including LIN28B. Five loci associated with pubertal timing, all impacting multiple aspects of growth. In particular, a novel variant correlated with expression of MAPK3, and associated both with increased prepubertal growth and earlier menarche. Another variant near ADCY3-POMC associated with increased body mass index, reduced pubertal growth and earlier puberty. Whereas epidemiological correlations suggest that early puberty marks a pathway from rapid prepubertal growth to reduced final height and adult obesity, our study shows that individual loci associating with pubertal growth have variable longitudinal growth patterns that may differ from epidemiological observations. Overall, this study uncovers part of the complex genetic architecture linking pubertal height growth, the timing of puberty and childhood obesity and provides new information to pinpoint processes linking these traits.
doi:10.1093/hmg/ddt104
PMCID: PMC3674797  PMID: 23449627
12.  Susceptibility to Chronic Mucus Hypersecretion, a Genome Wide Association Study 
PLoS ONE  2014;9(4):e91621.
Background
Chronic mucus hypersecretion (CMH) is associated with an increased frequency of respiratory infections, excess lung function decline, and increased hospitalisation and mortality rates in the general population. It is associated with smoking, but it is unknown why only a minority of smokers develops CMH. A plausible explanation for this phenomenon is a predisposing genetic constitution. Therefore, we performed a genome wide association (GWA) study of CMH in Caucasian populations.
Methods
GWA analysis was performed in the NELSON-study using the Illumina 610 array, followed by replication and meta-analysis in 11 additional cohorts. In total 2,704 subjects with, and 7,624 subjects without CMH were included, all current or former heavy smokers (≥20 pack-years). Additional studies were performed to test the functional relevance of the most significant single nucleotide polymorphism (SNP).
Results
A strong association with CMH, consistent across all cohorts, was observed with rs6577641 (p = 4.25×10−6, OR = 1.17), located in intron 9 of the special AT-rich sequence-binding protein 1 locus (SATB1) on chromosome 3. The risk allele (G) was associated with higher mRNA expression of SATB1 (4.3×10−9) in lung tissue. Presence of CMH was associated with increased SATB1 mRNA expression in bronchial biopsies from COPD patients. SATB1 expression was induced during differentiation of primary human bronchial epithelial cells in culture.
Conclusions
Our findings, that SNP rs6577641 is associated with CMH in multiple cohorts and is a cis-eQTL for SATB1, together with our additional observation that SATB1 expression increases during epithelial differentiation provide suggestive evidence that SATB1 is a gene that affects CMH.
doi:10.1371/journal.pone.0091621
PMCID: PMC3979657  PMID: 24714607
13.  Genome-wide association study of body mass index in 23,000 individuals with and without asthma 
Background
Both asthma and obesity are complex disorders that are influenced by environmental and genetic factors. Shared genetic factors between asthma and obesity have been proposed to partly explain epidemiological findings of co-morbidity between these conditions.
Objective
To identify genetic variants that are associated with body mass index (BMI) in asthmatic children and adults, and to evaluate if there are differences between the genetics of BMI in asthmatics and healthy individuals.
Methods
In total, 19 studies contributed with genome-wide analysis study (GWAS) data from more than 23,000 individuals with predominantly European descent, of whom 8,165 are asthmatics.
Results
We report associations between several DENND1B variants (p=2.2×10−7 for rs4915551) on chromosome 1q31 and BMI from a meta-analysis of GWAS data using 2,691 asthmatic children (screening data). The top DENND1B SNPs were next evaluated in seven independent replication data sets comprising 2,014 asthmatics, and rs4915551 was nominally replicated (p<0.05) in two of the seven studies and of borderline significance in one (p=0.059). However, strong evidence of effect heterogeneity was observed and overall, the association between rs4915551 and BMI was not significant in the total replication data set, p=0.71. Using a random effects model, BMI was overall estimated to increase by 0.30 kg/m2 (p=0.01 for combined screening and replication data sets, N=4,705) per additional G allele of this DENND1B SNP. FTO was confirmed as an important gene for adult and childhood BMI regardless of asthma status.
Conclusions and Clinical Relevance
DENND1B was recently identified as an asthma susceptibility gene in a GWAS on children, and here we find evidence that DENND1B variants may also be associated with BMI in asthmatic children. However, the association was overall not replicated in the independent data sets and the heterogeneous effect of DENND1B points to complex associations with the studied diseases that deserve further study.
doi:10.1111/cea.12054
PMCID: PMC3608930  PMID: 23517042
Association; Asthma; BMI; Genetics; Genome-wide; Obesity
14.  GSTP1 and TNF Gene Variants and Associations between Air Pollution and Incident Childhood Asthma: The Traffic, Asthma and Genetics (TAG) Study 
Environmental Health Perspectives  2014;122(4):418-424.
Background: Genetics may partially explain observed heterogeneity in associations between traffic-related air pollution and incident asthma.
Objective: Our aim was to investigate the impact of gene variants associated with oxidative stress and inflammation on associations between air pollution and incident childhood asthma.
Methods: Traffic-related air pollution, asthma, wheeze, gene variant, and potential confounder data were pooled across six birth cohorts. Parents reported physician-diagnosed asthma and wheeze from birth to 7–8 years of age (confirmed by pediatric allergist in two cohorts). Individual estimates of annual average air pollution [nitrogen dioxide (NO2), particulate matter ≤ 2.5 μm (PM2.5), PM2.5 absorbance, ozone] were assigned to each child’s birth address using land use regression, atmospheric modeling, and ambient monitoring data. Effect modification by variants in GSTP1 (rs1138272/Ala114Val and rs1695/IIe105Val) and TNF (rs1800629/G-308A) was investigated.
Results: Data on asthma, wheeze, potential confounders, at least one SNP of interest, and NO2 were available for 5,115 children. GSTP1 rs1138272 and TNF rs1800629 SNPs were associated with asthma and wheeze, respectively. In relation to air pollution exposure, children with one or more GSTP1 rs1138272 minor allele were at increased risk of current asthma [odds ratio (OR) = 2.59; 95% CI: 1.43, 4.68 per 10 μg/m3 NO2] and ever asthma (OR = 1.64; 95% CI: 1.06, 2.53) compared with homozygous major allele carriers (OR = 0.95; 95% CI: 0.68, 1.32 for current and OR = 1.20; 95% CI: 0.98, 1.48 for ever asthma; Bonferroni-corrected interaction p = 0.04 and 0.01, respectively). Similarly, for GSTP1 rs1695, associations between NO2 and current and ever asthma had ORs of 1.43 (95% CI: 1.03, 1.98) and 1.36 (95% CI: 1.08, 1.70), respectively, for minor allele carriers compared with ORs of 0.82 (95% CI: 0.52, 1.32) and 1.12 (95% CI: 0.84, 1.49) for homozygous major allele carriers (Bonferroni-corrected interaction p-values 0.48 and 0.09). There were no clear differences by TNF genotype.
Conclusions: Children carrying GSTP1 rs1138272 or rs1695 minor alleles may constitute a susceptible population at increased risk of asthma associated with air pollution.
Citation: MacIntyre EA, Brauer M, Melén E, Bauer CP, Bauer M, Berdel D, Bergström A, Brunekreef B, Chan-Yeung M, Klümper C, Fuertes E, Gehring U, Gref A, Heinrich J, Herbarth O, Kerkhof M, Koppelman GH, Kozyrskyj AL, Pershagen G, Postma DS, Thiering E, Tiesler CM, Carlsten C, TAG Study Group. 2014. GSTP1 and TNF gene variants and associations between air pollution and incident childhood asthma: the traffic, asthma and genetics (TAG) Study. Environ Health Perspect 122:418–424; http://dx.doi.org/10.1289/ehp.1307459
doi:10.1289/ehp.1307459
PMCID: PMC3984232  PMID: 24465030
16.  Genome-wide protein QTL mapping identifies human plasma kallikrein as a post-translational regulator of serum uPAR levels 
The FASEB Journal  2014;28(2):923-934.
The soluble cleaved urokinase plasminogen activator receptor (scuPAR) is a circulating protein detected in multiple diseases, including various cancers, cardiovascular disease, and kidney disease, where elevated levels of scuPAR have been associated with worsening prognosis and increased disease aggressiveness. We aimed to identify novel genetic and biomolecular mechanisms regulating scuPAR levels. Elevated serum scuPAR levels were identified in asthma (n=514) and chronic obstructive pulmonary disease (COPD; n=219) cohorts when compared to controls (n=96). In these cohorts, a genome-wide association study of serum scuPAR levels identified a human plasma kallikrein gene (KLKB1) promoter polymorphism (rs4253238) associated with serum scuPAR levels in a control/asthma population (P=1.17×10−7), which was also observed in a COPD population (combined P=5.04×10−12). Using a fluorescent assay, we demonstrated that serum KLKB1 enzymatic activity was driven by rs4253238 and is inverse to scuPAR levels. Biochemical analysis identified that KLKB1 cleaves scuPAR and negates scuPAR's effects on primary human bronchial epithelial cells (HBECs) in vitro. Chymotrypsin was used as a proproteolytic control, while basal HBECs were used as a control to define scuPAR-driven effects. In summary, we reveal a novel post-translational regulatory mechanism for scuPAR using a hypothesis-free approach with implications for multiple human diseases.—Portelli, M. A., Siedlinski, M., Stewart, C. E., Postma, D. S., Nieuwenhuis, M. A., Vonk, J. M., Nurnberg, P., Altmuller, J., Moffatt, M. F., Wardlaw, A. J., Parker, S. G., Connolly, M. J., Koppelman, G. H., Sayers, I. Genome-wide protein QTL mapping identifies human plasma kallikrein as a post-translational regulator of serum uPAR levels.
doi:10.1096/fj.13-240879
PMCID: PMC3898658  PMID: 24249636
GWAS; proteolysis; respiratory disease; HBECs; cellular proliferation and wound repair
17.  Air Pollution and Respiratory Infections during Early Childhood: An Analysis of 10 European Birth Cohorts within the ESCAPE Project 
Environmental Health Perspectives  2013;122(1):107-113.
Background: Few studies have investigated traffic-related air pollution as a risk factor for respiratory infections during early childhood.
Objectives: We aimed to investigate the association between air pollution and pneumonia, croup, and otitis media in 10 European birth cohorts—BAMSE (Sweden), GASPII (Italy), GINIplus and LISAplus (Germany), MAAS (United Kingdom), PIAMA (the Netherlands), and four INMA cohorts (Spain)—and to derive combined effect estimates using meta-analysis.
Methods: Parent report of physician-diagnosed pneumonia, otitis media, and croup during early childhood were assessed in relation to annual average pollutant levels [nitrogen dioxide (NO2), nitrogen oxide (NOx), particulate matter ≤ 2.5 μm (PM2.5), PM2.5 absorbance, PM10, PM2.5–10 (coarse PM)], which were estimated using land use regression models and assigned to children based on their residential address at birth. Identical protocols were used to develop regression models for each study area as part of the ESCAPE project. Logistic regression was used to calculate adjusted effect estimates for each study, and random-effects meta-analysis was used to calculate combined estimates.
Results: For pneumonia, combined adjusted odds ratios (ORs) were elevated and statistically significant for all pollutants except PM2.5 (e.g., OR = 1.30; 95% CI: 1.02, 1.65 per 10-μg/m3 increase in NO2 and OR = 1.76; 95% CI: 1.00, 3.09 per 10-μg/m3 PM10). For otitis media and croup, results were generally null across all analyses except for NO2 and otitis media (OR = 1.09; 95% CI: 1.02, 1.16 per 10-μg/m3).
Conclusion: Our meta-analysis of 10 European birth cohorts within the ESCAPE project found consistent evidence for an association between air pollution and pneumonia in early childhood, and some evidence for an association with otitis media.
Citation: MacIntyre EA, Gehring U, Mölter A, Fuertes E, Klümper C, Krämer U, Quass U, Hoffmann B, Gascon M, Brunekreef B, Koppelman GH, Beelen R, Hoek G, Birk M, de Jongste JC, Smit HA, Cyrys J, Gruzieva O, Korek M, Bergström A, Agius RM, de Vocht F, Simpson A, Porta D, Forastiere F, Badaloni C, Cesaroni G, Esplugues A, Fernández-Somoano A, Lerxundi A, Sunyer J, Cirach M, Nieuwenhuijsen MJ, Pershagen G, Heinrich J. 2014. Air pollution and respiratory infections during early childhood: an analysis of 10 European birth cohorts within the ESCAPE project. Environ Health Perspect 122:107–113; http://dx.doi.org/10.1289/ehp.1306755
doi:10.1289/ehp.1306755
PMCID: PMC3888562  PMID: 24149084
18.  The association between indoor temperature and body mass index in children: the PIAMA birth cohort study 
BMC Public Health  2013;13:1119.
Background
Several experimental studies showed consistent evidence for decreased energy expenditure at higher ambient temperatures. Based on this, an association between thermal exposure and body weight may be expected. However, the effect of thermal exposure on body weight has hardly been studied. Therefore, this study investigated the association between indoor temperature and body mass index (BMI) in children in real life.
Methods
This longitudinal observational study included 3 963 children from the Dutch Prevention and Incidence of Asthma and Mite Allergy (PIAMA) birth cohort that started in 1996. These children were followed from birth until the age of 11 years. Winter indoor temperature (living room and bedroom) was reported at baseline and BMI z-scores were available at 10 consecutive ages. Missing data were multiply imputed. Associations between indoor temperature and BMI were analyzed using generalized estimating equations (GEE), adjusted for confounders and stratified by gender. In a subgroup of 104 children, bedroom temperature was also measured with data loggers.
Results
Mean reported living room and bedroom temperature were 20.3°C and 17.4°C, respectively. Reported and measured bedroom temperatures were positively correlated (r = 0.42, p = 0.001).
Neither reported living room temperature (-0.03 ≤ β ≥ 0.04) and bedroom temperature (-0.01 ≤ β ≥ 0.02) nor measured bedroom temperature (-0.04 ≤ β ≥ 0.05) were associated with BMI z-score between the age of 3 months and 11 years.
Conclusions
This study in children did not support the hypothesized association between indoor temperature and BMI in a real life setting.
doi:10.1186/1471-2458-13-1119
PMCID: PMC4234369  PMID: 24305556
Body mass index; Children; Ambient temperature; Indoor environment; Overweight; Energy balance
19.  Common variants at 12q15 and 12q24 are associated with infant head circumference 
Taal, H Rob | Pourcain, Beate St | Thiering, Elisabeth | Das, Shikta | Mook-Kanamori, Dennis O | Warrington, Nicole M | Kaakinen, Marika | Kreiner-Møller, Eskil | Bradfield, Jonathan P | Freathy, Rachel M | Geller, Frank | Guxens, Mònica | Cousminer, Diana L | Kerkhof, Marjan | Timpson, Nicholas J | Ikram, M Arfan | Beilin, Lawrence J | Bønnelykke, Klaus | Buxton, Jessica L | Charoen, Pimphen | Chawes, Bo Lund Krogsgaard | Eriksson, Johan | Evans, David M | Hofman, Albert | Kemp, John P | Kim, Cecilia E | Klopp, Norman | Lahti, Jari | Lye, Stephen J | McMahon, George | Mentch, Frank D | Müller, Martina | O’Reilly, Paul F | Prokopenko, Inga | Rivadeneira, Fernando | Steegers, Eric A P | Sunyer, Jordi | Tiesler, Carla | Yaghootkar, Hanieh | Breteler, Monique M B | Debette, Stephanie | Fornage, Myriam | Gudnason, Vilmundur | Launer, Lenore J | van der Lugt, Aad | Mosley, Thomas H | Seshadri, Sudha | Smith, Albert V | Vernooij, Meike W | Blakemore, Alexandra IF | Chiavacci, Rosetta M | Feenstra, Bjarke | Fernandez-Benet, Julio | Grant, Struan F A | Hartikainen, Anna-Liisa | van der Heijden, Albert J | Iñiguez, Carmen | Lathrop, Mark | McArdle, Wendy L | Mølgaard, Anne | Newnham, John P | Palmer, Lyle J | Palotie, Aarno | Pouta, Annneli | Ring, Susan M | Sovio, Ulla | Standl, Marie | Uitterlinden, Andre G | Wichmann, H-Erich | Vissing, Nadja Hawwa | DeCarli, Charles | van Duijn, Cornelia M | McCarthy, Mark I | Koppelman, Gerard H. | Estivill, Xavier | Hattersley, Andrew T | Melbye, Mads | Bisgaard, Hans | Pennell, Craig E | Widen, Elisabeth | Hakonarson, Hakon | Smith, George Davey | Heinrich, Joachim | Jarvelin, Marjo-Riitta | Jaddoe, Vincent W V
Nature genetics  2012;44(5):532-538.
To identify genetic variants associated with head circumference in infancy, we performed a meta-analysis of seven genome-wide association (GWA) studies (N=10,768 from European ancestry enrolled in pregnancy/birth cohorts) and followed up three lead signals in six replication studies (combined N=19,089). Rs7980687 on chromosome 12q24 (P=8.1×10−9), and rs1042725 on chromosome 12q15 (P=2.8×10−10) were robustly associated with head circumference in infancy. Although these loci have previously been associated with adult height1, their effects on infant head circumference were largely independent of height (P=3.8×10−7 for rs7980687, P=1.3×10−7 for rs1042725 after adjustment for infant height). A third signal, rs11655470 on chromosome 17q21, showed suggestive evidence of association with head circumference (P=3.9×10−6). SNPs correlated to the 17q21 signal show genome-wide association with adult intra cranial volume2, Parkinson’s disease and other neurodegenerative diseases3-5, indicating that a common genetic variant in this region might link early brain growth with neurological disease in later life.
doi:10.1038/ng.2238
PMCID: PMC3773913  PMID: 22504419
20.  ITGB5 and AGFG1 variants are associated with severity of airway responsiveness 
BMC Medical Genetics  2013;14:86.
Background
Airway hyperresponsiveness (AHR), a primary characteristic of asthma, involves increased airway smooth muscle contractility in response to certain exposures. We sought to determine whether common genetic variants were associated with AHR severity.
Methods
A genome-wide association study (GWAS) of AHR, quantified as the natural log of the dosage of methacholine causing a 20% drop in FEV1, was performed with 994 non-Hispanic white asthmatic subjects from three drug clinical trials: CAMP, CARE, and ACRN. Genotyping was performed on Affymetrix 6.0 arrays, and imputed data based on HapMap Phase 2, was used to measure the association of SNPs with AHR using a linear regression model. Replication of primary findings was attempted in 650 white subjects from DAG, and 3,354 white subjects from LHS. Evidence that the top SNPs were eQTL of their respective genes was sought using expression data available for 419 white CAMP subjects.
Results
The top primary GWAS associations were in rs848788 (P-value 7.2E-07) and rs6731443 (P-value 2.5E-06), located within the ITGB5 and AGFG1 genes, respectively. The AGFG1 result replicated at a nominally significant level in one independent population (LHS P-value 0.012), and the SNP had a nominally significant unadjusted P-value (0.0067) for being an eQTL of AGFG1.
Conclusions
Based on current knowledge of ITGB5 and AGFG1, our results suggest that variants within these genes may be involved in modulating AHR. Future functional studies are required to confirm that our associations represent true biologically significant findings.
doi:10.1186/1471-2350-14-86
PMCID: PMC3765944  PMID: 23984888
Asthma; Airway hyperresponsiveness; Genome-wide association study; ITGB5; AGFG1
21.  New loci associated with birth weight identify genetic links between intrauterine growth and adult height and metabolism 
Horikoshi, Momoko | Yaghootkar, Hanieh | Mook-Kanamori, Dennis O. | Sovio, Ulla | Taal, H. Rob | Hennig, Branwen J. | Bradfield, Jonathan P. | St. Pourcain, Beate | Evans, David M. | Charoen, Pimphen | Kaakinen, Marika | Cousminer, Diana L. | Lehtimäki, Terho | Kreiner-Møller, Eskil | Warrington, Nicole M. | Bustamante, Mariona | Feenstra, Bjarke | Berry, Diane J. | Thiering, Elisabeth | Pfab, Thiemo | Barton, Sheila J. | Shields, Beverley M. | Kerkhof, Marjan | van Leeuwen, Elisabeth M. | Fulford, Anthony J. | Kutalik, Zoltán | Zhao, Jing Hua | den Hoed, Marcel | Mahajan, Anubha | Lindi, Virpi | Goh, Liang-Kee | Hottenga, Jouke-Jan | Wu, Ying | Raitakari, Olli T. | Harder, Marie N. | Meirhaeghe, Aline | Ntalla, Ioanna | Salem, Rany M. | Jameson, Karen A. | Zhou, Kaixin | Monies, Dorota M. | Lagou, Vasiliki | Kirin, Mirna | Heikkinen, Jani | Adair, Linda S. | Alkuraya, Fowzan S. | Al-Odaib, Ali | Amouyel, Philippe | Andersson, Ehm Astrid | Bennett, Amanda J. | Blakemore, Alexandra I.F. | Buxton, Jessica L. | Dallongeville, Jean | Das, Shikta | de Geus, Eco J. C. | Estivill, Xavier | Flexeder, Claudia | Froguel, Philippe | Geller, Frank | Godfrey, Keith M. | Gottrand, Frédéric | Groves, Christopher J. | Hansen, Torben | Hirschhorn, Joel N. | Hofman, Albert | Hollegaard, Mads V. | Hougaard, David M. | Hyppönen, Elina | Inskip, Hazel M. | Isaacs, Aaron | Jørgensen, Torben | Kanaka-Gantenbein, Christina | Kemp, John P. | Kiess, Wieland | Kilpeläinen, Tuomas O. | Klopp, Norman | Knight, Bridget A. | Kuzawa, Christopher W. | McMahon, George | Newnham, John P. | Niinikoski, Harri | Oostra, Ben A. | Pedersen, Louise | Postma, Dirkje S. | Ring, Susan M. | Rivadeneira, Fernando | Robertson, Neil R. | Sebert, Sylvain | Simell, Olli | Slowinski, Torsten | Tiesler, Carla M.T. | Tönjes, Anke | Vaag, Allan | Viikari, Jorma S. | Vink, Jacqueline M. | Vissing, Nadja Hawwa | Wareham, Nicholas J. | Willemsen, Gonneke | Witte, Daniel R. | Zhang, Haitao | Zhao, Jianhua | Wilson, James F. | Stumvoll, Michael | Prentice, Andrew M. | Meyer, Brian F. | Pearson, Ewan R. | Boreham, Colin A.G. | Cooper, Cyrus | Gillman, Matthew W. | Dedoussis, George V. | Moreno, Luis A | Pedersen, Oluf | Saarinen, Maiju | Mohlke, Karen L. | Boomsma, Dorret I. | Saw, Seang-Mei | Lakka, Timo A. | Körner, Antje | Loos, Ruth J.F. | Ong, Ken K. | Vollenweider, Peter | van Duijn, Cornelia M. | Koppelman, Gerard H. | Hattersley, Andrew T. | Holloway, John W. | Hocher, Berthold | Heinrich, Joachim | Power, Chris | Melbye, Mads | Guxens, Mònica | Pennell, Craig E. | Bønnelykke, Klaus | Bisgaard, Hans | Eriksson, Johan G. | Widén, Elisabeth | Hakonarson, Hakon | Uitterlinden, André G. | Pouta, Anneli | Lawlor, Debbie A. | Smith, George Davey | Frayling, Timothy M. | McCarthy, Mark I. | Grant, Struan F.A. | Jaddoe, Vincent W.V. | Jarvelin, Marjo-Riitta | Timpson, Nicholas J. | Prokopenko, Inga | Freathy, Rachel M.
Nature genetics  2012;45(1):76-82.
Birth weight within the normal range is associated with a variety of adult-onset diseases, but the mechanisms behind these associations are poorly understood1. Previous genome-wide association studies identified a variant in the ADCY5 gene associated both with birth weight and type 2 diabetes, and a second variant, near CCNL1, with no obvious link to adult traits2. In an expanded genome-wide association meta-analysis and follow-up study (up to 69,308 individuals of European descent from 43 studies), we have now extended the number of genome-wide significant loci to seven, accounting for a similar proportion of variance to maternal smoking. Five of the loci are known to be associated with other phenotypes: ADCY5 and CDKAL1 with type 2 diabetes; ADRB1 with adult blood pressure; and HMGA2 and LCORL with adult height. Our findings highlight genetic links between fetal growth and postnatal growth and metabolism.
doi:10.1038/ng.2477
PMCID: PMC3605762  PMID: 23202124
22.  Genetic Variation in FADS Genes and Plasma Cholesterol Levels in 2-Year-Old Infants: KOALA Birth Cohort Study 
PLoS ONE  2013;8(5):e61671.
Objective
Single nucleotide polymorphisms (SNPs) in genes involved in fatty acid metabolism (FADS1 FADS2 gene cluster) are associated with plasma lipid levels. We aimed to investigate whether these associations are already present early in life and compare the relative contribution of FADS SNPs vs traditional (non-genetic) factors as determinants of plasma lipid levels.
Methods
Information on infants’ plasma total cholesterol levels, genotypes of five FADS SNPs (rs174545, rs174546, rs174556, rs174561, and rs3834458), anthropometric data, maternal characteristics, and breastfeeding history was available for 521 2-year-old children from the KOALA Birth Cohort Study. For 295 of these 521 children, plasma HDLc and non-HDLc levels were also known. Multivariable linear regression analysis was used to study the associations of genetic and non-genetic determinants with cholesterol levels.
Results
All FADS SNPs were significantly associated with total cholesterol levels. Heterozygous and homozygous for the minor allele children had about 4% and 8% lower total cholesterol levels than major allele homozygotes. In addition, homozygous for the minor allele children had about 7% lower HDLc levels. This difference reached significance for the SNPs rs174546 and rs3834458. The associations went in the same direction for non-HDLc, but statistical significance was not reached. The percentage of total variance of total cholesterol levels explained by FADS SNPs was relatively low (lower than 3%) but of the same order as that explained by gender and the non-genetic determinants together.
Conclusions
FADS SNPs are associated with plasma total cholesterol and HDLc levels in preschool children. This brings a new piece of evidence to explain how blood lipid levels may track from childhood to adulthood. Moreover, the finding that these SNPs explain a similar amount of variance in total cholesterol levels as the non-genetic determinants studied reveals the potential importance of investigating the effects of genetic variations in early life.
doi:10.1371/journal.pone.0061671
PMCID: PMC3648514  PMID: 23667444
23.  Genome-wide association study of lung function decline in adults with and without asthma 
Background
Genome-wide association studies (GWAS) have identified determinants of chronic obstructive pulmonary disease, asthma and lung function level, however none addressed decline in lung function.
Aim
We conducted the first GWAS on age-related decline in forced expiratory volume in the first second (FEV1) and in its ratio to forced vital capacity (FVC) stratified a priori by asthma status.
Methods
Discovery cohorts included adults of European ancestry (1441 asthmatics, 2677 non-asthmatics; Epidemiological Study on the Genetics and Environment of Asthma (EGEA); Swiss Cohort Study on Air Pollution And Lung And Heart Disease In Adults (SAPALDIA); European Community Respiratory Health Survey (ECRHS)). The associations of FEV1 and FEV1/FVC decline with 2.5 million single nucleotide polymorphisms (SNPs) were estimated. Thirty loci were followed-up by in silico replication (1160 asthmatics, 10858 non-asthmatics: Atherosclerosis Risk in Communities (ARIC); Framingham Heart Study (FHS); British 1958 Birth Cohort (B58C); Dutch asthma study).
Results
Main signals identified differed between asthmatics and non-asthmatics. None of the SNPs reached genome-wide significance. The association between the height related gene DLEU7 and FEV1 decline suggested for non-asthmatics in the discovery phase was replicated (discovery P=4.8×10−6; replication P=0.03) and additional sensitivity analyses point to a relation to growth. The top ranking signal, TUSC3, associated with FEV1/FVC decline in asthmatics (P=5.3×10−8) did not replicate. SNPs previously associated with cross-sectional lung function were not prominently associated with decline.
Conclusions
Genetic heterogeneity of lung function may be extensive. Our results suggest that genetic determinants of longitudinal and cross-sectional lung function differ and vary by asthma status.
doi:10.1016/j.jaci.2012.01.074
PMCID: PMC3340499  PMID: 22424883
Asthma; cohort studies; genome-wide association; lung function decline; heterogeneity
24.  Integration of Mouse and Human Genome-Wide Association Data Identifies KCNIP4 as an Asthma Gene 
PLoS ONE  2013;8(2):e56179.
Asthma is a common chronic respiratory disease characterized by airway hyperresponsiveness (AHR). The genetics of asthma have been widely studied in mouse and human, and homologous genomic regions have been associated with mouse AHR and human asthma-related phenotypes. Our goal was to identify asthma-related genes by integrating AHR associations in mouse with human genome-wide association study (GWAS) data. We used Efficient Mixed Model Association (EMMA) analysis to conduct a GWAS of baseline AHR measures from males and females of 31 mouse strains. Genes near or containing SNPs with EMMA p-values <0.001 were selected for further study in human GWAS. The results of the previously reported EVE consortium asthma GWAS meta-analysis consisting of 12,958 diverse North American subjects from 9 study centers were used to select a subset of homologous genes with evidence of association with asthma in humans. Following validation attempts in three human asthma GWAS (i.e., Sepracor/LOCCS/LODO/Illumina, GABRIEL, DAG) and two human AHR GWAS (i.e., SHARP, DAG), the Kv channel interacting protein 4 (KCNIP4) gene was identified as nominally associated with both asthma and AHR at a gene- and SNP-level. In EVE, the smallest KCNIP4 association was at rs6833065 (P-value 2.9e-04), while the strongest associations for Sepracor/LOCCS/LODO/Illumina, GABRIEL, DAG were 1.5e-03, 1.0e-03, 3.1e-03 at rs7664617, rs4697177, rs4696975, respectively. At a SNP level, the strongest association across all asthma GWAS was at rs4697177 (P-value 1.1e-04). The smallest P-values for association with AHR were 2.3e-03 at rs11947661 in SHARP and 2.1e-03 at rs402802 in DAG. Functional studies are required to validate the potential involvement of KCNIP4 in modulating asthma susceptibility and/or AHR. Our results suggest that a useful approach to identify genes associated with human asthma is to leverage mouse AHR association data.
doi:10.1371/journal.pone.0056179
PMCID: PMC3572953  PMID: 23457522
25.  BMI and Waist Circumference; Cross-Sectional and Prospective Associations with Blood Pressure and Cholesterol in 12-Year-Olds 
PLoS ONE  2012;7(12):e51801.
Objective
Childhood and adolescent overweight, defined by body mass index (BMI) are associated with an increased risk of cardiovascular disease in later life. Abdominal adiposity may be more important in associations with cardiovascular diseases but waist circumference (WC) has been rarely studied in children. We studied associations between BMI and WC and blood pressure (BP) and cholesterol in 12-year-old children and prospectively changes in BMI or WC status between age 8 and 12 years and BP and cholesterol at age 12.
Study Design
Weight, height, WC, BP and cholesterol concentrations were measured in 1432 children at age 12 years. Linear regression was used to study the associations between high BMI and large WC (>90th percentile) and BP and cholesterol.
Results
Systolic BP was 4.9 mmHg higher (95% (CI 2.5, 7.2) in girls and 4.2 mmHg (95%CI 1.9, 6.5) in boys with a high BMI. Large WC was also associated with higher systolic BP in girls (3.7 mmHg (95%CI 1.3, 6.1)) and boys (3.5 mmHg (95%CI 1.2, 5.8)). Diastolic BP and cholesterol concentrations were significantly positively (HDL cholesterol negatively) associated with high BMI and large WC, too. Normal weight children with a history of overweight did not have higher blood pressure levels or adverse cholesterol concentrations than children that were normal weight at both ages.
Conclusion
A high BMI and large WC were associated with higher BP levels and adverse cholesterol concentrations. WC should be taken into account when examining cardiovascular risk factors in children.
doi:10.1371/journal.pone.0051801
PMCID: PMC3522600  PMID: 23251628

Results 1-25 (42)