PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-21 (21)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
Document Types
1.  Neural-Specific Deletion of Htra2 Causes Cerebellar Neurodegeneration and Defective Processing of Mitochondrial OPA1 
PLoS ONE  2014;9(12):e115789.
HTRA2, a serine protease in the intermembrane space, has important functions in mitochondrial stress signaling while its abnormal activity may contribute to the development of Parkinson’s disease. Mice with a missense or null mutation of Htra2 fail to thrive, suffer striatal neuronal loss, and a parkinsonian phenotype that leads to death at 30–40 days of age. While informative, these mouse models cannot separate neural contributions from systemic effects due to the complex phenotypes of HTRA2 deficiency. Hence, we developed mice carrying a Htra2-floxed allele to query the consequences of tissue-specific HTRA2 deficiency. We found that mice with neural-specific deletion of Htra2 exhibited atrophy of the thymus and spleen, cessation to gain weight past postnatal (P) day 18, neurological symptoms including ataxia and complete penetrance of premature death by P40. Histologically, increased apoptosis was detected in the cerebellum, and to a lesser degree in the striatum and the entorhinal cortex, from P25. Even earlier at P20, mitochondria in the cerebella already exhibited abnormal morphology, including swelling, vesiculation, and fragmentation of the cristae. Furthermore, the onset of these structural anomalies was accompanied by defective processing of OPA1, a key molecule for mitochondrial fusion and cristae remodeling, leading to depletion of the L-isoform. Together, these findings suggest that HTRA2 is essential for maintenance of the mitochondrial integrity in neurons. Without functional HTRA2, a lifespan as short as 40 days accumulates a large quantity of dysfunctional mitochondria that contributes to the demise of mutant mice.
doi:10.1371/journal.pone.0115789
PMCID: PMC4274161  PMID: 25531304
2.  Genome-wide association study of preeclampsia detects novel maternal single nucleotide polymorphisms and copy-number variants in subsets of the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study cohort 
Annals of human genetics  2013;77(4):277-287.
Summary
A genome-wide association study was undertaken to identify maternal single nucleotide polymorphisms (SNPs) and copy-number variants (CNVs) associated with preeclampsia. Case-control analysis was performed on 1070 Afro-Caribbean (n=21 cases and 1049 controls) and 723 Hispanic (n=62 cases and 661 controls) mothers and 1257 mothers of European ancestry (n=50 cases and 1207 controls) from the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study. European ancestry subjects were genotyped on Illumina Human610-Quad and Afro-Caribbean and Hispanic subjects were genotyped on Illumina Human1M-Duo BeadChip microarrays. Genome-wide SNP data were analyzed using PLINK. CNVs were called using three detection algorithms (GNOSIS, PennCNV, and QuantiSNP), merged using CNVision, and then screened using stringent criteria. SNP and CNV findings were compared to those of the Study of Pregnancy Hypertension in Iowa (SOPHIA), an independent preeclampsia case-control dataset of Caucasian mothers (n=177 cases and 116 controls). A list of top SNPs were identified for each of the HAPO ethnic groups, but none reached Bonferroni-corrected significance. Novel candidate CNVs showing enrichment among preeclampsia cases were also identified in each of the three ethnic groups. Several variants were suggestively replicated in SOPHIA. The discovered SNPs and copy-number variable regions present interesting candidate genetic variants for preeclampsia that warrant further replication and investigation.
doi:10.1111/ahg.12021
PMCID: PMC3740040  PMID: 23551011
copy-number variant; genome-wide association study; microarray analysis; preeclampsia; single nucleotide polymorphism
3.  Pathway-Based Genetic Analysis of Preterm Birth 
Genomics  2013;101(3):163-170.
Preterm birth in the United States is now 12%. Multiple genes, gene networks, variants have been associated with this disease. Using a custom database for preterm birth (dbPTB) with a refined set of genes extensively curated from literature and biological databases, we analyzed a GWAS of preterm birth for complete genotype data on nearly 2000 preterm and term mothers. We used both the curated genes and a genome-wide approach to carry out a pathway-based analysis. There were 19 significant pathways, which withstood FDR correction for multiple testing that were identified using both the curated genes and the genome-wide approach. The analysis based on the curated genes was more significant than genome-wide in 15 out of 19 pathways. This approach demonstrates the use of a validated set of genes, in the analysis of otherwise unsuccessful GWAS data, to identify gene-gene interactions in a way that enhances statistical power and discovery.
doi:10.1016/j.ygeno.2012.12.005
PMCID: PMC3570639  PMID: 23298525
Preterm birth; Pathway analysis; GWAS
4.  Association of maternal AGTR1 polymorphisms and preeclampsia: a systematic review and meta-analysis 
Objective
Systematic review and meta-analysis to investigate the association between maternal AGTR1 gene single nucleotide polymorphisms (SNPs) and preeclampsia (PE).
Methods
A systematic literature search was performed using PubMed, EMBASE, Scopus, and HuGE Literature Finder databases. The review was conducted according to PRISMA guidelines. Summary odds ratios (ORs) for the allelic and genotypic contrasts were calculated and compared to indicate the most appropriate genetic model for the polymorphism of interest. Among-study heterogeneity was assessed using the I2 statistic and publication bias was evaluated visually using funnel plots.
Results
Seven maternal SNPs investigated with PE were found, but only AGTR1 +1166A>C accumulated sufficient evidence for meta-analysis. Summary ORs calculated from eight studies (10 populations involving 845 PE cases and 1150 controls) did not reveal an association between the +1166A>C polymorphism and PE (allelic OR = 1.19, 95% CI: 0.96–1.47). No evidence of publication bias and among-study heterogeneity was detected.
Conclusions
Meta-analysis findings did not support AGTR1 +1166A>C as a susceptibility locus for PE. Other AGTR1 SNPs require more study.
doi:10.3109/14767058.2012.708370
PMCID: PMC3635471  PMID: 22758920
angiotensin II receptor type 1; genetic association study; pregnancy; single nucleotide polymorphism
5.  Leveraging Ethnic Group Incidence Variation to Investigate Genetic Susceptibility to Glioma: A Novel Candidate SNP Approach 
Frontiers in Genetics  2012;3:203.
Objectives: Using a novel candidate SNP approach, we aimed to identify a possible genetic basis for the higher glioma incidence in Whites relative to East Asians and African-Americans. Methods:  We hypothesized that genetic regions containing SNPs with extreme differences in allele frequencies across ethnicities are most likely to harbor susceptibility variants. We used International HapMap Project data to identify 3,961 candidate SNPs with the largest allele frequency differences in Whites compared to East Asians and Africans and tested these SNPs for association with glioma risk in a set of White cases and controls. Top SNPs identified in the discovery dataset were tested for association with glioma in five independent replication datasets. Results: No SNP achieved statistical significance in either the discovery or replication datasets after accounting for multiple testing or conducting meta-analysis. However, the most strongly associated SNP, rs879471, was found to be in linkage disequilibrium with a previously identified risk SNP, rs6010620, in RTEL1. We estimate rs6010620 to account for a glioma incidence rate ratio of 1.34 for Whites relative to East Asians. Conclusion: We explored genetic susceptibility to glioma using a novel candidate SNP method which may be applicable to other diseases with appropriate epidemiologic patterns.
doi:10.3389/fgene.2012.00203
PMCID: PMC3469791  PMID: 23091480
glioma; candidate SNP association study; ancestry informative markers; admixture; race; ethnicity; brain cancer
6.  Stage and Gene Specific Signatures Defined by Histones H3K4me2 and H3K27me3 Accompany Mammalian Retina Maturation In Vivo 
PLoS ONE  2012;7(10):e46867.
The epigenetic contribution to neurogenesis is largely unknown. There is, however, growing evidence that posttranslational modification of histones is a dynamic process that shows many correlations with gene expression. Here we have followed the genome-wide distribution of two important histone H3 modifications, H3K4me2 and H3K27me3 during late mouse retina development. The retina provides an ideal model for these studies because of its well-characterized structure and development and also the extensive studies of the retinal transcriptome and its development. We found that a group of genes expressed only in mature rod photoreceptors have a unique signature consisting of de-novo accumulation of H3K4me2, both at the transcription start site (TSS) and over the whole gene, that correlates with the increase in transcription, but no accumulation of H3K27me3 at any stage. By in silico analysis of this unique signature we have identified a larger group of genes that may be selectively expressed in mature rod photoreceptors. We also found that the distribution of H3K4me2 and H3K27me3 on the genes widely expressed is not always associated with their transcriptional levels. Different histone signatures for retinal genes with the same gene expression pattern suggest the diversities of epigenetic regulation. Genes without H3K4me2 and H3K27me3 accumulation at any stage represent a large group of transcripts never expressed in retina. The epigenetic signatures defined by H3K4me2 and H3K27me3 can distinguish cell-type specific genes from widespread transcripts and may be reflective of cell specificity during retina maturation. In addition to the developmental patterns seen in wild type retina, the dramatic changes of histone modification in the retinas of mutant animals lacking rod photoreceptors provide a tool to study the epigenetic changes in other cell types and thus describe a broad range of epigenetic events in a solid tissue in vivo.
doi:10.1371/journal.pone.0046867
PMCID: PMC3467275  PMID: 23056497
7.  Whole-exome sequencing of a pedigree segregating asthma 
BMC Medical Genetics  2012;13:95.
Background
Despite the success of genome-wide association studies for asthma, few, if any, definitively causal variants have been identified and there is still a substantial portion of the heritability of the disease yet to be discovered. Some of this “missing heritability” may be accounted for by family-specific coding variants found to be segregating with asthma.
Methods
To identify family-specific variants segregating with asthma, we recruited one family from a previous study of asthma as reporting multiple asthmatic and non-asthmatic children. We performed whole-exome sequencing on all four children and both parents and identified coding variants segregating with asthma that were not found in other variant databases.
Results
Ten novel variants were identified that were found in the two affected offspring and affected mother, but absent in the unaffected father and two unaffected offspring. Of these ten, variants in three genes (PDE4DIP, CBLB, and KALRN) were deemed of particular interest based on their functional prediction scores and previously reported function or asthma association. We did not identify any common risk variants segregating with asthma, however, we did observe an increase in the number of novel, nonsynonymous variants in asthma candidate genes in the asthmatic children compared to the non-asthmatic children.
Conclusions
This is the first report applying exome sequencing to identify asthma susceptibility variants. Despite having sequenced only one family segregating asthma, we have identified several potentially functional variants in interesting asthma candidate genes. This will provide the basis for future work in which more families will be sequenced to identify variants across families that cluster within genes.
doi:10.1186/1471-2350-13-95
PMCID: PMC3563469  PMID: 23046476
Asthma; Whole-exome sequencing; PDE4DIP; CBLB; KALRN
8.  Genome-wide association study identifies a maternal copy-number deletion in PSG11 enriched among preeclampsia patients 
Background
Specific genetic contributions for preeclampsia (PE) are currently unknown. This genome-wide association study (GWAS) aims to identify maternal single nucleotide polymorphisms (SNPs) and copy-number variants (CNVs) involved in the etiology of PE.
Methods
A genome-wide scan was performed on 177 PE cases (diagnosed according to National Heart, Lung and Blood Institute guidelines) and 116 normotensive controls. White female study subjects from Iowa were genotyped on Affymetrix SNP 6.0 microarrays. CNV calls made using a combination of four detection algorithms (Birdseye, Canary, PennCNV, and QuantiSNP) were merged using CNVision and screened with stringent prioritization criteria. Due to limited DNA quantities and the deleterious nature of copy-number deletions, it was decided a priori that only deletions would be selected for assay on the entire case-control dataset using quantitative real-time PCR.
Results
The top four SNP candidates had an allelic or genotypic p-value between 10-5 and 10-6, however, none surpassed the Bonferroni-corrected significance threshold. Three recurrent rare deletions meeting prioritization criteria detected in multiple cases were selected for targeted genotyping. A locus of particular interest was found showing an enrichment of case deletions in 19q13.31 (5/169 cases and 1/114 controls), which encompasses the PSG11 gene contiguous to a highly plastic genomic region. All algorithm calls for these regions were assay confirmed.
Conclusions
CNVs may confer risk for PE and represent interesting regions that warrant further investigation. Top SNP candidates identified from the GWAS, although not genome-wide significant, may be useful to inform future studies in PE genetics.
doi:10.1186/1471-2393-12-61
PMCID: PMC3476390  PMID: 22748001
Copy-number variant; Genome-wide association study; Microarray analysis; Preeclampsia; Single nucleotide polymorphism
9.  A Comparison of Association Methods Correcting for Population Stratification in Case–Control Studies 
Annals of human genetics  2011;75(3):418-427.
Summary
Population stratification is an important issue in case–control studies of disease-marker association. Failure to properly account for population structure can lead to spurious association or reduced power. In this article, we compare the performance of six methods correcting for population stratification in case–control association studies. These methods include genomic control (GC), EIGENSTRAT, principal component-based logistic regression (PCA-L), LAPSTRUCT, ROADTRIPS, and EMMAX. We also include the uncorrected Armitage test for comparison. In the simulation studies, we consider a wide range of population structure models for unrelated samples, including admixture. Our simulation results suggest that PCA-L and LAPSTRUCT perform well over all the scenarios studied, whereas GC, ROADTRIPS, and EMMAX fail to correct for population structure at single nucleotide polymorphisms (SNPs) that show strong differentiation across ancestral populations. The Armitage test does not adjust for confounding due to stratification thus has inflated type I error. Among all correction methods, EMMAX has the greatest power, based on the population structure settings considered for samples with unrelated individuals. The three methods, EIGENSTRAT, PCA-L, and LAPSTRUCT, are comparable, and outperform both GC and ROADTRIPS in almost all situations.
doi:10.1111/j.1469-1809.2010.00639.x
PMCID: PMC3215268  PMID: 21281271
Population structure; association testing; type I error; power
10.  A pilot genome-wide association study shows genomic variants enriched in the non-tumor cells of patients with well-differentiated neuroendocrine tumors of the ileum 
Endocrine-Related Cancer  2011;18(1):171-180.
Genetic studies of midgut carcinoid cancer have exclusively focused on genomic changes of the tumor cells. We investigated the role of constitutional genetic polymorphisms in predisposing individuals to ileal carcinoids. In all, 239 cases and 110 controls were collected from three institutions: the Uppsala University Hospital; the Dana-Farber Cancer Institute; and the MD Anderson Cancer Center, and were genotyped using microarrays assaying >300 000 single nucleotide polymorphisms. Association with rs2208059 in KIF16B approached statistical significance (Mantel-Haenszel odds ratio=2.42, P=4.16×10−7) at a Bonferroni-corrected level (<1.62×10−7). Using two computational algorithms, four copy-number variants (CNVs) were identified in multiple cases that were absent in study controls and markedly less frequent in ~1500 population-based controls. Of these four constitutional CNVs identified in blood-derived DNA, a 40 kb heterozygous deletion in Chr18q22.1 corresponded with a region frequently showing loss of heterozygosity (LOH) in ileal carcinoid tumor cells based on our meta-analysis of previously published cytogenetic studies (69.7% LOH, 95% confidence interval=60.0–77.9%). We analyzed the constitutional 40 kb deletion on chr18 in our study samples with a real-time quantitative PCR assay; 14/226 cases (6.19%) and 2/97 controls (2.06%) carried the CNV, although the exact boundaries of each deletion have not been determined. Given the small sample size, our findings warrant an independent cohort for a replication study. Owing to the rarity of this disease, we believe these results will provide a valuable resource for future work on this serious condition by allowing others to make efficient use of their samples in targeted studies.
doi:10.1677/ERC-10-0248
PMCID: PMC3221459  PMID: 21139019
11.  Genetic Signatures of Exceptional Longevity in Humans 
PLoS ONE  2012;7(1):e29848.
Like most complex phenotypes, exceptional longevity is thought to reflect a combined influence of environmental (e.g., lifestyle choices, where we live) and genetic factors. To explore the genetic contribution, we undertook a genome-wide association study of exceptional longevity in 801 centenarians (median age at death 104 years) and 914 genetically matched healthy controls. Using these data, we built a genetic model that includes 281 single nucleotide polymorphisms (SNPs) and discriminated between cases and controls of the discovery set with 89% sensitivity and specificity, and with 58% specificity and 60% sensitivity in an independent cohort of 341 controls and 253 genetically matched nonagenarians and centenarians (median age 100 years). Consistent with the hypothesis that the genetic contribution is largest with the oldest ages, the sensitivity of the model increased in the independent cohort with older and older ages (71% to classify subjects with an age at death>102 and 85% to classify subjects with an age at death>105). For further validation, we applied the model to an additional, unmatched 60 centenarians (median age 107 years) resulting in 78% sensitivity, and 2863 unmatched controls with 61% specificity. The 281 SNPs include the SNP rs2075650 in TOMM40/APOE that reached irrefutable genome wide significance (posterior probability of association = 1) and replicated in the independent cohort. Removal of this SNP from the model reduced the accuracy by only 1%. Further in-silico analysis suggests that 90% of centenarians can be grouped into clusters characterized by different “genetic signatures” of varying predictive values for exceptional longevity. The correlation between 3 signatures and 3 different life spans was replicated in the combined replication sets. The different signatures may help dissect this complex phenotype into sub-phenotypes of exceptional longevity.
doi:10.1371/journal.pone.0029848
PMCID: PMC3261167  PMID: 22279548
12.  Disease risk prediction with rare and common variants 
BMC Proceedings  2011;5(Suppl 9):S61.
A number of studies have been conducted to investigate the predictive value of common genetic variants for complex diseases. To date, these studies have generally shown that common variants have no appreciable added predictive value over classical risk factors. New sequencing technology has enhanced the ability to identify rare variants that may have larger functional effects than common variants. One would expect rare variants to improve the discrimination power for disease risk by permitting more detailed quantification of genetic risk. Using the Genetic Analysis Workshop 17 simulated data sets for unrelated individuals, we evaluate the predictive value of rare variants by comparing prediction models built using the support vector machine algorithm with or without rare variants. Empirical results suggest that rare variants have appreciable effects on disease risk prediction.
doi:10.1186/1753-6561-5-S9-S61
PMCID: PMC3287900  PMID: 22373337
13.  Common variants near CAV1 and CAV2 are associated with primary open-angle glaucoma 
Nature genetics  2010;42(10):906-909.
We conducted a genome-wide association study for primary open-angle glaucoma (POAG) in 1,263 affected individuals (cases) and 34,877 controls from Iceland. We identified a common sequence variant at 7q31 (rs4236601[A], odds ratio (OR) = 1.36, P = 5.0 × 10-10). We then replicated the association in sample sets of 2,175 POAG cases and 2,064 controls from Sweden, the UK and Australia (combined OR = 1.18, P = 0.0015) and in 299 POAG cases and 580 unaffected controls from Hong Kong and Shantou, China (combined OR = 5.42, P = 0.0021). The risk variant identified here is located close to CAV1 and CAV2, both of which are expressed in the trabecular meshwork and retinal ganglion cells that are involved in the pathogenesis of POAG.
doi:10.1038/ng.661
PMCID: PMC3222888  PMID: 20835238
14.  HTRA1 Variants in Exudative Age-Related Macular Degeneration and Interactions with Smoking and CFH 
Purpose
Mapping the genes for age-related macular degeneration (AMD) had not been successful until recent genome-wide association studies revealed Tyr402His in CFH and rs11200638 in HTRA1 as AMD-related genetic variants. This study was conducted to identify other critical factors in HTRA1 that are associated with exudative AMD.
Methods
The promoter, splice regions, and coding exons of HTRA1 were sequenced in 163 patients with exudative AMD and 183 sex- and age-matched control subjects. Also documented were the CFH genotype and smoking status.
Results
Four significant SNPs were found in the promoter and the first exon of HTRA1: rs11200638 (–625G>A), rs2672598 (–487T>C), rs1049331 (102C>T, Ala34Ala), and rs2293870 (108G>T, Gly36Gly) with respective P = 1.7 × 10−14, 3.0 × 10− 10, 3.7 × 10−12, and 3.7 × 10−12. Among them, rs11200638 is the most significant associated SNP with a high odds ratio (OR) of 7.6 (95% CI: 3.94–14.51). One risk haplotype block across the promoter and exon 1, ACCTT, significantly predisposes to AMD (P = 6.68 × 10−14). In both models, significant independent additive effects were identified with smoking and rs800292 (184G>A, Val62Ile) of CFH. Smoking and rs11200638 (HTRA1) combined caused a 15.7-fold increased risk, whereas combined rs800292 and rs11200638 caused a 23.3-fold increased risk. An extremely high population attributable risk (PAR) of 78% was also found.
Conclusions
A high impact of the additive effect of CFH and HTRA1 in the development of exudative AMD was shown. The HTRA1-smoking additive effect found in this study further suggests the importance of this environmental risk factor in AMD.
doi:10.1167/iovs.07-1520
PMCID: PMC3215269  PMID: 18316707
15.  Association between reduced copy-number at T-cell receptor gamma (TCRγ) and childhood allergic asthma: a possible role for somatic mosaicism 
Mutation research  2010;690(1-2):89-94.
Asthma is a chronic inflammatory disease of the lungs which affects more than 6.5 million American children. A family-based genome-wide association study of copy-number variation identified an association between decreased copy-number at TCRγ and childhood allergic asthma. TCRγ encodes the T-cell receptor gamma glycoprotein, a cell-surface protein found on T-cells and involved in cell-mediated immunity. Using quantitative real-time PCR, we sought to determine if copy-number variation at TCRα, TCRβ or TCRγ was associated with childhood allergic asthma in an independent cohort of 94 cases and 455 controls using DNA from buccal swabs. Copy-number variation at these loci is well-known, but appears to be dominated by somatic mutations. Genotyping results indicated that copy-number variants at these genes are largely somatic mutations, as inheritance did not show Mendelian consistency. In these mosaic cell populations, copy-number was significantly reduced among asthmatic children at TCRγ (p = 0.0199), but was not associated at TCRα or TCRβ (p = 0.7972 and 0.8585, respectively). These findings support the association between reduced copy-number at TCRγ and childhood allergic asthma. Further work is needed to resolve whether reduced copy-number at TCRγ predisposes individuals to asthma, or whether deletion of this gene is a somatic response to the disease.
doi:10.1016/j.mrfmmm.2010.05.005
PMCID: PMC2914201  PMID: 20553737
T-cell receptor gamma; Copy Number Variant; allergic asthma; mosaicism
17.  Detecting essential and removable interactions in genome-wide association studies 
Statistics and its interface  2009;2(2):161-170.
Detection of disease gene interaction effects among the enormous array of single nucleotide polymorphism (SNP) combinations represents the next frontier in genome-wide association (GWA) studies. Here we propose a novel strategy on the basis of the pattern and nature of the interaction, which can be classified as essential (EI) or removable (RI). We provide an analytical framework, including the qualitative conditions for screening EIs/RIs and a RI-to-EI likelihood ratio score to quantitatively measure the effect. In analyzing six GWA data sets, we find that the scores follow an exponential distribution, except in the upper 10−8 tail region in which the scores become irregular and unpredictable. Our approach is conceptually simple, computationally efficient and detects interactions that can be visualized and unequivocally interpreted.
PMCID: PMC3002050  PMID: 21165165
Genome-wide association study; gene-gene interaction; removable interaction; essential interaction; likelihood ratio statistics
18.  Five Classic Articles in Genetic Epidemiology 
The relatively new field of genetic epidemiology has witnessed some exciting leaps forward in our quest to understand the population and familial nature of genetic inheritance. We have witnessed the mapping of thousands of genetic loci contributing to both mendelian and complex diseases, and new high-throughput, low-cost sequencing technologies promise to uncover even more. Here I highlight five publications that have shaped how we think about and conduct the task of unraveling the genetic causes of disease on a population scale.
PMCID: PMC2892761  PMID: 20589189
19.  Mitochondrial DNA Variants of Respiratory Complex I that Uniquely Characterize Haplogroup T2 Are Associated with Increased Risk of Age-Related Macular Degeneration 
PLoS ONE  2009;4(5):e5508.
Background
Age-related macular degeneration (AMD), a chronic neurodegenerative and neovascular retinal disease, is the leading cause of blindness in elderly people of western European origin. While structural and functional alterations in mitochondria (mt) and their metabolites have been implicated in the pathogenesis of chronic neurodegenerative and vascular diseases, the relationship of inherited variants in the mitochondrial genome and mt haplogroup subtypes with advanced AMD has not been reported in large prospective cohorts.
Methodology/Prinicipal Findings
We examined the relationship of inherited mtDNA variants with advanced AMD in 1168 people using a three-stage design on samples from 12-year and 10-year prospective studies on the natural history of age-related eye disease. In Stage I we resequenced the entire genome in 99 elderly AMD-free controls and 215 people with advanced AMD from the 12-year study. A consistent association with AMD in 14 of 17 SNPs characterizing the mtDNA T haplogroup emerged. Further analysis revealed these associations were driven entirely by the T2 haplogroup, and characterized by two variants in Complex I genes (A11812G of MT-ND4 and A14233G of MT-ND6). We genotyped T haplogroups in an independent sample of 490 cases and 61 controls from the same study (Stage II) and in 56 cases and 246 controls from the 10-year study (Stage III). People in the T2 haplogroup were approximately 2.5 times more likely to have advanced AMD than their peers (odds ratio [OR] = 2.54, 95%CI 1.36–4.80, P≤0.004) after considering the totality of evidence. Findings persisted after considering the impact of AMD-associated variants A69S and Y402H (OR = 5.19, 95%CI 1.19–22.69, P≤0.029).
Conclusion
Loci defining the mtDNA T2 haplogroup and Complex I are reasonable targets for novel functional analyses and therapeutic research in AMD.
doi:10.1371/journal.pone.0005508
PMCID: PMC2677106  PMID: 19434233
20.  Joint effects of polymorphisms in the HTRA1, LOC387715/ARMS2, and CFH genes on AMD in a Caucasian population 
Molecular Vision  2008;14:1395-1400.
Purpose
To estimate the joint effects of single nucleotide polymorphysms (SNPs) in the genes complement factor H (CFH), HtrA serine peptidase 1 (HTRA1), and age-related maculopathy susceptibility 2 (LOC387715/ARMS2) in a Caucasian age related macular degeneration (AMD) case-control cohort.
Methods
We genotyped three SNPs, rs1061170 (exon 9, CFH), rs11200638 (HTRA1 promoter, −512 bp), and rs10490924 (6.6 kb upstream of HTRA1 in LOC387715/ARMS2) in 333 cases with advanced AMD (choroidal neovascularization [CNV] and geographic atrophy) and 171 age-matched examined controls. Association tests were performed for individual SNPs and jointly with the CFH SNP Y402H. Analyses for interaction were also performed.
Results
The linkage disequilibrium measure for two SNPs on 10q26, rs10490924 and rs11200638, is D'=0.8 and all four possible haplotypes of the two SNPs were detected in the samples. The allelic association test for rs11200638 on the promoter of HTRA1 yielded p-values less than 10−10 for geographic atrophy, less than 10−16 for neovascularization, and less than 10−19 for the pooled phenotypes (with an odds ration [OR] of 3.973; 95% confidence interval [CI] 2.928, 5.390). Disease risk is conferred in a dosage-dependent fashion. Similar figures were observed for the LOC387715/ARMS2 SNP. No interaction was detected between either between the 10q26 SNPs or the CFH SNP.
Conclusions
This is the first analysis to show that the two 10q26 SNPs are not in complete linkage disequilibrium. Our studies however show that both the HTRA1 and LOC387715/ARMS2 SNP appear to contribute equally to disease risk (both geographic atrophy and choroidal neovascularization) with no evidence of interaction with CFH.
PMCID: PMC2493023  PMID: 18682806
21.  HTRA1 promoter polymorphism predisposes Japanese to age-related macular degeneration 
Molecular Vision  2007;13:545-548.
Purpose
To study the effect of candidate single nucleotide polymorphisms (SNPs) on chromosome 10q26, recently shown to be associated with wet age-related macular degeneration (AMD) in Chinese and Caucasian cohorts, in a Japanese cohort.
Methods
Using genomic DNA isolated from peripheral blood of wet AMD cases and age-matched controls, we genotyped two SNPs, rs10490924, and rs11200638, on chromosome 10q26, 6.6 kb and 512 bp upstream of the HTRA1 gene, respectively, using temperature gradient capillary electrophoresis (TGCE) and direct sequencing. Association tests were performed for individual SNPs and jointly with SNP complement factor H (CFH) Y402H.
Results
The two SNPs, rs10490924 and rs11200638, are in complete linkage disequilibrium (D'=1). Previous sequence comparisons among seventeen species revealed that the genomic region containing rs11200638 was highly conserved while the region surrounding rs10490924 was not. The allelic association test for rs11200638 yielded a p-value <10-11. SNP rs11200638 conferred disease risk in an autosomal recessive fashion: Odds ratio was 10.1 (95% CI 4.36, 23.06), adjusted for SNP CFH 402, for those carrying two copies of the risk allele, whereas indistinguishable from unity if carrying only one risk allele.
Conclusions
The HTRA1 promoter polymorphism, rs11200638, is a strong candidate with a functional consequence that predisposes Japanese to develop neovascular AMD.
PMCID: PMC2652018  PMID: 17438519

Results 1-21 (21)