PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-11 (11)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Description of Caenorhabditis sinica sp. n. (Nematoda: Rhabditidae), a Nematode Species Used in Comparative Biology for C. elegans 
PLoS ONE  2014;9(11):e110957.
We re-isolated in China a relative of the nematode model Caenorhabditis elegans that was previously referred to informally as C. sp. 5. In spite of its importance for comparative biology, C. sp. 5 has remained morphologically uncharacterized. Therefore, we now provide detailed description of morphology and anatomy, assigning the name of Caenorhabditis sinica sp. n. to this nematode that is found frequently in China. C. sinica sp. n. belongs to the Elegans group in the genus Caenorhabditis, being phylogenetically close to C. briggsae although differing in reproductive mode. The gonochoristic C. sinica sp. n. displays two significantly larger distal parts of uteri filled with sperms in the female/hermaphroditic gonad than does the androdioecious C. briggsae. The new species can be differentiated morphologically from all known Caenorhabditis species within the Elegans group by presenting a uniquely shaped, three-pointed hook structure on the male precloacal lip. The lateral field of C. sinica sp. n. is marked by three ridges that are flanked by two additional incisures, sometimes appearing as five ridges in total. This study ends the prolonged period of the ‘undescribed’ anonymity for C. sinica sp. n. since its discovery and use in comparative biological research. Significant and crossing-direction dependent hybrid incompatibilities in F1 and F2 crossing progeny make C. sinica sp. n. an excellent model for studies of population and speciation genetics. The abundance of nematode species lacking detailed taxonomic characterization deserves renewed attention to address the species description gap for this important yet morphologically ‘difficult’ group of animals.
doi:10.1371/journal.pone.0110957
PMCID: PMC4222906  PMID: 25375770
2.  PTHGRN: unraveling post-translational hierarchical gene regulatory networks using PPI, ChIP-seq and gene expression data 
Nucleic Acids Research  2014;42(Web Server issue):W130-W136.
Interactions among transcriptional factors (TFs), cofactors and other proteins or enzymes can affect transcriptional regulatory capabilities of eukaryotic organisms. Post-translational modifications (PTMs) cooperate with TFs and epigenetic alterations to constitute a hierarchical complexity in transcriptional gene regulation. While clearly implicated in biological processes, our understanding of these complex regulatory mechanisms is still limited and incomplete. Various online software have been proposed for uncovering transcriptional and epigenetic regulatory networks, however, there is a lack of effective web-based software capable of constructing underlying interactive organizations between post-translational and transcriptional regulatory components. Here, we present an open web server, post-translational hierarchical gene regulatory network (PTHGRN) to unravel relationships among PTMs, TFs, epigenetic modifications and gene expression. PTHGRN utilizes a graphical Gaussian model with partial least squares regression-based methodology, and is able to integrate protein–protein interactions, ChIP-seq and gene expression data and to capture essential regulation features behind high-throughput data. The server provides an integrative platform for users to analyze ready-to-use public high-throughput Omics resources or upload their own data for systems biology study. Users can choose various parameters in the method, build network topologies of interests and dissect their associations with biological functions. Application of the software to stem cell and breast cancer demonstrates that it is an effective tool for understanding regulatory mechanisms in biological complex systems. PTHGRN web server is publically available at web site http://www.byanbioinfo.org/pthgrn.
doi:10.1093/nar/gku471
PMCID: PMC4086064  PMID: 24875471
3.  Dynamic regulation of genetic pathways and targets during aging in Caenorhabditis elegans 
Aging (Albany NY)  2014;6(3):215-230.
Numerous genetic targets and some individual pathways associated with aging have been identified using the worm model. However, less is known about the genetic mechanisms of aging in genome wide, particularly at the level of multiple pathways as well as the regulatory networks during aging. Here, we employed the gene expression datasets of three time points during aging in Caenorhabditis elegans (C. elegans) and performed the approach of gene set enrichment analysis (GSEA) on each dataset between adjacent stages. As a result, multiple genetic pathways and targets were identified as significantly down- or up-regulated. Among them, 5 truly aging-dependent signaling pathways including MAPK signaling pathway, mTOR signaling pathway, Wnt signaling pathway, TGF-beta signaling pathway and ErbB signaling pathway as well as 12 significantly associated genes were identified with dynamic expression pattern during aging. On the other hand, the continued declines in the regulation of several metabolic pathways have been demonstrated to display age-related changes. Furthermore, the reconstructed regulatory networks based on three of aging related Chromatin immunoprecipitation experiments followed by sequencing (ChIP–seq) datasets and the expression matrices of 154 involved genes in above signaling pathways provide new insights into aging at the multiple pathways level. The combination of multiple genetic pathways and targets needs to be taken into consideration in future studies of aging, in which the dynamic regulation would be uncovered.
PMCID: PMC4012938  PMID: 24739375
aging; C. elegans; pathways; network
4.  Boolean genetic network model for the control of C. elegans early embryonic cell cycles 
BioMedical Engineering OnLine  2013;12(Suppl 1):S1.
Background
In Caenorhabditis elegans early embryo, cell cycles only have two phases: DNA synthesis and mitosis, which are different from the typical 4-phase cell cycle. Modeling this cell-cycle process into network can fill up the gap in C. elegans cell-cycle study and provide a thorough understanding on the cell-cycle regulations and progressions at the network level.
Methods
In this paper, C. elegans early embryonic cell-cycle network has been constructed based on the knowledge of key regulators and their interactions from literature studies. A discrete dynamical Boolean model has been applied in computer simulations to study dynamical properties of this network. The cell-cycle network is compared with random networks and tested under several perturbations to analyze its robustness. To investigate whether our proposed network could explain biological experiment results, we have also compared the network simulation results with gene knock down experiment data.
Results
With the Boolean model, this study showed that the cell-cycle network was stable with a set of attractors (fixed points). A biological pathway was observed in the simulation, which corresponded to a whole cell-cycle progression. The C. elegans network was significantly robust when compared with random networks of the same size because there were less attractors and larger basins than random networks. Moreover, the network was also robust under perturbations with no significant change of the basin size. In addition, the smaller number of attractors and the shorter biological pathway from gene knock down network simulation interpreted the shorter cell-cycle lengths in mutant from the RNAi gene knock down experiment data. Hence, we demonstrated that the results in network simulation could be verified by the RNAi gene knock down experiment data.
Conclusions
A C. elegans early embryonic cell cycles network was constructed and its properties were analyzed and compared with those of random networks. Computer simulation results provided biologically meaningful interpretations of RNAi gene knock down experiment data.
doi:10.1186/1475-925X-12-S1-S1
PMCID: PMC4029147  PMID: 24564942
5.  A novel cell nuclei segmentation method for 3D C. elegans embryonic time-lapse images 
BMC Bioinformatics  2013;14:328.
Background
Recently a series of algorithms have been developed, providing automatic tools for tracing C. elegans embryonic cell lineage. In these algorithms, 3D images collected from a confocal laser scanning microscope were processed, the output of which is cell lineage with cell division history and cell positions with time. However, current image segmentation algorithms suffer from high error rate especially after 350-cell stage because of low signal-noise ratio as well as low resolution along the Z axis (0.5-1 microns). As a result, correction of the errors becomes a huge burden. These errors are mainly produced in the segmentation of nuclei. Thus development of a more accurate image segmentation algorithm will alleviate the hurdle for automated analysis of cell lineage.
Results
This paper presents a new type of nuclei segmentation method embracing an bi-directional prediction procedure, which can greatly reduce the number of false negative errors, the most common errors in the previous segmentation. In this method, we first use a 2D region growing technique together with the level-set method to generate accurate 2D slices. Then a modified gradient method instead of the existing 3D local maximum method is adopted to detect all the 2D slices located in the nuclei center, each of which corresponds to one nucleus. Finally, the bi-directional pred- iction method based on the images before and after the current time point is introduced into the system to predict the nuclei in low quality parts of the images. The result of our method shows a notable improvement in the accuracy rate. For each nucleus, its precise location, volume and gene expression value (gray value) is also obtained, all of which will be useful in further downstream analyses.
Conclusions
The result of this research demonstrates the advantages of the bi-directional prediction method in the nuclei segmentation over that of StarryNite/MatLab StarryNite. Several other modifications adopted in our nuclei segmentation system are also discussed.
doi:10.1186/1471-2105-14-328
PMCID: PMC3903074  PMID: 24252066
6.  A Method for Rapid and Simultaneous Mapping of Genetic Loci and Introgression Sizes in Nematode Species 
PLoS ONE  2012;7(8):e43770.
Caenorhabditis briggsae is emerging as an attractive model organism not only in studying comparative biology against C. elegans, but also in developing novel experimentation avenues. In particular, recent identification of a new Caenorhabditis species, C. sp.9 with which it can mate and produce viable progeny provides an opportunity for studying the genetics of hybrid incompatibilities (HI) between the two. Mapping of a specific HI locus demands repeated backcrossing to get hold of the specific genomic region underlying an observed phenotype. To facilitate mapping of HI loci between C. briggsae and C. sp.9, an efficient mapping method and a genetic map ideally consisting of dominant markers are required for systematic introgression of genomic fragments between the two species. We developed a fast and cost-effective method for high throughput mapping of dominant loci with resolution up to 1 million bps in C. briggsae. The method takes advantage of the introgression between C. briggsae and C. sp.9 followed by PCR genotyping using C. briggsae specific primers. Importantly, the mapping results can not only serve as an effective way for estimating the chromosomal position of a genetic locus in C. briggsae, but also provides size information for the introgression fragment in an otherwise C. sp.9 background. In addition, it also helps generate introgression line as a side-product that is invaluable for the subsequent mapping of HI loci. The method will greatly facilitate the construction of a genetic map consisting of dominant markers and pave the way for systematic isolation of HI loci between C. briggsae and C. sp.9 which has so far not been attempted between nematode species. The method is designed for mapping of a dominant allele, but can be easily adapted for mapping of any other type of alleles in any other species if introgression between a sister species pair is feasible.
doi:10.1371/journal.pone.0043770
PMCID: PMC3432054  PMID: 22952761
7.  A Negative Regulatory Loop between MicroRNA and Hox Gene Controls Posterior Identities in Caenorhabditis elegans 
PLoS Genetics  2010;6(9):e1001089.
MicroRNAs (miRNAs) have been found to regulate gene expression across eukaryotic species, but the function of most miRNA genes remains unknown. Here we describe how the analysis of the expression patterns of a well-conserved miRNA gene, mir-57, at cellular resolution for every minute during early development of Caenorhabditis elegans provided key insights in understanding its function. Remarkably, mir-57 expression shows strong positional bias but little tissue specificity, a pattern reminiscent of Hox gene function. Despite the minor defects produced by a loss of function mutation, overexpression of mir-57 causes dramatic posterior defects, which also mimic the phenotypes of mutant alleles of a posterior Hox gene, nob-1, an Abd homolog. More importantly, nob-1 expression is found in the same two posterior AB sublineages as those expressing mir-57 but with an earlier onset. Intriguingly, nob-1 functions as an activator for mir-57 expression; it is also a direct target of mir-57. In agreement with this, loss of mir-57 function partially rescues the nob-1 allele defects, indicating a negative feedback regulatory loop between the miRNA and Hox gene to provide positional cues. Given the conservation of the miRNA and Hox gene, the regulatory mechanism might be broadly used across species. The strategy used here to explore mir-57 function provides a path to dissect the regulatory relationship between genes.
Author Summary
miRNAs are small RNAs found in many multi-cellular species that inhibit gene expression. Many of them play important roles in cancer and cell fate determination, but the function of most miRNAs is uncertain. Using live cell imaging and automated expression analysis, we found a miRNA gene, mir-57, is expressed in a position rather than tissue dependent way. Hox genes also regulate cell fate patterning along anterior-posterior (a-p) axis across different tissues. By investigating interactions between genes of these classes expressed in mir-57 expressing cells, we demonstrated by both genetic analysis and gene expression assays that a negative feedback loop between a posterior Hox gene, nob-1, and mir-57 regulates posterior cell fate determination in C. elegans. On the one hand, the Hox gene is required for normal activation of mir-57 expression, and on the other, the Hox gene functions as a direct target of and is repressed by the miRNA. Given the conservation of the two genes, a negative feedback loop between Hox and miRNA genes might be broadly used across species to regulate cell fate along the a-p axis. Detailed expression analysis may provide a general way to dissect the regulatory role of miRNAs.
doi:10.1371/journal.pgen.1001089
PMCID: PMC2932687  PMID: 20824072
8.  Comparative Analysis of Embryonic Cell Lineage between Caenorhabditis briggsae and C. elegans 
Developmental biology  2007;314(1):93-99.
Comparative genomic analysis of important signaling pathways in C. briggase and C. elegans reveals both conserved features and also differences. To build a framework to address the significance of these features we determined the C. briggsae embryonic cell lineage, using the tools StarryNite and AceTree. We traced both cell divisions and cell positions for all cells through all but the last round of cell division and for selected cells through the final round. We found the lineage to be remarkably similar to that of C. elegans. Not only did the founder cells give rise to similar numbers of progeny, the relative cell division timing and positions were largely maintained. These lineage similarities appear to give rise to similar cell fates as judged both by the positions of lineally-equivalent cells and by the patterns of cell deaths in both species. However, some reproducible differences were seen, e.g., the P4 cell cycle length is more than 40% longer in C. briggsae than that in C. elegans (p < 0.01). The extensive conservation of embryonic development between such divergent species suggests that substantial evolutionary distance between these two species has not altered these early developmental cellular events, although the developmental defects of transpecies hybrids suggest that the details of the underlying molecular pathways have diverged sufficiently so as to not be interchangeable.
doi:10.1016/j.ydbio.2007.11.015
PMCID: PMC2696483  PMID: 18164284
C. briggsae; C. elegans; embryo; cell lineage; signaling pathway
9.  Control of Cell Cycle Timing during C. elegans Embryogenesis 
Developmental biology  2008;318(1):65-72.
As a fundamental process of development, cell proliferation must be coordinated with other processes such as fate differentiation. Through statistical analysis of individual cell cycle lengths of the first eight out of ten rounds of embryonic cell division in C. elegans, we identified synchronous and invariantly ordered divisions that are tightly associated with fate differentiation. Our results suggest a three-tier model for fate control of cell cycle pace: the primary control of cell cycle pace is established by lineage and the founder cell fate, then fine-tuned by tissue and organ differentiation within each lineage, then further modified by individualization of cells as they acquire unique morphological and physiological roles in the variant body plan. We then set out to identify the pace-setting mechanisms in different fates. Our results suggest that ubiquitin-mediated degradation of CDC-25.1 is a rate-determining step for the E (gut) and P3 (muscle and germline) lineages but not others, even though CDC-25.1 and its apparent decay have been detected in all lineages. Our results demonstrate the power of C. elegans embryogenesis as a model to dissect the interaction between differentiation and proliferation, and an effective approach combining genetic and statistical analysis at single-cell resolution.
doi:10.1016/j.ydbio.2008.02.054
PMCID: PMC2442716  PMID: 18430415
statistics; single cell; fate differentiation; cdc25; Skp1-related
10.  Automated analysis of embryonic gene expression with cellular resolution in C. elegans 
Nature methods  2008;5(8):703-709.
We describe a system that permits the automated analysis of reporter gene expression in Caenorhabditis elegans with cellular resolution continuously during embryogenesis and demonstrate its utility by defining the expression patterns of reporters for several embryonically expressed transcription factors. The invariant cell lineage permits the automated alignment of multiple expression profiles, allowing the direct comparison of the expression of different genes' reporters. We have also used the system to monitor perturbations to normal development involving changes both in cell division timing and in cell fate. Systematic application could reveal the gene activity of each cell throughout development.
doi:10.1038/nmeth.1228
PMCID: PMC2553703  PMID: 18587405
11.  The ABC transporter gene family of Caenorhabditis elegans has implications for the evolutionary dynamics of multidrug resistance in eukaryotes 
Genome Biology  2004;5(3):R15.
The ABC transporters in the Caenorhabditis elegans genome have been identified and characterized. Phylogenetic analysis shows a large amount of gene loss and duplication, which is unusual for such a highly conserved protein family.
Background
Many drugs of natural origin are hydrophobic and can pass through cell membranes. Hydrophobic molecules must be susceptible to active efflux systems if they are to be maintained at lower concentrations in cells than in their environment. Multi-drug resistance (MDR), often mediated by intrinsic membrane proteins that couple energy to drug efflux, provides this function. All eukaryotic genomes encode several gene families capable of encoding MDR functions, among which the ABC transporters are the largest. The number of candidate MDR genes means that study of the drug-resistance properties of an organism cannot be effectively carried out without taking a genomic perspective.
Results
We have annotated sequences for all 60 ABC transporters from the Caenorhabditis elegans genome, and performed a phylogenetic analysis of these along with the 49 human, 30 yeast, and 57 fly ABC transporters currently available in GenBank. Classification according to a unified nomenclature is presented. Comparison between genomes reveals much gene duplication and loss, and surprisingly little orthology among analogous genes. Proteins capable of conferring MDR are found in several distinct subfamilies and are likely to have arisen independently multiple times.
Conclusions
ABC transporter evolution fits a pattern expected from a process termed 'dynamic-coherence'. This is an unusual result for such a highly conserved gene family as this one, present in all domains of cellular life. Mechanistically, this may result from the broad substrate specificity of some ABC proteins, which both reduces selection against gene loss, and leads to the facile sorting of functions among paralogs following gene duplication.
PMCID: PMC395765  PMID: 15003118

Results 1-11 (11)