PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  A polymorphism in the thyroid hormone receptor gene is associated with bronchodilator response in asthmatics 
The pharmacogenomics journal  2012;13(2):130-136.
A pro-asthmatic culture milieu and β2-agonist (isoproterenol) were previously shown to regulate the expression of select transcription factors (TFs) within human airway epithelial and smooth muscle cells. This study tests 1116 single nucleotide polymorphisms (SNPs) across 98 of these TF genes for association with bronchodilator response (BDR) in asthma patients. Genotyping was conducted using the Illumina HumanHap550v3 Beadchip in 403 non-Hispanic White asthmatic children and their parents. SNPs were evaluated for association with BDR using family and population-based analyses. Forty-two SNPs providing p values < 0.1 in both analyses were then genotyped in three adult asthma trials. One SNP 5’ of the thyroid hormone receptor beta gene was associated with BDR in the childhood population and two adult populations (p value = 0.0012). This investigation identified a novel locus for inter-individual variability in BDR and represents a translation of a cellular drug-response study to potential personalization of clinical asthma management.
doi:10.1038/tpj.2011.56
PMCID: PMC3349771  PMID: 22212731
Bronchodilator response; transcription factor; association; thyroid hormone receptor β; asthma; pharmacogenetics
2.  Regulatory Haplotypes in ARG1 Are Associated with Altered Bronchodilator Response 
Rationale: β2-agonists, the most common treatment for asthma, have a wide interindividual variability in response, which is partially attributed to genetic factors. We previously identified single nucleotide polymorphisms in the arginase 1 (ARG1) gene, which are associated with β2-agonist bronchodilator response (BDR).
Objectives: To identify cis-acting haplotypes in the ARG1 locus that are associated with BDR in patients with asthma and regulate gene expression in vitro.
Methods: We resequenced ARG1 in 96 individuals and identified three common, 5′ haplotypes (denoted 1, 2, and 3). A haplotype-based association analysis of BDR was performed in three independent, adult asthma drug trial populations. Next, each haplotype was cloned into vectors containing a luciferase reporter gene and transfected into human airway epithelial cells (BEAS-2B) to ascertain its effect on gene expression.
Measurements and Main Results: BDR varied by haplotype in each of the three populations with asthma. Individuals with haplotype 1 were more likely to have higher BDR, compared to those with haplotypes 2 and 3, which is supported by odds ratios of 1.25 (95% confidence interval, 1.03–1.71) and 2.18 (95% confidence interval, 1.34–2.52), respectively. Luciferase expression was 50% greater in cells transfected with haplotype 1 compared to haplotypes 2 and 3.
Conclusions: The identified ARG1 haplotypes seem to alter BDR and differentially regulate gene expression with a concordance of decreased BDR and reporter activity from haplotypes 2 and 3. These findings may facilitate pharmacogenetic tests to predict individuals who may benefit from other therapeutic agents in addition to β2-agonists for optimal asthma management.
Clinical trial registered with www.clinicaltrials.gov (NCT00156819, NCT00046644, and NCT00073840).
doi:10.1164/rccm.201005-0758OC
PMCID: PMC3056223  PMID: 20851928
pharmacogenetics; asthma; β2-agonist
3.  Association of corticotropin releasing hormone receptor 2 (CRHR2) genetic variants with acute bronchodilator response in asthma 
Pharmacogenetics and genomics  2008;18(5):373-382.
Objective
Corticotropin - releasing hormone receptor 2 (CRHR2) participates in smooth muscle relaxation response and may influence acute airway bronchodilator response to short – acting β2 agonist treatment of asthma. We aim to assess associations between genetic variants of CRHR2 and acute bronchodilator response in asthma.
Methods
We investigated 28 single nucleotide polymorphisms in CRHR2 for associations with acute bronchodilator response to albuterol in 607 Caucasian asthmatic subjects recruited as part of the Childhood Asthma Management Program (CAMP). Replication was conducted in two Caucasian adult asthma cohorts – a cohort of 427 subjects enrolled in a completed clinical trial conducted by Sepracor Inc. (MA, USA) and a cohort of 152 subjects enrolled in the Clinical Trial of Low-Dose Theopylline and Montelukast (LODO) conducted by the American Lung Association Asthma Clinical Research Centers.
Results
Five variants were significantly associated with acute bronchodilator response in at least one cohort (p-value ≤ 0.05). Variant rs7793837 was associated in CAMP and LODO (p-value = 0.05 and 0.03, respectively) and haplotype blocks residing at the 5’ end of CRHR2 were associated with response in all three cohorts.
Conclusion
We report for the first time, at the gene level, replicated associations between CRHR2 and acute bronchodilator response. While no single variant was significantly associated in all three cohorts, the findings that variants at the 5’ end of CRHR2 are associated in each of three cohorts strongly suggest that the causative variants reside in this region and its genetic effect, although present, is likely to be weak.
doi:10.1097/FPC.0b013e3282fa760a
PMCID: PMC3208318  PMID: 18408560
Asthma; genetics; corticotrophin releasing hormone receptor 2; CRHR2; bronchodilator response; polymorphism; β2 adrenergic receptor agonist
4.  ARG1 Is a Novel Bronchodilator Response Gene 
Rationale: Inhaled β-agonists are one of the most widely used classes of drugs for the treatment of asthma. However, a substantial proportion of patients with asthma do not have a favorable response to these drugs, and identifying genetic determinants of drug response may aid in tailoring treatment for individual patients.
Objectives: To screen variants in candidate genes in the steroid and β-adrenergic pathways for association with response to inhaled β-agonists.
Methods: We genotyped 844 single nucleotide polymorphisms (SNPs) in 111 candidate genes in 209 children and their parents participating in the Childhood Asthma Management Program. We screened the association of these SNPs with acute response to inhaled β-agonists (bronchodilator response [BDR]) using a novel algorithm implemented in a family-based association test that ranked SNPs in order of statistical power. Genes that had SNPs with median power in the highest quartile were then taken for replication analyses in three other asthma cohorts.
Measurements and Main Results: We identified 17 genes from the screening algorithm and genotyped 99 SNPs from these genes in a second population of patients with asthma. We then genotyped 63 SNPs from four genes with significant associations with BDR, for replication in a third and fourth population of patients with asthma. Evidence for association from the four asthma cohorts was combined, and SNPs from ARG1 were significantly associated with BDR. SNP rs2781659 survived Bonferroni correction for multiple testing (combined P value = 0.00048, adjusted P value = 0.047).
Conclusions: These findings identify ARG1 as a novel gene for acute BDR in both children and adults with asthma.
doi:10.1164/rccm.200709-1363OC
PMCID: PMC2556451  PMID: 18617639
pharmacogenetics; asthma; bronchodilator agents
5.  Genome-Wide Association Analysis in Asthma Subjects Identifies SPATS2L as a Novel Bronchodilator Response Gene 
PLoS Genetics  2012;8(7):e1002824.
Bronchodilator response (BDR) is an important asthma phenotype that measures reversibility of airway obstruction by comparing lung function (i.e. FEV1) before and after the administration of a short-acting β2-agonist, the most common rescue medications used for the treatment of asthma. BDR also serves as a test of β2-agonist efficacy. BDR is a complex trait that is partly under genetic control. A genome-wide association study (GWAS) of BDR, quantified as percent change in baseline FEV1 after administration of a β2-agonist, was performed with 1,644 non-Hispanic white asthmatic subjects from six drug clinical trials: CAMP, LOCCS, LODO, a medication trial conducted by Sepracor, CARE, and ACRN. Data for 469,884 single-nucleotide polymorphisms (SNPs) were used to measure the association of SNPs with BDR using a linear regression model, while adjusting for age, sex, and height. Replication of primary P-values was attempted in 501 white subjects from SARP and 550 white subjects from DAG. Experimental evidence supporting the top gene was obtained via siRNA knockdown and Western blotting analyses. The lowest overall combined P-value was 9.7E-07 for SNP rs295137, near the SPATS2L gene. Among subjects in the primary analysis, those with rs295137 TT genotype had a median BDR of 16.0 (IQR = [6.2, 32.4]), while those with CC or TC genotypes had a median BDR of 10.9 (IQR = [5.0, 22.2]). SPATS2L mRNA knockdown resulted in increased β2-adrenergic receptor levels. Our results suggest that SPATS2L may be an important regulator of β2-adrenergic receptor down-regulation and that there is promise in gaining a better understanding of the biological mechanisms of differential response to β2-agonists through GWAS.
Author Summary
Bronchodilator response (BDR) is an important asthma phenotype that measures reversibility of airway obstruction by comparing lung function before and after the administration of short-acting β2-agonists, common medications used for asthma treatment. We performed a genome-wide association study of BDR with 1,644 white asthmatic subjects from six drug clinical trials and attempted to replicate these findings in 1,051 white subjects from two independent cohorts. The most significant associated variant was near the SPATS2L gene. We knocked down SPATS2L mRNA in human airway smooth muscle cells and found that β2-adrenergic receptor levels increased, suggesting that SPATS2L may be a regulator of BDR. Our results highlight the promise of pursuing GWAS results that do not necessarily reach genome-wide significance and are an example of how results from pharmacogenetic GWAS can be studied functionally.
doi:10.1371/journal.pgen.1002824
PMCID: PMC3390407  PMID: 22792082

Results 1-5 (5)