PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (108)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  High-Resolution Quantification of Hepatitis C Virus Genome-Wide Mutation Load and Its Correlation with the Outcome of Peginterferon-Alpha2a and Ribavirin Combination Therapy 
PLoS ONE  2014;9(6):e100131.
Hepatitis C virus (HCV) is a highly mutable RNA virus and circulates as a heterogeneous population in individual patients. The magnitude of such population heterogeneity has long been proposed to be linked with diverse clinical phenotypes, including antiviral therapy. Yet data accumulated thus far are fairly inconclusive. By the integration of long RT-PCR with 454 sequencing, we have built a pipeline optimized for the quantification of HCV genome-wide mutation load at 1% resolution of mutation frequency, followed by a retrospective study to examine the role of HCV mutation load in peginterferon-alpha2a and ribavirin combination antiviral therapy. Genome-wide HCV mutation load varied widely with a range from 92 to 1639 mutations and presented a Poisson distribution among 56 patients (Kolmogorov-Smirnov statistic  = 0.078, p = 0.25). Patients achieving sustained virological response (n = 26) had significantly lower mutation loads than that in null responders (n = 30) (mean and standard derivation: 524±279 vs. 805±271, p = 0.00035). All 36,818 mutations detected in 56 patients displayed a power-law distribution in terms of mutation frequency in viral population. The low-frequency mutation load, but not the high-frequency load, was proportional firmly to the total mutation load. In-depth analyses revealed that intra-patient HCV population structure was shaped by multiple factors, including immune pressure, strain difference and genetic drift. These findings explain previous conflicting reports using low-resolution methods and highlight a dominant role of natural selection in response to therapeutic intervention. By attaining its signatures from complex interaction between host and virus, the high-resolution quantification of HCV mutation load predicts outcomes from interferon-based antiviral therapy and could also be a potential biomarker in other clinical settings.
doi:10.1371/journal.pone.0100131
PMCID: PMC4065037  PMID: 24950220
2.  Precise Dissection of an Escherichia coli O157:H7 Outbreak by Single Nucleotide Polymorphism Analysis 
Journal of Clinical Microbiology  2013;51(12):3950-3954.
The current pathogen-typing methods have suboptimal sensitivities and specificities. DNA sequencing offers an opportunity to type pathogens with greater degrees of discrimination using single nucleotide polymorphisms (SNPs) than with pulsed-field gel electrophoresis (PFGE) and other methodologies. In a recent cluster of Escherichia coli O157:H7 infections attributed to salad bar exposures and romaine lettuce, a subset of cases denied exposure to either source, although PFGE and multiple-locus variable-number tandem-repeat analysis (MLVA) suggested that all isolates had the same recent progenitor. Interrogation of a preselected set of 3,442,673 nucleotides in backbone open reading frames (ORFs) identified only 1 or 2 single nucleotide differences in 3 of 12 isolates from the cases who denied exposure. The backbone DNAs of 9 of 9 and 3 of 3 cases who reported or were unsure about exposure, respectively, were isogenic. Backbone ORF SNP set sequencing offers pathogen differentiation capabilities that exceed those of PFGE and MLVA.
doi:10.1128/JCM.01930-13
PMCID: PMC3838074  PMID: 24048526
3.  Exploration of bacterial community classes in major human habitats 
Genome Biology  2014;15(5):R66.
Background
Determining bacterial abundance variation is the first step in understanding bacterial similarity between individuals. Categorization of bacterial communities into groups or community classes is the subsequent step in describing microbial distribution based on abundance patterns. Here, we present an analysis of the groupings of bacterial communities in stool, nasal, skin, vaginal and oral habitats in a healthy cohort of 236 subjects from the Human Microbiome Project.
Results
We identify distinct community group patterns in the anterior nares, four skin sites, and vagina at the genus level. We also confirm three enterotypes previously identified in stools. We identify two clusters with low silhouette values in most oral sites, in which bacterial communities are more homogeneous. Subjects sharing a community class in one habitat do not necessarily share a community class in another, except in the three vaginal sites and the symmetric habitats of the left and right retroauricular creases. Demographic factors, including gender, age, and ethnicity, significantly influence community composition in several habitats. Community classes in the vagina, retroauricular crease and stool are stable over approximately 200 days.
Conclusion
The community composition, association of demographic factors with community classes, and demonstration of community stability deepen our understanding of the variability and dynamics of human microbiomes. This also has significant implications for experimental designs that seek microbial correlations with clinical phenotypes.
doi:10.1186/gb-2014-15-5-r66
PMCID: PMC4073010  PMID: 24887286
4.  Sixty years of genome biology 
Genome Biology  2013;14(4):113.
Sixty years after Watson and Crick published the double helix model of DNA's structure, thirteen members of Genome Biology's Editorial Board select key advances in the field of genome biology subsequent to that discovery.
doi:10.1186/gb-2013-14-4-113
PMCID: PMC3663092  PMID: 23651518
5.  Quantitation and Composition of Cutaneous Microbiota in Diabetic and Nondiabetic Men 
The Journal of Infectious Diseases  2013;207(7):1105-1114.
Background. Diabetic foot infections are a leading cause of lower extremity amputations. Our study examines the microbiota of diabetic skin prior to ulcer development or infection.
Methods. In a case-control study, outpatient males were recruited at a veterans hospital. Subjects were swabbed at 4 cutaneous sites, 1 on the forearm and 3 on the foot. Quantitative polymerase chain reaction (qPCR) with primers and probes specific for bacteria, Staphylococcus species, Staphylococcus aureus, and fungi were performed on all samples. High-throughput 16S ribosomal RNA (rRNA) sequencing was performed on samples from the forearm and the plantar aspect of the foot.
Results. qPCR analysis of swab specimens from 30 diabetic subjects and 30 control subjects showed no differences in total numbers of bacteria or fungi at any sampled site. Increased log10 concentrations of Staphylococcus aureus, quantified by the number of nuc gene copies, were present in diabetic men on the plantar aspect of the foot. High-throughput 16S rRNA sequencing found that, on the foot, the microbiota in controls (n = 24) was dominated by Staphylococcus species, whereas the microbiota in diabetics (n = 23) was more diverse at the genus level. The forearm microbiota had similar diversity in diabetic and control groups.
Conclusions. The feet of diabetic men had decreased populations of Staphylococcus species, increased populations of S. aureus, and increased bacterial diversity, compared with the feet of controls. These ecologic changes may affect the risk for wound infections.
doi:10.1093/infdis/jit005
PMCID: PMC3583274  PMID: 23300163
microbiota; microbiome; diabetic foot; cutaneous; Staphylococcus; Staphylococcus aureus
6.  Phylogenomics and the Dynamic Genome Evolution of the Genus Streptococcus 
Genome Biology and Evolution  2014;6(4):741-753.
The genus Streptococcus comprises important pathogens that have a severe impact on human health and are responsible for substantial economic losses to agriculture. Here, we utilize 46 Streptococcus genome sequences (44 species), including eight species sequenced here, to provide the first genomic level insight into the evolutionary history and genetic basis underlying the functional diversity of all major groups of this genus. Gene gain/loss analysis revealed a dynamic pattern of genome evolution characterized by an initial period of gene gain followed by a period of loss, as the major groups within the genus diversified. This was followed by a period of genome expansion associated with the origins of the present extant species. The pattern is concordant with an emerging view that genomes evolve through a dynamic process of expansion and streamlining. A large proportion of the pan-genome has experienced lateral gene transfer (LGT) with causative factors, such as relatedness and shared environment, operating over different evolutionary scales. Multiple gene ontology terms were significantly enriched for each group, and mapping terms onto the phylogeny showed that those corresponding to genes born on branches leading to the major groups represented approximately one-fifth of those enriched. Furthermore, despite the extensive LGT, several biochemical characteristics have been retained since group formation, suggesting genomic cohesiveness through time, and that these characteristics may be fundamental to each group. For example, proteolysis: mitis group; urea metabolism: salivarius group; carbohydrate metabolism: pyogenic group; and transcription regulation: bovis group.
doi:10.1093/gbe/evu048
PMCID: PMC4007547  PMID: 24625962
comparative genomics; phylogenetics; gene gain and loss; enrichment; lateral gene transfer
7.  Propionibacterium acnes strain populations in the human skin microbiome associated with acne 
The human skin microbiome plays important roles in skin health and disease. However, bacterial population structure and diversity at the strain level is poorly understood. We compared the skin microbiome at the strain level and genome level of Propionibacterium acnes, a dominant skin commensal, between 49 acne patients and 52 healthy individuals by sampling the pilosebaceous units on their noses. Metagenomic analysis demonstrated that while the relative abundances of P. acnes were similar, the strain population structures were significantly different in the two cohorts. Certain strains were highly associated with acne and other strains were enriched in healthy skin. By sequencing 66 previously unreported P. acnes strains and comparing 71 P. acnes genomes, we identified potential genetic determinants of various P. acnes strains in association with acne or health. Our analysis suggests that acquired DNA sequences and bacterial immune elements may play roles in determining virulence properties of P. acnes strains and some could be future targets for therapeutic interventions. This study demonstrates a previously unreported paradigm of commensal strain populations that could explain the pathogenesis of human diseases. It underscores the importance of strain level analysis of the human microbiome to define the role of commensals in health and disease.
doi:10.1038/jid.2013.21
PMCID: PMC3745799  PMID: 23337890
8.  Pervasive Genetic Hitchhiking and Clonal Interference in 40 Evolving Yeast Populations 
Nature  2013;500(7464):571-574.
The dynamics of adaptation determines which mutations fix in a population, and hence how reproducible evolution will be. This is central to understanding the spectra of mutations recovered in evolution of antibiotic resistance1, the response of pathogens to immune selection2,3, and the dynamics of cancer progression4,5. In laboratory evolution experiments, demonstrably beneficial mutations are found repeatedly6–8, but are often accompanied by other mutations with no obvious benefit. Here we use whole-genome whole-population sequencing to examine the dynamics of genome sequence evolution at high temporal resolution in 40 replicate Saccharomyces cerevisiae populations growing in rich medium for 1,000 generations. We find pervasive genetic hitchhiking: multiple mutations arise and move synchronously through the population as mutational “cohorts.” Multiple clonal cohorts are often present simultaneously, competing with each other in the same population. Our results show that patterns of sequence evolution are driven by a balance between these chance effects of hitchhiking and interference, which increase stochastic variation in evolutionary outcomes, and the deterministic action of selection on individual mutations, which favors parallel evolutionary solutions in replicate populations.
doi:10.1038/nature12344
PMCID: PMC3758440  PMID: 23873039
9.  Whole-Genome Sequencing of Salmonella enterica subsp. enterica Serovar Cubana Strains Isolated from Agricultural Sources 
Genome Announcements  2014;2(1):e01184-13.
We report the draft genomes of Salmonella enterica subsp. enterica serovar Cubana strain CVM42234, isolated from chick feed in 2012, and S. Cubana strain 76814, isolated from swine in 2004. The genome sizes are 4,975,046 and 4,936,251 bp, respectively.
doi:10.1128/genomeA.01184-13
PMCID: PMC3900898  PMID: 24459266
10.  Plant-Associated Symbiotic Burkholderia Species Lack Hallmark Strategies Required in Mammalian Pathogenesis 
PLoS ONE  2014;9(1):e83779.
Burkholderia is a diverse and dynamic genus, containing pathogenic species as well as species that form complex interactions with plants. Pathogenic strains, such as B. pseudomallei and B. mallei, can cause serious disease in mammals, while other Burkholderia strains are opportunistic pathogens, infecting humans or animals with a compromised immune system. Although some of the opportunistic Burkholderia pathogens are known to promote plant growth and even fix nitrogen, the risk of infection to infants, the elderly, and people who are immunocompromised has not only resulted in a restriction on their use, but has also limited the application of non-pathogenic, symbiotic species, several of which nodulate legume roots or have positive effects on plant growth. However, recent phylogenetic analyses have demonstrated that Burkholderia species separate into distinct lineages, suggesting the possibility for safe use of certain symbiotic species in agricultural contexts. A number of environmental strains that promote plant growth or degrade xenobiotics are also included in the symbiotic lineage. Many of these species have the potential to enhance agriculture in areas where fertilizers are not readily available and may serve in the future as inocula for crops growing in soils impacted by climate change. Here we address the pathogenic potential of several of the symbiotic Burkholderia strains using bioinformatics and functional tests. A series of infection experiments using Caenorhabditis elegans and HeLa cells, as well as genomic characterization of pathogenic loci, show that the risk of opportunistic infection by symbiotic strains such as B. tuberum is extremely low.
doi:10.1371/journal.pone.0083779
PMCID: PMC3885511  PMID: 24416172
11.  Systems Biology of the Vervet Monkey 
ILAR Journal  2013;54(2):122-143.
Nonhuman primates (NHP) provide crucial biomedical model systems intermediate between rodents and humans. The vervet monkey (also called the African green monkey) is a widely used NHP model that has unique value for genetic and genomic investigations of traits relevant to human diseases. This article describes the phylogeny and population history of the vervet monkey and summarizes the use of both captive and wild vervet monkeys in biomedical research. It also discusses the effort of an international collaboration to develop the vervet monkey as the most comprehensively phenotypically and genomically characterized NHP, a process that will enable the scientific community to employ this model for systems biology investigations.
doi:10.1093/ilar/ilt049
PMCID: PMC3814400  PMID: 24174437
African green monkey; genetics; genomics; phenomics; simian immunodeficiency virus [SIV]; systems biology; transcriptomics; vervet
12.  Detection of Viruses in Young Children With Fever Without an Apparent Source 
Pediatrics  2012;130(6):e1455-e1462.
OBJECTIVE:
Fever without an apparent source is common in young children. Currently in the United States, serious bacterial infection is unusual. Our objective was to determine specific viruses that might be responsible.
METHODS:
We enrolled children aged 2 to 36 months with temperature of 38°C or greater without an apparent source or with definite or probable bacterial infection being evaluated in the St Louis Children’s Hospital Emergency Department and afebrile children having ambulatory surgery. Blood and nasopharyngeal swab samples were tested with an extensive battery of virus-specific polymerase chain reaction assays.
RESULTS:
One or more viruses were detected in 76% of 75 children with fever without an apparent source, 40% of 15 children with fever and a definite or probable bacterial infection, and 35% of 116 afebrile children (P < .001). Four viruses (adenovirus, human herpesvirus 6, enterovirus, and parechovirus) were predominant, being detected in 57% of children with fever without a source, 13% of children with fever and definite or probable bacterial infection, and 7% of afebrile children (P < .001). Thirty-four percent of 146 viral infections were detected only by polymerase chain reaction performed on blood. Fifty-one percent of children with viral infections and no evidence of bacterial infection were treated with antibiotics.
CONCLUSIONS:
Viral infections are frequent in children with fever without an apparent source. Testing of blood in addition to nasopharyngeal secretions expanded the range of viruses detected. Future studies should explore the utility of testing for the implicated viruses. Better recognition of viruses that cause undifferentiated fever in young children may help limit unnecessary antibiotic use.
doi:10.1542/peds.2012-1391
PMCID: PMC3507256  PMID: 23129086
fever; viral infection; polymerase chain reaction
13.  Leucoagaricus gongylophorus Produces Diverse Enzymes for the Degradation of Recalcitrant Plant Polymers in Leaf-Cutter Ant Fungus Gardens 
Applied and Environmental Microbiology  2013;79(12):3770-3778.
Plants represent a large reservoir of organic carbon comprised primarily of recalcitrant polymers that most metazoans are unable to deconstruct. Many herbivores gain access to nutrients in this material indirectly by associating with microbial symbionts, and leaf-cutter ants are a paradigmatic example. These ants use fresh foliar biomass as manure to cultivate gardens composed primarily of Leucoagaricus gongylophorus, a basidiomycetous fungus that produces specialized hyphal swellings that serve as a food source for the host ant colony. Although leaf-cutter ants are conspicuous herbivores that contribute substantially to carbon turnover in Neotropical ecosystems, the process through which plant biomass is degraded in their fungus gardens is not well understood. Here we present the first draft genome of L. gongylophorus, and, using genomic and metaproteomic tools, we investigate its role in lignocellulose degradation in the gardens of both Atta cephalotes and Acromyrmex echinatior leaf-cutter ants. We show that L. gongylophorus produces a diversity of lignocellulases in ant gardens and is likely the primary driver of plant biomass degradation in these ecosystems. We also show that this fungus produces distinct sets of lignocellulases throughout the different stages of biomass degradation, including numerous cellulases and laccases that likely play an important role in lignocellulose degradation. Our study provides a detailed analysis of plant biomass degradation in leaf-cutter ant fungus gardens and insight into the enzymes underlying the symbiosis between these dominant herbivores and their obligate fungal cultivar.
doi:10.1128/AEM.03833-12
PMCID: PMC3675943  PMID: 23584789
14.  Identification of novel and cross-species seroreactive proteins from Bacillus anthracis using a ligation-independent cloning-based, SOS-inducible expression system 
Microbial pathogenesis  2012;53(0):250-258.
The current standard for Bacillus anthracis vaccination is the Anthrax Vaccine Adsorbed (AVA, BioThrax). While effective, the licensed vaccine schedule requires five intramuscular injections in the priming series and yearly boosters to sustain protection. One potential approach to maintain or improve the protection afforded by an anthrax vaccine, but requiring fewer doses, is through the use of purified proteins to enhance an antibody response, which could be used on their own or in combination with the current vaccine. This study describes a novel, high-throughput system to amplify and clone every gene in the B. anthracis pXO1 and pXO2 virulence plasmids. We attempted to express each cloned gene in Escherichia coli, and obtained full-length expression of 57% of the proteins. Expressed proteins were then used to identify immunogens using serum from three different mammalian infection models: Dutch-belted rabbits, BALB/c mice, and rhesus macaque monkeys. Ten proteins were detected by antibodies in all of these models, eight of which have not been identified as immunoreactive in other studies to date. Serum was also collected from humans who had received the AVA vaccine, and similar screens showed that antigens that were detected in the infection models were not present in the serum of vaccinated humans, suggesting that antibodies elicited by the current AVA vaccine do not react with the immunoreactive proteins identified in this study. These results will contribute to the future selection of targets in antigenicity and protection studies as one or more of these proteins may prove to be worthy of inclusion in future vaccine preparations.
doi:10.1016/j.micpath.2012.08.006
PMCID: PMC3779308  PMID: 22975444
Bacillus anthracis; recombinant vaccine; ligation-independent cloning; high-throughput expression; seroreactive
15.  Emerging View of the Human Virome 
The human virome is the collection of all viruses that are found in or on humans, including both eukaryotic and prokaryotic viruses. Eukaryotic viruses clearly have important effects on human health, ranging from mild, self-limited acute or chronic infections to those with serious or fatal consequences. Prokaryotic viruses can also affect human health by impacting bacterial community structure and function. Therefore, definition of the virome is an important step toward understanding how microbes affect human health and disease. We review progress in virome analysis, which has been driven by advances in high-throughput, deep sequencing technology. Highlights from these studies include the association of viruses with clinical phenotypes and description of novel viruses that may be important pathogens. Together these studies indicate that analysis of the human virome is critical as we aim to understand how microbial communities affect human health and disease. Descriptions of the human virome will stimulate future work to understand how the virome affects long-term human health, immunity, and response to co-infections. Ultimately analysis of the virome may affect the treatment of patients with a variety of clinical syndromes.
doi:10.1016/j.trsl.2012.03.006
PMCID: PMC3701101  PMID: 22683423
16.  Genetic diversity in Treponema pallidum: implications for pathogenesis, evolution and molecular diagnostics of syphilis and yaws 
Pathogenic uncultivable treponemes, similar to syphilis-causing Treponema pallidum subspecies pallidum, include T. pallidum ssp. pertenue, T. pallidum ssp. endemicum and Treponema carateum, which cause yaws, bejel and pinta, respectively. Genetic analyses of these pathogens revealed striking similarity among these bacteria and also a high degree of similarity to the rabbit pathogen, T. paraluiscuniculi, a treponeme not infectious to humans. Genome comparisons between pallidum and non-pallidum treponemes revealed genes with potential involvement in human infectivity, whereas comparisons between pallidum and pertenue treponemes identified genes possibly involved in the high invasivity of syphilis treponemes. Genetic variability within syphilis strains is considered as the basis of syphilis molecular epidemiology with potential to detect more virulent strains, whereas genetic variability within a single strain is related to its ability to elude the immune system of the host. Genome analyses also shed light on treponemal evolution and on chromosomal targets for molecular diagnostics of treponemal infections.
doi:10.1016/j.meegid.2011.12.001
PMCID: PMC3786143  PMID: 22198325
Treponema pallidum; T pallidum ssp. Pertenue; T. pallidum ssp. endemicum; T. paraluiscuniculi; whole genome sequencing; molecular evolution; molecular diagnostics
17.  Resequencing of Treponema pallidum ssp. pallidum Strains Nichols and SS14: Correction of Sequencing Errors Resulted in Increased Separation of Syphilis Treponeme Subclusters 
PLoS ONE  2013;8(9):e74319.
Background
Treponema pallidum ssp. pallidum (TPA), the causative agent of syphilis, is a highly clonal bacterium showing minimal genetic variability in the genome sequence of individual strains. Nevertheless, genetically characterized syphilis strains can be clearly divided into two groups, Nichols-like strains and SS14-like strains. TPA Nichols and SS14 strains were completely sequenced in 1998 and 2008, respectively. Since publication of their complete genome sequences, a number of sequencing errors in each genome have been reported. Therefore, we have resequenced TPA Nichols and SS14 strains using next-generation sequencing techniques.
Methodology/Principal Findings
The genomes of TPA strains Nichols and SS14 were resequenced using the 454 and Illumina sequencing methods that have a combined average coverage higher than 90x. In the TPA strain Nichols genome, 134 errors were identified (25 substitutions and 109 indels), and 102 of them affected protein sequences. In the TPA SS14 genome, a total of 191 errors were identified (85 substitutions and 106 indels) and 136 of them affected protein sequences. A set of new intrastrain heterogenic regions in the TPA SS14 genome were identified including the tprD gene, where both tprD and tprD2 alleles were found. The resequenced genomes of both TPA Nichols and SS14 strains clustered more closely with related strains (i.e. strains belonging to same syphilis treponeme subcluster). At the same time, groups of Nichols-like and SS14-like strains were found to be more distantly related.
Conclusion/Significance
We identified errors in 11.5% of all annotated genes and, after correction, we found a significant impact on the predicted proteomes of both Nichols and SS14 strains. Corrections of these errors resulted in protein elongations, truncations, fusions and indels in more than 11% of all annotated proteins. Moreover, it became more evident that syphilis is caused by treponemes belonging to two separate genetic subclusters.
doi:10.1371/journal.pone.0074319
PMCID: PMC3769245  PMID: 24058545
18.  A non-human primate system for large-scale genetic studies of complex traits 
Human Molecular Genetics  2012;21(15):3307-3316.
Non-human primates provide genetic model systems biologically intermediate between humans and other mammalian model organisms. Populations of Caribbean vervet monkeys (Chlorocebus aethiops sabaeus) are genetically homogeneous and large enough to permit well-powered genetic mapping studies of quantitative traits relevant to human health, including expression quantitative trait loci (eQTL). Previous transcriptome-wide investigation in an extended vervet pedigree identified 29 heritable transcripts for which levels of expression in peripheral blood correlate strongly with expression levels in the brain. Quantitative trait linkage analysis using 261 microsatellite markers identified significant (n = 8) and suggestive (n = 4) linkages for 12 of these transcripts, including both cis- and trans-eQTL. Seven transcripts, located on different chromosomes, showed maximum linkage to markers in a single region of vervet chromosome 9; this observation suggests the possibility of a master trans-regulator locus in this region. For one cis-eQTL (at B3GALTL, beta-1,3-glucosyltransferase), we conducted follow-up single nucleotide polymorphism genotyping and fine-scale association analysis in a sample of unrelated Caribbean vervets, localizing this eQTL to a region of <200 kb. These results suggest the value of pedigree and population samples of the Caribbean vervet for linkage and association mapping studies of quantitative traits. The imminent whole genome sequencing of many of these vervet samples will enhance the power of such investigations by providing a comprehensive catalog of genetic variation.
doi:10.1093/hmg/dds160
PMCID: PMC3392106  PMID: 22556363
19.  Daptomycin-Resistant Enterococcus faecalis Diverts the Antibiotic Molecule from the Division Septum and Remodels Cell Membrane Phospholipids 
mBio  2013;4(4):e00281-13.
ABSTRACT
Treatment of multidrug-resistant enterococci has become a challenging clinical problem in hospitals around the world due to the lack of reliable therapeutic options. Daptomycin (DAP), a cell membrane-targeting cationic antimicrobial lipopeptide, is the only antibiotic with in vitro bactericidal activity against vancomycin-resistant enterococci (VRE). However, the clinical use of DAP against VRE is threatened by emergence of resistance during therapy, but the mechanisms leading to DAP resistance are not fully understood. The mechanism of action of DAP involves interactions with the cell membrane in a calcium-dependent manner, mainly at the level of the bacterial septum. Previously, we demonstrated that development of DAP resistance in vancomycin-resistant Enterococcus faecalis is associated with mutations in genes encoding proteins with two main functions, (i) control of the cell envelope stress response to antibiotics and antimicrobial peptides (LiaFSR system) and (ii) cell membrane phospholipid metabolism (glycerophosphoryl diester phosphodiesterase and cardiolipin synthase). In this work, we show that these VRE can resist DAP-elicited cell membrane damage by diverting the antibiotic away from its principal target (division septum) to other distinct cell membrane regions. DAP septal diversion by DAP-resistant E. faecalis is mediated by initial redistribution of cell membrane cardiolipin-rich microdomains associated with a single amino acid deletion within the transmembrane protein LiaF (a member of a three-component regulatory system [LiaFSR] involved in cell envelope homeostasis). Full expression of DAP resistance requires additional mutations in enzymes (glycerophosphoryl diester phosphodiesterase and cardiolipin synthase) that alter cell membrane phospholipid content. Our findings describe a novel mechanism of bacterial resistance to cationic antimicrobial peptides.
IMPORTANCE  The emergence of antibiotic resistance in bacterial pathogens is a threat to public health. Understanding the mechanisms of resistance is of crucial importance to develop new strategies to combat multidrug-resistant microorganisms. Vancomycin-resistant enterococci (VRE) are one of the most recalcitrant hospital-associated pathogens against which new therapies are urgently needed. Daptomycin (DAP) is a calcium-decorated antimicrobial lipopeptide whose target is the bacterial cell membrane. A current paradigm suggests that Gram-positive bacteria become resistant to cationic antimicrobial peptides via an electrostatic repulsion of the antibiotic molecule from a more positively charged cell surface. In this work, we provide evidence that VRE use a novel strategy to avoid DAP-elicited killing. Instead of “repelling” the antibiotic from the cell surface, VRE diverts the antibiotic molecule from the septum and “traps” it in distinct membrane regions. We provide genetic and biochemical bases responsible for the mechanism of resistance and disclose new targets for potential antimicrobial development.
IMPORTANCE 
The emergence of antibiotic resistance in bacterial pathogens is a threat to public health. Understanding the mechanisms of resistance is of crucial importance to develop new strategies to combat multidrug-resistant microorganisms. Vancomycin-resistant enterococci (VRE) are one of the most recalcitrant hospital-associated pathogens against which new therapies are urgently needed. Daptomycin (DAP) is a calcium-decorated antimicrobial lipopeptide whose target is the bacterial cell membrane. A current paradigm suggests that Gram-positive bacteria become resistant to cationic antimicrobial peptides via an electrostatic repulsion of the antibiotic molecule from a more positively charged cell surface. In this work, we provide evidence that VRE use a novel strategy to avoid DAP-elicited killing. Instead of “repelling” the antibiotic from the cell surface, VRE diverts the antibiotic molecule from the septum and “traps” it in distinct membrane regions. We provide genetic and biochemical bases responsible for the mechanism of resistance and disclose new targets for potential antimicrobial development.
doi:10.1128/mBio.00281-13
PMCID: PMC3735187  PMID: 23882013
20.  Genomic variation landscape of the human gut microbiome 
Nature  2012;493(7430):45-50.
While large-scale efforts have rapidly advanced the understanding and practical impact of human genomic variation, the latter is largely unexplored in the human microbiome. We therefore developed a framework for metagenomic variation analysis and applied it to 252 fecal metagenomes of 207 individuals from Europe and North America. Using 7.4 billion reads aligned to 101 reference species, we detected 10.3 million single nucleotide polymorphisms (SNPs), 107,991 short indels, and 1,051 structural variants. The average ratio of non-synonymous to synonymous polymorphism rates of 0.11 was more variable between gut microbial species than across human hosts. Subjects sampled at varying time intervals exhibited individuality and temporal stability of SNP variation patterns, despite considerable composition changes of their gut microbiota. This implies that individual-specific strains are not easily replaced and that an individual might have a unique metagenomic genotype, which may be exploitable for personalized diet or drug intake.
doi:10.1038/nature11711
PMCID: PMC3536929  PMID: 23222524
21.  Whole-Genome Analysis of a Daptomycin-Susceptible Enterococcus faecium Strain and Its Daptomycin-Resistant Variant Arising during Therapy 
Development of daptomycin (DAP) resistance in Enterococcus faecalis has recently been associated with mutations in genes encoding proteins with two main functions: (i) control of the cell envelope stress response to antibiotics and antimicrobial peptides (LiaFSR system) and (ii) cell membrane phospholipid metabolism (glycerophosphoryl diester phosphodiesterase and cardiolipin synthase [cls]). However, the genetic bases for DAP resistance in Enterococcus faecium are unclear. We performed whole-genome comparative analysis of a clinical strain pair, DAP-susceptible E. faecium S447 and its DAP-resistant derivative R446, which was recovered from a single patient during DAP therapy. By comparative whole-genome sequencing, DAP resistance in R446 was associated with changes in 8 genes. Two of these genes encoded proteins involved in phospholipid metabolism: (i) an R218Q substitution in Cls and (ii) an A292G reversion in a putative cyclopropane fatty acid synthase enzyme. The DAP-resistant derivative R446 also exhibited an S333L substitution in the putative histidine kinase YycG, a member of the YycFG system, which, similar to LiaFSR, has been involved in cell envelope homeostasis and DAP resistance in other Gram-positive cocci. Additional changes identified in E. faecium R446 (DAP resistant) included two putative proteins involved in transport (one for carbohydrate and one for sulfate) and three enzymes predicted to play a role in general metabolism. Exchange of the “susceptible” cls allele from S447 for the “resistant” one belonging to R446 did not affect DAP susceptibility. Our results suggest that, apart from the LiaFSR system, the essential YycFG system is likely to be an important mediator of DAP resistance in some E. faecium strains.
doi:10.1128/AAC.01454-12
PMCID: PMC3535923  PMID: 23114757
22.  Candidate Genes That May Be Responsible for the Unusual Resistances Exhibited by Bacillus pumilus SAFR-032 Spores 
PLoS ONE  2013;8(6):e66012.
The spores of several Bacillus species, including Bacillus pumilus SAFR-032 and B. safensis FO-36b, which were isolated from the spacecraft assembly facility at NASA's Jet Propulsion Laboratory, are unusually resistant to UV radiation and hydrogen peroxide. In order to identify candidate genes that might be associated with these resistances, the whole genome of B. pumilus SAFR-032, and the draft genome of B. safensis FO-36b were compared in detail with the very closely related type strain B. pumilus ATCC7061T. 170 genes are considered characteristic of SAFR-032, because they are absent from both FO-36b and ATCC7061T. Forty of these SAFR-032 characteristic genes are entirely unique open reading frames. In addition, four genes are unique to the genomes of the resistant SAFR-032 and FO-36b. Fifty three genes involved in spore coat formation, regulation and germination, DNA repair, and peroxide resistance, are missing from all three genomes. The vast majority of these are cleanly deleted from their usual genomic context without any obvious replacement. Several DNA repair and peroxide resistance genes earlier reported to be unique to SAFR-032 are in fact shared with ATCC7061T and no longer considered to be promising candidates for association with the elevated resistances. Instead, several SAFR-032 characteristic genes were identified, which along with one or more of the unique SAFR-032 genes may be responsible for the elevated resistances. These new candidates include five genes associated with DNA repair, namely, BPUM_0608 a helicase, BPUM_0652 an ATP binding protein, BPUM_0653 an endonuclease, BPUM_0656 a DNA cytosine-5- methyltransferase, and BPUM_3674 a DNA helicase. Three of these candidate genes are in immediate proximity of two conserved hypothetical proteins, BPUM_0654 and BPUM_0655 that are also absent from both FO-36b and ATCC7061T. This cluster of five genes is considered to be an especially promising target for future experimental work.
doi:10.1371/journal.pone.0066012
PMCID: PMC3682946  PMID: 23799069
23.  Revised Sequence and Annotation of the Rhodobacter sphaeroides 2.4.1 Genome 
Journal of Bacteriology  2012;194(24):7016-7017.
The DNA sequences of chromosomes I and II of Rhodobacter sphaeroides strain 2.4.1 have been revised, and the annotation of the entire genomic sequence, including both chromosomes and the five plasmids, has been updated. Errors in the originally published sequence have been corrected, and ∼11% of the coding regions in the original sequence have been affected by the revised annotation.
doi:10.1128/JB.01214-12
PMCID: PMC3510577  PMID: 23209255
24.  Genomic approaches to studying the human microbiota 
Nature  2012;489(7415):250-256.
The human body is colonized by a vast array of microbes, which form communities of bacteria, viruses and microbial eukaryotes that are specific to each anatomical environment. Every community must be studied as a whole because many organisms have never been cultured independently, and this poses formidable challenges. The advent of next-generation DNA sequencing has allowed more sophisticated analysis and sampling of these complex systems by culture-independent methods. These methods are revealing differences in community structure between anatomical sites, between individuals, and between healthy and diseased states, and are transforming our view of human biology.
doi:10.1038/nature11553
PMCID: PMC3665339  PMID: 22972298
25.  Pan-Genome and Comparative Genome Analyses of Propionibacterium acnes Reveal Its Genomic Diversity in the Healthy and Diseased Human Skin Microbiome 
mBio  2013;4(3):e00003-13.
ABSTRACT
Propionibacterium acnes constitutes a major part of the skin microbiome and contributes to human health. However, it has also been implicated as a pathogenic factor in several diseases, including acne, one of the most common skin diseases. Its pathogenic role, however, remains elusive. To better understand the genetic landscape and diversity of the organism and its role in human health and disease, we performed a comparative genome analysis of 82 P. acnes strains, 69 of which were sequenced by our group. This collection covers all known P. acnes lineages, including types IA, IB, II, and III. Our analysis demonstrated that although the P. acnes pan-genome is open, it is relatively small and expands slowly. The core regions, shared by all the sequenced genomes, accounted for 88% of the average genome. Comparative genome analysis showed that within each lineage, the strains isolated from the same individuals were more closely related than the ones isolated from different individuals, suggesting that clonal expansions occurred within each individual microbiome. We also identified the genetic elements specific to each lineage. Differences in harboring these elements may explain the phenotypic and functional differences of P. acnes in functioning as a commensal in healthy skin and as a pathogen in diseases. Our findings of the differences among P. acnes strains at the genome level underscore the importance of identifying the human microbiome variations at the strain level in understanding its association with diseases and provide insight into novel and personalized therapeutic approaches for P. acnes-related diseases.
IMPORTANCE
Propionibacterium acnes is a major human skin bacterium. It plays an important role in maintaining skin health. However, it has also been hypothesized to be a pathogenic factor in several diseases, including acne, a common skin disease affecting 85% of teenagers. To understand whether different strains have different virulent properties and thus play different roles in health and diseases, we compared the genomes of 82 P. acnes strains, most of which were isolated from acne or healthy skin. We identified lineage-specific genetic elements that may explain the phenotypic and functional differences of P. acnes as a commensal in health and as a pathogen in diseases. By analyzing a large number of sequenced strains, we provided an improved understanding of the genetic landscape and diversity of the organism at the strain level and at the molecular level that can be further applied in the development of new and personalized therapies.
doi:10.1128/mBio.00003-13
PMCID: PMC3663185  PMID: 23631911

Results 1-25 (108)