Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  An explicit immunogenetic model of gastrointestinal nematode infection in sheep 
Gastrointestinal nematodes are a global cause of disease and death in humans, wildlife and livestock. Livestock infection has historically been controlled with anthelmintic drugs, but the development of resistance means that alternative controls are needed. The most promising alternatives are vaccination, nutritional supplementation and selective breeding, all of which act by enhancing the immune response. Currently, control planning is hampered by reliance on the faecal egg count (FEC), which suffers from low accuracy and a nonlinear and indirect relationship with infection intensity and host immune responses. We address this gap by using extensive parasitological, immunological and genetic data on the sheep–Teladorsagia circumcincta interaction to create an immunologically explicit model of infection dynamics in a sheep flock that links host genetic variation with variation in the two key immune responses to predict the observed parasitological measures. Using our model, we show that the immune responses are highly heritable and by comparing selective breeding based on low FECs versus high plasma IgA responses, we show that the immune markers are a much improved measure of host resistance. In summary, we have created a model of host–parasite infections that explicitly captures the development of the adaptive immune response and show that by integrating genetic, immunological and parasitological understanding we can identify new immune-based markers for diagnosis and control.
PMCID: PMC4233724  PMID: 25121649
host–parasite model; approximate Bayesian computation; helminth infections; selective breeding; sheep; nematodes
2.  g you The direct determination of haplotypes from extended regions of genomic DNA 
BMC Genomics  2010;11:223.
One of the major obstacles to the exploitation of genetic variation in human medicine, veterinary medicine, and animal breeding is the difficulty in defining haplotypes in unrelated individuals.
We have developed a Multiplex Double Amplification Refractory Mutation System combined with Solid Phase PCR on Fluorescently labelled beads. The process is inherently amenable to automation. It provides a high degree of internal Quality Control, as each PCR product is represented in duplicate on the bead array, and each SNP is tested against multiple partners. This technique can resolve very complex genotypes into their constituent haplotypes; it defined all the alleles at 60 SNP in exon 2 of the ovine DRB1 MHC locus in a sample of 109 rams. These 60 SNP formed 33 DRB1 exon 2 alleles; two of which had not been previously identified; although both of them have been independently confirmed.
This technique has the same resolution as allele specific sequencing. Sequencing has the advantage of identifying novel polymorphic sites but where all SNP sites have been identified this novel procedure can resolve all alleles and haplotypes and identify novel combinations of polymorphisms. This method is similar in price to direct sequencing and provides a low cost system for direct haplotyping of extended DNA sequences.
PMCID: PMC2996965  PMID: 20370899
3.  Genetic dissection of MHC-associated susceptibility to Lepeophtheirus salmonis in Atlantic salmon 
BMC Genetics  2009;10:20.
Genetic variation has been shown to play a significant role in determining susceptibility to the salmon louse, Lepeophtheirus salmonis. However, the mechanisms involved in differential response to infection remain poorly understood. Recent findings in Atlantic salmon (Salmo salar) have provided evidence for a potential link between marker variation at the major histocompatibility complex (MHC) and differences in lice abundance among infected siblings, suggesting that MHC genes can modulate susceptibility to the parasite. In this study, we used quantitative trait locus (QTL) analysis to test the effect of genomic regions linked to MHC class I and II on linkage groups (LG) 15 and 6, respectively.
Significant QTL effects were detected on both LG 6 and LG 15 in sire-based analysis but the QTL regions remained unresolved due to a lack of recombination between markers. In dam-based analysis, a significant QTL was identified on LG 6, which accounted for 12.9% of within-family variance in lice abundance. However, the QTL was located at the opposite end of DAA, with no significant overlap with the MHC class II region. Interestingly, QTL modelling also revealed evidence of sex-linked differences in lice abundance, indicating that males and females may have different susceptibility to infection.
Overall, QTL analysis provided relatively weak support for a proximal effect of classical MHC regions on lice abundance, which can partly be explained by linkage to other genes controlling susceptibility to L. salmonis on the same chromosome.
PMCID: PMC2680909  PMID: 19397823
4.  Maternal undernutrition and the ovine acute phase response to vaccination 
The acute phase response is the immediate host response to infection, inflammation and trauma and can be monitored by measuring the acute phase proteins (APP) such as haptoglobin (Hp) or serum amyloid A (SAA). The plane of nutrition during pregnancy is known to affect many mechanisms including the neuroendocrine and neuroimmune systems in neonatal animals but effects on the APP are unknown. To investigate this phenomenon the serum concentration of Hp and SAA was initially determined in non-stimulated lambs from 3 groups (n = 10/group). The dams of the lambs of the respective groups were fed 100% of requirements throughout gestation (High/High; HH); 100% of requirements for the first 65 d of gestation followed by 70% of requirements until 125 d from when they were fed 100% of requirements (High/Low; HL); 65% of liveweight maintenance requirements for the first 65 d gestation followed by 100% of requirements for the remainder of pregnancy (Low/High; LH). The dynamic APP response in the lambs was estimated by measuring the concentration of Hp and SAA following routine vaccination with a multivalent clostridial vaccine with a Pasteurella component, Heptavac P™ following primary and secondary vaccination.
The Hp and SAA concentrations were significantly lower at the time of vaccination (day 8–14) than on the day of birth. Vaccination stimulated the acute phase response in lambs with increases found in both Hp and SAA. Maternal undernutrition led to the SAA response to vaccination being significantly lower in the HL group than in the HH group. The LH group did not differ significantly from either the HH or HL groups. No significant effects of maternal undernutrition were found on the Hp concentrations. A significant reduction was found in all groups in the response of SAA following the second vaccination compared to the response after the primary vaccination but no change occurred in the Hp response.
Decreased SAA concentrations, post-vaccination, in lambs born to ewes on the HL diet shows that maternal undernutrition prior to parturition affects the innate immune system of the offspring. The differences in response of Hp and SAA to primary and secondary vaccinations indicate that the cytokine driven APP response mechanisms vary with individual APP.
PMCID: PMC2233616  PMID: 18197966
5.  The dynamic influence of genetic variation on the susceptibility of sheep to gastrointestinal nematode infection 
The interaction between sheep and the nematode Teladorsagia circumcincta is one of the best understood of all host–parasite interactions. Following infection, there is considerable variation among lambs in the number of nematode eggs produced, the number of early fourth-stage larvae and the number of adult worms in the mucosa. These traits have a high variance to mean ratio (i.e. they are overdispersed or aggregated among hosts), they are skewed and approximately negative binomially distributed. The sources of overdispersion are differences among lambs in the ingestion of infective larvae and the immune response. Both forces can produce aggregation but their relative importance is unknown. The key components of variation can be identified by variance analysis. The sum of the average effects of polymorphic genes is known as additive genetic variation and this increases essentially from zero at one month of age to quite high values at six months of age. The major mechanism underlying genetic variation appears to be the differences among individuals in immune responses. Two of the major sources of variation in immune responses are differences in antigen recognition and differences in the type of cytokines produced. Genes that influence both these sources of variation are associated with differences in resistance to nematode infection. Therefore, much of the heterogeneity among animals in parasite transmission appears to be due to genetic variation in immune responsiveness.
PMCID: PMC2394554  PMID: 17626002
parasitology; genetics; immunology; Ovis aries; Teladorsagia circumcincta; variance analysis

Results 1-5 (5)