PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (105)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
more »
1.  PharmGKB Summary: Very Important Pharmacogene Information for RYR1 
Pharmacogenetics and genomics  2016;26(3):138-144.
doi:10.1097/FPC.0000000000000198
PMCID: PMC4738161  PMID: 26709912
calcium homeostasis; malignant hyperthermia; myopathy; rhabdomyolysis; ryanodine receptor; RYR1; statin; succinylcholine; volatile anesthetics
2.  PharmGKB Summary: Very Important Pharmacogene Information for Human Leukocyte Antigen B (HLA-B) 
Pharmacogenetics and genomics  2015;25(4):205-221.
doi:10.1097/FPC.0000000000000118
PMCID: PMC4356642  PMID: 25647431
Abacavir; allopurinol; carbamazepine; HLA-B; HLA-B*15:02; HLA-B*57:01; HLA-B*58:01; pharmacogenetics; PharmGKB; phenytoin
3.  PharmGKB summary: peginterferon-α pathway 
Pharmacogenetics and genomics  2015;25(9):465-474.
doi:10.1097/FPC.0000000000000158
PMCID: PMC4757589  PMID: 26111151
hepatitis C; IFNL3; IL28B; pathway; peginterferon-α; pharmacodynamics; pharmacogenetics; pharmacogenomics
4.  PharmGKB summary: Pathways of acetaminophen metabolism at the therapeutic versus toxic doses 
Pharmacogenetics and genomics  2015;25(8):416-426.
doi:10.1097/FPC.0000000000000150
PMCID: PMC4498995  PMID: 26049587
Acetaminophen; paracetamol; NSAIDs; cyclooxygenase; glucuronidation; UGT1A9; UGT1A6; sulfation; oxidation; CYP2E1; GSTP1; drug-induced liver injury; NAPQI; hepatotoxicity; pharmacogenomics; pharmacometabolomics
5.  PharmGKB summary: very important pharmacogene information for CYP4F2 
Pharmacogenetics and genomics  2015;25(1):41-47.
doi:10.1097/FPC.0000000000000100
PMCID: PMC4261059  PMID: 25370453
warfarin; vitamin K; phylloquinone; menaquinone; MK-4; vitamin E; α-tocopherol; arachidonic acid; eicosanoids; pharmacogenomics
6.  Preemptive Clinical Pharmacogenetics Implementation: Current programs in five United States medical centers 
Although the field of pharmacogenetics has existed for decades, the implementation of, pharmacogenetic testing in clinical care has been slow. There are numerous publications, describing the barriers to clinical implementation of pharmacogenetics. Recently, several freely, available resources have been developed to help address these barriers. In this review we, discuss current programs that use preemptive genotyping to optimize the pharmacotherapy of, patients. Array-based preemptive testing includes a large number of relevant pharmacogenes, that impact multiple high-risk drugs. Using a preemptive approach allows genotyping results to, be available prior to any prescribing decision so that genomic variation may be considered as, an inherent patient characteristic in the planning of therapy. This review describes the common, elements among programs that have implemented preemptive genotyping and highlights key, processes for implementation, including clinical decision support.
doi:10.1146/annurev-pharmtox-010814-124835
PMCID: PMC4607278  PMID: 25292429
Pharmacogenomics; Precision medicine; Individualized medicine; Personalized medicine; Clinical decision support
7.  PharmGKB Summary: Succinylcholine Pathway, Pharmacokinetics/Pharmacodynamics 
Pharmacogenetics and genomics  2015;25(12):622-630.
doi:10.1097/FPC.0000000000000170
PMCID: PMC4631707  PMID: 26398623
anesthesia; neuromuscular blocking agents; succinylcholine; prolonged apnea; BCHE deficiency; malignant hyperthermia; hyperkalemia; calcium homeostasis
8.  PharmGKB summary: tramadol pathway 
Pharmacogenetics and genomics  2014;24(7):374-380.
doi:10.1097/FPC.0000000000000057
PMCID: PMC4100774  PMID: 24849324
analgesic; CYP2D6; OCT1; opioids; OPRM1; pathway; pharmacogenomics; pharmacokinetics; tramadol
9.  PharmGKB Summary: Efavirenz Pathway, Pharmacokinetics (PK) 
Pharmacogenetics and genomics  2015;25(7):363-376.
doi:10.1097/FPC.0000000000000145
PMCID: PMC4461466  PMID: 25966836
Efavirenz; CYP2B6; pharmacokinetics; pharmacogenetics
10.  PharmGKB summary: very important pharmacogene information for SLC22A1 
Pharmacogenetics and genomics  2014;24(6):324-328.
doi:10.1097/FPC.0000000000000048
PMCID: PMC4035531  PMID: 24681965
drug transport; OCT1; pharmacogenetics; pharmacogenomics; SLC22A1
11.  Very important pharmacogene summary for VDR 
Pharmacogenetics and genomics  2012;22(10):758-763.
doi:10.1097/FPC.0b013e328354455c
PMCID: PMC3678550  PMID: 22588316
drug response; genetic variants; pharmacogenomics; vitamin D receptor
12.  Cytochrome P450 2D6 
Pharmacogenetics and genomics  2009;19(7):559-562.
doi:10.1097/FPC.0b013e32832e0e97
PMCID: PMC4373606  PMID: 19512959
CYP2D6; pharmacogenetics; pharmacogenomics; PharmGKB; polymorphism; variant
13.  PharmGKB summary: ibuprofen pathways 
Pharmacogenetics and genomics  2015;25(2):96-106.
doi:10.1097/FPC.0000000000000113
PMCID: PMC4355401  PMID: 25502615
cyclooxygenase; CYP2C8; CYP2C9; ibuprofen; nonsteroidal anti-inflammatory drugs; pathway; pharmacogenomics; prostaglandins
14.  PharmGKB summary: very important pharmacogene information for CFTR 
Pharmacogenetics and genomics  2015;25(3):149-156.
doi:10.1097/FPC.0000000000000112
PMCID: PMC4336773  PMID: 25514096
CFTR; cystic fibrosis; pharmacogenetics; pharmacodynamics; ivacaftor; potentiator; corrector; modulator
15.  PharmGKB summary: mycophenolic acid pathway 
Pharmacogenetics and genomics  2014;24(1):73-79.
doi:10.1097/FPC.0000000000000010
PMCID: PMC4091813  PMID: 24220207
immunosuppressive agents; inosine monophosphate dehydrogenase; mycophenolate mofetil; mycophenolic acid; pharmacogenetics; pharmacogenomics
16.  PharmGKB summary: venlafaxine pathway 
Pharmacogenetics and genomics  2014;24(1):62-72.
doi:10.1097/FPC.0000000000000003
PMCID: PMC4098656  PMID: 24128936
CYP2C19; CYP2D6; pharmacogenetics; serotonin–norepinephrine reuptake inhibitor; venlafaxine
17.  Population‐specific single‐nucleotide polymorphism confers increased risk of venous thromboembolism in African Americans 
Abstract
Introduction
African Americans have a higher incidence of venous thromboembolism (VTE) than European descent individuals. However, the typical genetic risk factors in populations of European descent are nearly absent in African Americans, and population‐specific genetic factors influencing the higher VTE rate are not well characterized.
Methods
We performed a candidate gene analysis on an exome‐sequenced African American family with recurrent VTE and identified a variant in Protein S (PROS1) V510M (rs138925964). We assessed the population impact of PROS1 V510M using a multicenter African American cohort of 306 cases with VTE compared to 370 controls. Additionally, we compared our case cohort to a background population cohort of 2203 African Americans in the NHLBI GO Exome Sequencing Project (ESP).
Results
In the African American family with recurrent VTE, we found prior laboratories for our cases indicating low free Protein S levels, providing functional support for PROS1 V510M as the causative mutation. Additionally, this variant was significantly enriched in the VTE cases of our multicenter case–control study (Fisher's Exact Test, P = 0.0041, OR = 4.62, 95% CI: 1.51–15.20; allele frequencies – cases: 2.45%, controls: 0.54%). Similarly, PROS1 V510M was also enriched in our VTE case cohort compared to African Americans in the ESP cohort (Fisher's Exact Test, P = 0.010, OR = 2.28, 95% CI: 1.26–4.10).
Conclusions
We found a variant, PROS1 V510M, in an African American family with VTE and clinical laboratory abnormalities in Protein S. Additionally, we found that this variant conferred increased risk of VTE in a case–control study of African Americans. In the ESP cohort, the variant is nearly absent in ESP European descent subjects (n = 3, allele frequency: 0.03%). Additionally, in 1000 Genomes Phase 3 data, the variant only appears in African descent populations. Thus, PROS1 V510M is a population‐specific genetic risk factor for VTE in African Americans.
doi:10.1002/mgg3.226
PMCID: PMC5023936  PMID: 27652279
African American; hypercoagulability; pulmonary embolism; venous thromboembolism
18.  PharmGKB summary: very important pharmacogene information for cytochrome P450, family 2, subfamily C, polypeptide 8 
Pharmacogenetics and genomics  2013;23(12):721-728.
doi:10.1097/FPC.0b013e3283653b27
PMCID: PMC4038626  PMID: 23962911
CYP2C8; CYP2C8*3; metabolism; pharmacogenetics; pharmacogenomics; pharmGKB
19.  Genome-wide association study of warfarin maintenance dose in a Brazilian sample 
Pharmacogenomics  2015;16(11):1-11.
Aim
Extreme discordant phenotype and genome-wide association (GWA) approaches were combined to explore the role of genetic variants on warfarin dose requirement in Brazilians.
Methods
Patients receiving low (≤20 mg/week; n = 180) or high stable warfarin doses (≥42.5 mg/week; n = 187) were genotyped with Affymetrix Axiom® Biobank arrays. Imputation was carried out using data from the combined 1000 Genomes project.
Results
Genome-wide signals (p ≤5 × 10−8) were identified in the well-known VKORC1 (lead SNP, rs749671; OR: 20.4; p = 1.08 × 10−33) and CYP2C9 (lead SNP, rs9332238, OR: 6.8 and p = 4.4 × 10−13) regions. The rs9332238 polymorphism is in virtually perfect LD with CYP2C9*2 (rs1799853) and CYP2C9*3 (rs1057910). No other genome-wide significant regions were identified in the study.
Conclusion
We confirmed the important role of VKORC1 and CYP2C9 polymorphisms in warfarin dose.
doi:10.2217/PGS.15.73
PMCID: PMC4573240  PMID: 26265036
1000 Genomes Project; Brazilians; CYP2C9; extreme discordant phenotypes; genome-wide association study; VKORC1; warfarin
20.  PharmGKB summary: tamoxifen pathway, pharmacokinetics 
Pharmacogenetics and genomics  2013;23(11):643-647.
doi:10.1097/FPC.0b013e3283656bc1
PMCID: PMC4084801  PMID: 23962908
breast cancer; pathway; pharmacogenomics; tamoxifen
21.  PharmGKB summary: Gemcitabine Pathway 
Pharmacogenetics and genomics  2014;24(11):564-574.
doi:10.1097/FPC.0000000000000086
PMCID: PMC4189987  PMID: 25162786
Gemcitabine; deoxycytidine analogs; pancreatic cancer; non-small cell lung cancer; breast cancer; pharmacogenomics
22.  Evidence for Clinical Implementation of Pharmacogenomics in Cardiac Drugs 
Mayo Clinic proceedings  2015;90(6):716-729.
Objective
To comprehensively assess the pharmacogenomic evidence of routinely-used drugs for clinical utility.
Methods
From January 2, 2011 to May 31, 2013, we assessed 71 drugs by identifying all drug/genetic variant combinations with published clinical pharmacogenomic evidence. Literature supporting each drug/variant pair was assessed for study design and methodology, outcomes, statistical significance, and clinical relevance. Proposed clinical summaries were formally scored using a modified AGREE (Appraisal of Guidelines for Research and Evaluation) II instrument, including recommendation for or against guideline implementation.
Results
Positive pharmacogenomic findings were identified for 51 of 71 cardiovascular drugs (71.8%) representing 884 unique drug/variant pairs from 597 publications. After analysis for quality and clinical relevance, 92 drug/variant pairs were proposed for translation into clinical summaries, encompassing 23 drugs (32.4% of drugs reviewed). All were found recommended for clinical implementation using AGREE, with average overall quality scores of 5.18 (out of 7.0; range 3.67 to 7.0; SD 0.91). Drug guidelines had highest scores in AGREE domain 1 (Scope) (average 91.9 out of 100; SD 6.1), and moderate but still robust scores in domain 3 (Rigour) (average 73.1; SD 11.1), domain 4 (Clarity) (average 67.8; SD 12.5), and domain 5 (Applicability) (average 65.8; SD 10). The drugs clopidogrel (CYP2C19), metoprolol (CYP2D6), simvastatin (rs4149056), dabigatran (rs2244613), hydralazine (rs1799983, rs1799998), and warfarin (CYP2C9/VKORC1) were distinguished by the highest scores. Eight of the 10 most commonly-prescribed drugs warranted translation guidelines summarizing clinical pharmacogenomic information.
Conclusions
Considerable clinically actionable pharmacogenomic information for cardiovascular drugs exists, supporting the idea that consideration of such information when prescribing is warranted.
doi:10.1016/j.mayocp.2015.03.016
PMCID: PMC4475352  PMID: 26046407
23.  Etoposide pathway 
Pharmacogenetics and genomics  2009;19(7):552-553.
doi:10.1097/FPC.0b013e32832e0e7f
PMCID: PMC4164627  PMID: 19512958
etoposide; pathway; pharmacogenetics; pharmacogenomics; pharmGKB
24.  Platinum pathway 
Pharmacogenetics and genomics  2009;19(7):563-564.
doi:10.1097/FPC.0b013e32832e0ed7
PMCID: PMC4153753  PMID: 19525887
anticancer; drug response; pathway; pharmacogenomics; platinum
25.  PharmGKB summary: uric acid-lowering drugs pathway, pharmacodynamics 
Pharmacogenetics and genomics  2014;24(9):464-476.
doi:10.1097/FPC.0000000000000058
PMCID: PMC4122637  PMID: 24915143
Adverse drug reactions; allopurinol; rasburicase; uric acid; uricosurics; pharmacodynamics; pharmacogenetics

Results 1-25 (105)