Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Genomewide Association between GLCCI1 and Response to Glucocorticoid Therapy in Asthma 
The New England journal of medicine  2011;365(13):1173-1183.
The response to treatment for asthma is characterized by wide interindividual variability, with a significant number of patients who have no response. We hypothesized that a genomewide association study would reveal novel pharmacogenetic determinants of the response to inhaled glucocorticoids.
We analyzed a small number of statistically powerful variants selected on the basis of a family-based screening algorithm from among 534,290 single-nucleotide polymorphisms (SNPs) to determine changes in lung function in response to inhaled glucocorticoids. A significant, replicated association was found, and we characterized its functional effects.
We identified a significant pharmacogenetic association at SNP rs37972, replicated in four independent populations totaling 935 persons (P = 0.0007), which maps to the glucocorticoid-induced transcript 1 gene (GLCCI1) and is in complete linkage disequilibrium (i.e., perfectly correlated) with rs37973. Both rs37972 and rs37973 are associated with decrements in GLCCI1 expression. In isolated cell systems, the rs37973 variant is associated with significantly decreased luciferase reporter activity. Pooled data from treatment trials indicate reduced lung function in response to inhaled glucocorticoids in subjects with the variant allele (P = 0.0007 for pooled data). Overall, the mean (± SE) increase in forced expiratory volume in 1 second in the treated subjects who were homozygous for the mutant rs37973 allele was only about one third of that seen in similarly treated subjects who were homozygous for the wild-type allele (3.2 ± 1.6% vs. 9.4 ± 1.1%), and their risk of a poor response was significantly higher (odds ratio, 2.36; 95% confidence interval, 1.27 to 4.41), with genotype accounting for about 6.6% of overall inhaled glucocorticoid response variability.
A functional GLCCI1 variant is associated with substantial decrements in the response to inhaled glucocorticoids in patients with asthma. (Funded by the National Institutes of Health and others; number, NCT00000575.)
PMCID: PMC3667396  PMID: 21991891
2.  Thymic Stromal Lymphopoietin Gene Promoter Polymorphisms Are Associated with Susceptibility to Bronchial Asthma 
Thymic stromal lymphopoietin (TSLP) triggers dendritic cell–mediated T helper (Th) 2 inflammatory responses. A single-nucleotide polymorphism (SNP), rs3806933, in the promoter region of the TSLP gene creates a binding site for the transcription factor activating protein (AP)–1. The variant enhances AP-1 binding to the regulatory element, and increases the promoter–reporter activity of TSLP in response to polyinosinic-polycytidylic acid (poly[I:C]) stimulation in normal human bronchial epithelium (NHBE). We investigated whether polymorphisms including the SNP rs3806933 could affect the susceptibility to and clinical phenotypes of bronchial asthma. We selected three representative (i.e., Tag) SNPs and conducted association studies of the TSLP gene, using two independent populations (639 patients with childhood atopic asthma and 838 control subjects, and 641 patients with adult asthma and 376 control subjects, respectively). We further examined the effects of corticosteroids and a long-acting β2-agonist (salmeterol) on the expression levels of the TSLP gene in response to poly(I:C) in NHBE. We found that the promoter polymorphisms rs3806933 and rs2289276 were significantly associated with disease susceptibility in both childhood atopic and adult asthma. The functional SNP rs3806933 was associated with asthma (meta-analysis, P = 0.000056; odds ratio, 1.29; 95% confidence interval, 1.14–1.47). A genotype of rs2289278 was correlated with pulmonary function. Moreover, the induction of TSLP mRNA and protein expression induced by poly(I:C) in NHBE was synergistically impaired by a corticosteroid and salmeterol. TSLP variants are significantly associated with bronchial asthma and pulmonary function. Thus, TSLP may serve as a therapeutic target molecule for combination therapy.
PMCID: PMC3159073  PMID: 20656951
asthma; TSLP; bronchial epithelial cells; combination therapy; genetic polymorphisms
3.  IL-21–induced Bɛ cell apoptosis mediated by natural killer T cells suppresses IgE responses 
The Journal of Experimental Medicine  2006;203(13):2929-2937.
Epidemiological studies have suggested that the recent increase in the incidence and severity of immunoglobulin (Ig)E-mediated allergic disorders is inversely correlated with Mycobacterium bovis bacillus Calmette Guerin (BCG) vaccination; however, the underlying mechanisms remain uncertain. Here, we demonstrate that natural killer T (NKT) cells in mice and humans play a crucial role in the BCG-induced suppression of IgE responses. BCG-activated murine Vα14 NKT cells, but not conventional CD4 T cells, selectively express high levels of interleukin (IL)-21, which preferentially induces apoptosis in Bɛ cells. Signaling from the IL-21 receptor increases the formation of a complex between Bcl-2 and the proapoptotic molecule Bcl-2–modifying factor, resulting in Bɛ cell apoptosis. Similarly, BCG vaccination induces IL-21 expression by human peripheral blood mononuclear cells (PBMCs) in a partially NKT cell–dependent fashion. BCG-activated PBMCs significantly reduce IgE production by human B cells. These findings provide new insight into the therapeutic effect of BCG in allergic diseases.
PMCID: PMC2118181  PMID: 17178921
4.  Augmentation of Vα14 Nkt Cell–Mediated Cytotoxicity by Interleukin 4 in an Autocrine Mechanism Resulting in the Development of Concanavalin a–Induced Hepatitis 
The administration of concanavalin A (Con A) induces a rapid severe injury of hepatocytes in mice. Although the Con A–induced hepatitis is considered to be an experimental model of human autoimmune hepatitis, the precise cellular and molecular mechanisms that induce hepatocyte injury remain unclear. Here, we demonstrate that Vα14 NKT cells are required and sufficient for induction of this hepatitis. Moreover, interleukin (IL)-4 produced by Con A–activated Vα14 NKT cells is found to play a crucial role in disease development by augmenting the cytotoxic activity of Vα14 NKT cells in an autocrine fashion. Indeed, short-term treatment with IL-4 induces an increase in the expression of granzyme B and Fas ligand (L) in Vα14 NKT cells. Moreover, Vα14 NKT cells from either perforin knock-out mice or FasL-mutant gld/gld mice fail to induce hepatitis, and hence perforin–granzyme B and FasL appear to be effector molecules in Con A–induced Vα14 NKT cell–mediated hepatocyte injury.
PMCID: PMC2195789  PMID: 10620609
IL-4; Vα14 NKT cell; Con A; hepatitis; autocrine

Results 1-4 (4)