PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-14 (14)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
1.  Exposure to chemical cocktails before or after conception – The effect of timing on ovarian development☆ 
Molecular and Cellular Endocrinology  2013;376(1-2):156-172.
Highlights
•In-utero exposure to environmental chemicals disturbs ovary development.•We investigated differential effects of exposure before or after conception.•The fetal ovary is most affected by exposure after conception.•Unexpectedly, response to continuous exposure was less severe than previously.•Alterations in profiles of in utero exposure to chemicals may be most damaging.
Exposure of female fetuses to environmental chemicals (ECs) during pregnancy results in a disturbed ovarian adult phenotype. We investigated the influence of pre- and/or post-conception exposure to low-level mixtures of ECs on the structure and function of the fetal ovine ovary. We examined ovarian morphology, expression of oocyte and granulosa cell-specific genes and proteome. Female fetuses were collected at day 110 of gestation, from dams exposed continuously until, and after mating, by grazing in pastures treated with sewage sludge as a fertiliser (TT) or in control fields treated with inorganic fertiliser (CC). In addition, in a cross-over design, fetal ovaries were collected from dams maintained on sludge pastures up to the time of mating but then transferred to control pastures (TC) and, reciprocally, those transferred from control to treated pastures at mating (CT). On examination, the proportion of type 1a follicles (activating primordial follicles) was significantly lower in animals from the CT groups compared with CC and TT groups (P < 0.05). Of the 23 ovarian gene transcripts studied, 14 were altered in the ovaries of exposed fetuses (CT, TC, and TT) relative to controls, with the largest number of changes observed in cross-exposure pattern groups (CT or TC). Continuous EC exposure (TT) produced fewer transcript alterations and only two genes (INHBA and GSN) presented differential profiles between CC and TT. Fetal ovarian proteome analysis (2-DE gels) showed, across all exposure groups, 86 differentially expressed protein spots compared to controls. Animals in the CT group exhibited the highest number (53) while TC and TT presented the same number of affected protein spots (42). Fetal ovarian proteins with altered expression included MVP (major vault protein) and several members of the heat-shock family (HSPA4L, HSP90AA1 and HSF1). The present findings indicate that continuous maternal EC exposure before and during gestation, are less deleterious for fetal ovarian development than a change in maternal EC exposure between pre and post-conception. The pathways by which the ovary responds to this chemical stress were common in TT, CT, TC exposed foetuses. In addition to the period of pregnancy, the pre-conception period appears also as crucial for conditioning long-term effects of EC exposure on ovarian development and primordial follicle reserve and hence future fertility.
doi:10.1016/j.mce.2013.06.016
PMCID: PMC3731555  PMID: 23791816
Anti-ACTB, anti-β actin; DEHP, diethylhexylphthalate; ECs, environmental chemicals; EDCs, endocrine disrupting chemicals; FSH, follicle stimulating hormone; LH, luteinising hormone; WB, Western blot; Ovary; Development; In utero exposure; Environmental chemicals; Mixtures; EDCs
2.  Peri-conceptional changes in maternal exposure to sewage sludge chemicals disturbs fetal thyroid gland development in sheep 
Molecular and Cellular Endocrinology  2013;367(1-2):98-108.
Highlights
► We used an ovine prenatal exposure model to a mixture of environmental chemicals. ► Male fetal thyroids of mixed exposure groups have reduced follicle counts. ► Fetal thyroids of animals in mixed exposure groups show increased proliferation. ► Thyroid glands of exposed fetuses showed regions with impaired differentiation. ► Fetal plasma levels of free thyroid hormones were normal.
Ewes were exposed to sewage sludge-fertilized pastures in a study designed investigate pre-conceptual and/or gestational exposure to environmental chemicals. The in utero impact on fetal thyroid morphology and function at day 110 (of 145) of pregnancy was then determined.
Pre-conceptual exposure increased the relative thyroid organ weights in male fetuses. The number of thyroid follicles in thyroids of fetuses after pre-conceptual or gestational exposure was reduced. This correlated with an increase in Ki67 positive cells. Pre-conceptual exposure to sewage sludge reduced small blood vessels in fetal thyroids. Thyroid tissues of exposed fetuses contained regions where mature angio-follicular units were reduced exhibiting decreased immunostaining for sodium-iodide symporter (NIS). Fetal plasma levels of fT3 and fT4 in exposed animals, however, were not different from controls suggesting compensatory changes in the thyroid gland to maintain homeostasis in exposed fetuses. The regional aberrations in thyroid morphology may impact on the post-natal life of the exposed offspring.
doi:10.1016/j.mce.2012.12.022
PMCID: PMC3581773  PMID: 23291342
ECs, environmental chemicals; EDCs, endocrine-disrupting compounds; NIS, sodium-iodide symporter; fT3, free triiodothyronine; fT4, free thyroxine; TH, thyroid hormone; TSH, thyroid stimulating hormone; TR, thyroid hormone receptor; TTR, transthyretin; HPT, hypothalamic-pituitary-thyroid axis; PCBs, polychlorinated biphenyls; PBDE, polybrominated diphenyl ether; DEHP, di(2-ethylhexyl) phthalate; CV, coefficient of variation; DAB, 3,3′-diaminobenzidine tetrahydrochloride; HRP, horseradish peroxidase; RT, room temperature; HE, hematoxylin-eosin; GnRH, gonadotropin releasing hormone; GD, gestational day; TUNEL, terminal deoxynucleotidyl transferase dUTP nick end labeling; Endocrine disruptors; Thyroid gland; Sheep; Fetal; Sewage sludge; Development
3.  Protein-energy malnutrition during early gestation in sheep blunts fetal renal vascular and nephron development and compromises adult renal function 
The Journal of Physiology  2011;590(Pt 2):377-393.
Non-technical summary
A poor diet during pregnancy has been linked to long-term health outcomes for the baby, such as an increased risk of diseases of the heart and kidney. We show in an experimental model that recreates a poor diet during pregnancy, i.e. a diet low in protein with adequate energy, that kidney development in the baby is affected in such a way as to reduce the potential for new blood vessels to form. This results in a greater number of important, functional kidney cells spontaneously dying. Later in life, these effects in the kidney manifest as permanently reduced kidney function, especially if the baby subsequently becomes overweight as an adult. The research reinforces advice to pregnant mothers about the importance of eating a nutritionally balanced diet during pregnancy.
Abstract
A nutritionally poor maternal diet can reduce nephron endowment and pre-empt premature expression of markers for chronic renal disease in the offspring. A mechanistic pathway from variation in maternal diet through altered fetal renal development to compromised adult kidney structure and function with adult-onset obesity has not been described. We show that maternal protein-energy malnutrition in sheep blunts nephrogenic potential in the 0.44 gestation (65 days gestation, term ∼147 days) fetus by increasing apoptosis and decreasing angiogenesis in the nephrogenic zone, effects that were more marked in male fetuses. As adults, the low-protein-exposed sheep had reduced glomerular number and microvascular rarefaction in their kidneys compensated for, respectively, by glomerular hypertrophy and increased angiogenic support. In this study, the long-term mild anatomical deficits in the kidney would have remained asymptomatic in the lean state, but when superimposed on the broad metabolic challenge that obesity represents then microalbuminuria and blunted bilateral renal function revealed a long-term physiological compromise, that is only predicted to worsen with age. In conclusion, maternal protein-energy malnutrition specifically impacts fetal kidney vascular development and prevents full functionality of the adult kidney being achieved; these residual deficits are predicted to significantly increase the expected incidence of chronic kidney disease in prenatally undernourished individuals especially when coupled with a Western obesogenic environment.
doi:10.1113/jphysiol.2011.220186
PMCID: PMC3276846  PMID: 22106177
4.  Maternal undernutrition does not alter Sertoli cell numbers or the expression of key developmental markers in the mid-gestation ovine fetal testis 
Background
The aim of this study was to determine the effects of maternal undernutrition on ovine fetal testis morphology and expression of relevant histological indicators. Maternal undernutrition, in sheep, has been reported, previously, to alter fetal ovary development, as indicated by delayed folliculogenesis and the altered expression of ovarian apoptosis-regulating gene products, at day 110 of gestation. It is not known whether or not maternal undernutrition alters the same gene products in the day 110 fetal testis.
Design and methods
Mature Scottish Blackface ewes were fed either 100% (Control; C) or 50% (low; L) of estimated metabolisable energy requirements of a pregnant ewe, from mating to day 110 of gestation. All pregnant ewes were euthanized at day 110 and a sub-set of male fetuses was randomly selected (6 C and 9 L) for histology studies designed to address the effect of nutritional state on several indices of testis development. Sertoli cell numbers were measured using a stereological method and Ki67 (cell proliferation index), Bax (pro-apoptosis), Mcl-1 (anti-apoptosis), SCF and c-kit ligand (development and apoptosis) gene expression was measured in Bouins-fixed fetal testis using immunohistochemistry.
Results
No significant differences were observed in numbers of Sertoli cells or testicular Ki67 positive cells. The latter were localised to the testicular cords and interstitium. Bax and Mcl-1 were localised specifically to the germ cells whereas c-kit was localised to both the cords and interstitium. SCF staining was very sparse. No treatment effects were observed for any of the markers examined.
Conclusions
These data suggest that, unlike in the fetal ovary, maternal undernutrition for the first 110 days of gestation affects neither the morphology of the fetal testis nor the expression of gene products which regulate apoptosis. It is postulated that the effects of fetal undernutrition on testis function may be expressed through hypothalamic-pituitary changes.
doi:10.1186/1477-5751-12-2
PMCID: PMC3584724  PMID: 23295129
Testis; Sertoli; Undernutrition; Fetal; Sheep; Gonad
5.  Anthropogenic pollutants – an insidious threat to animal health and productivity? 
Acta Veterinaria Scandinavica  2012;54(Suppl 1):S2.
Summary
Humans have always polluted their environment and, to an extent, the associated adverse consequences have increased in parallel with the global population. However, in recent decades, entirely novel compounds have been created, for multiple purposes, and some of these have become ubiquitous, damaging pollutants, which interfere with fundamental physiological processes in all animal species, disrupting reproductive and other functions. Understanding of the actions of these chemicals is poor but it is recognised that they can act additively, at low concentrations, and that animals at early stages of development are particularly sensitive to their effects. All species, including domestic and wild animals and humans, can be affected. Thus, there are potential adverse implications of exposure for farm and companion animal productivity and health, and associated economic implications. While anthropogenic pollutants exert subtle, but important, adverse effects on animal health and productivity, these should be weighed against the benefits associated with the use of these compounds, particularly in relation to food production and short-term determinants of animal health. However, it is suggested that it may be necessary to regulate future production and use of some of these compounds in order to ensure long term sustainability of production systems.
doi:10.1186/1751-0147-54-S1-S2
PMCID: PMC3305749
6.  Protein energy malnutrition during early gestation in sheep blunts fetal renal vascular and nephron development and compromises adult renal function 
The Journal of physiology  2011;590(Pt 2):377-393.
A nutritionally-poor maternal diet can reduce nephron endowment and pre-empt premature expression of markers for chronic renal disease in the offspring. A mechanistic pathway from variation in maternal diet through altered fetal renal development to compromised adult kidney structure and function with adult-onset obesity has not been described. We show that maternal protein-energy malnutrition in sheep blunts nephrogenic potential in the 0.44 gestation (65 days gestation, term ≈147 days) fetus by increasing apoptosis and decreasing angiogenesis in the nephrogenic zone, effects that were more marked in male fetuses. As adults, the low protein exposed sheep had reduced glomerular number and microvascular rarefaction in their kidneys compensated for, respectively, by glomerular hypertrophy and increased angiogenic support. In this study, the long-term mild anatomical deficits in the kidney would have remained asymptomatic in the lean state, but when superimposed on the broad metabolic challenge that obesity represents then microalbuminuria and blunted bilateral renal function revealed a long–term physiological compromise, that is only predicted to worsen with age. In conclusion, maternal protein-energy malnutrition specifically impacts fetal kidney vascular development and prevents full functionality of the adult kidney being achieved; these residual deficits are predicted to significantly increase the expected incidence of chronic kidney disease in prenatally undernourished individuals especially when coupled with a Western obesogenic environment.
doi:10.1113/jphysiol.2011.220186
PMCID: PMC3276846  PMID: 22106177
fetal; kidney; development
7.  Exposure to a Complex Cocktail of Environmental Endocrine-Disrupting Compounds Disturbs the Kisspeptin/GPR54 System in Ovine Hypothalamus and Pituitary Gland 
Environmental Health Perspectives  2009;117(10):1556-1562.
Background
Ubiquitous environmental chemicals, including endocrine-disrupting chemicals (EDCs), are associated with declining human reproductive health, as well as an increasing incidence of cancers of the reproductive system. Verifying such links requires animal models exposed to “real-life,” environmentally relevant concentrations/mixtures of EDC, particularly in utero, when sensitivity to EDC exposure is maximal.
Objectives
We evaluated the effects of maternal exposure to a pollutant cocktail (sewage sludge) on the ovine fetal reproductive neuroendocrine axes, particularly the kisspeptin (KiSS-1)/GPR54 (G-protein–coupled receptor 54) system.
Methods
KiSS-1, GPR54, and ERα (estrogen receptor α) mRNA expression was quantified in control (C) and treated (T) maternal and fetal (110-day) hypothalami and pituitary glands using semiquantitative reverse transcription polymerase chain reaction, and colocalization of kisspeptin with LHβ (luteinizing hormone β) and ERα in C and T fetal pituitary glands quantified using dual-labeling immunohistochemistry.
Results
Fetuses exposed in utero to the EDC mixture showed reduced KiSS-1 mRNA expression across three hypothalamic regions examined (rostral, mid, and caudal) and had fewer kisspetin immunopositive cells colocalized with both LHβ and ERα in the pituitary gland. In contrast, treatment had no effect on parameters measured in the adult ewe hypothalamus or pituitary.
Conclusions
This study demonstrates that the developing fetus is sensitive to real-world mixtures of environmental chemicals, which cause significant neuroendocrine alterations. The important role of kisspeptin/GPR54 in regulating puberty and adult reproduction means that in utero disruption of this system is likely to have long-term consequences in adulthood and represents a novel, additional pathway through which environmental chemicals perturb human reproduction.
doi:10.1289/ehp.0900699
PMCID: PMC2790510  PMID: 20019906
environmental chemicals; GPR54; hypothalamus; kisspeptin; pituitary; prenatal exposure; sheep
8.  PAH Exposure 
doi:10.1289/ehp.0800445
PMCID: PMC2679616  PMID: 19440470
9.  In utero exposure to low doses of environmental pollutants disrupts fetal ovarian development in sheep 
Molecular Human Reproduction  2008;14(5):269-280.
Epidemiological studies of the impact of environmental chemicals on reproductive health demonstrate consequences of exposure but establishing causative links requires animal models using ‘real life’ in utero exposures. We aimed to determine whether prolonged, low-dose, exposure of pregnant sheep to a mixture of environmental chemicals affects fetal ovarian development. Exposure of treated ewes (n = 7) to pollutants was maximized by surface application of processed sewage sludge to pasture. Control ewes (n = 10) were reared on pasture treated with inorganic fertilizer. Ovaries and blood were collected from fetuses (n = 15 control and n = 8 treated) on Day 110 of gestation for investigation of fetal endocrinology, ovarian follicle/oocyte numbers and ovarian proteome. Treated fetuses were 14% lighter than controls but fetal ovary weights were unchanged. Prolactin (48% lower) was the only measured hormone significantly affected by treatment. Treatment reduced numbers of growth differentiation factor (GDF9) and induced myeloid leukaemia cell differentiation protein (MCL1) positive oocytes by 25–26% and increased pro-apoptotic BAX by 65% and 42% of protein spots in the treated ovarian proteome were differently expressed compared with controls. Nineteen spots were identified and included proteins involved in gene expression/transcription, protein synthesis, phosphorylation and receptor activity. Fetal exposure to environmental chemicals, via the mother, significantly perturbs fetal ovarian development. If such effects are replicated in humans, premature menopause could be an outcome.
doi:10.1093/molehr/gan020
PMCID: PMC2408934  PMID: 18436539
environmental chemicals; fetal development; oocyte; granulosa cell; sewage sludge
10.  Cellular and Hormonal Disruption of Fetal Testis Development in Sheep Reared on Pasture Treated with Sewage Sludge 
Environmental Health Perspectives  2005;113(11):1580-1587.
The purpose of this study was to evaluate whether experimental exposure of pregnant sheep to a mixture of environmental chemicals added to pasture as sewage sludge (n = 9 treated animals) exerted effects on fetal testis development or function; application of sewage sludge was undertaken so as to maximize exposure of the ewes to its contents. Control ewes (n = 9) were reared on pasture treated with an equivalent amount of inorganic nitrogenous fertilizer. Treatment had no effect on body weight of ewes, but it reduced body weight by 12–15% in male (n = 12) and female (n = 8) fetuses on gestation day 110. In treated male fetuses (n = 11), testis weight was significantly reduced (32%), as were the numbers of Sertoli cells (34% reduction), Leydig cells (37% reduction), and gonocytes (44% reduction), compared with control fetuses (n = 8). Fetal blood levels of testosterone and inhibin A were also reduced (36% and 38%, respectively) in treated compared with control fetuses, whereas blood levels of luteinizing hormone and follicle-stimulating hormone were unchanged. Based on immunoexpression of anti-Müllerian hormone, cytochrome P450 side chain cleavage enzyme, and Leydig cell cytoplasmic volume, we conclude that the hormone changes in treated male fetuses probably result from the reduction in somatic cell numbers. This reduction could result from fetal growth restriction in male fetuses and/or from the lowered testosterone action; reduced immunoexpression of α-smooth muscle actin in peritubular cells and of androgen receptor in testes of treated animals supports the latter possibility. These findings indicate that exposure of the developing male sheep fetus to real-world mixtures of environmental chemicals can result in major attenuation of testicular development and hormonal function, which may have consequences in adulthood.
doi:10.1289/ehp.8028
PMCID: PMC1310922  PMID: 16263515
anti-Müllerian hormone; environmental chemicals; follicle-stimulating hormone; FSH; gonocyte; inhibin-A; Leydig cell; LH; peritubular myoid cell; Sertoli cell; sewage sludge; testosterone
11.  Alkyl Phenols and Diethylhexyl Phthalate in Tissues of Sheep Grazing Pastures Fertilized with Sewage Sludge or Inorganic Fertilizer 
Environmental Health Perspectives  2005;113(4):447-453.
We studied selected tissues from ewes and their lambs that were grazing pastures fertilized with either sewage sludge (treated) or inorganic fertilizer (control) and determined concentrations of alkylphenols and phthalates in these tissues. Mean tissue concentrations of alkylphenols were relatively low (< 10–400 μg/kg) in all animals and tissues. Phthalates were detected in tissues of both control and treated animals at relatively high concentrations (> 20,000 μg/kg in many tissue samples). The use of sludge as a fertilizer was not associated with consistently increased concentrations of either alkylphenols or phthalates in the tissues of animals grazing treated pastures relative to levels in control animal tissues. Concentrations of the two classes of chemicals differed but were of a similar order of magnitude in liver and muscle as well as in fat. Concentrations of each class of compound were broadly similar in tissues derived from ewes and lambs. Although there were significant differences (p < 0.01 or p < 0.001) between years (cohorts) in mean tissue concentrations of both nonylphenol (NP) and phthalate in each of the tissues from both ewes and lambs, the differences were not attributable to either the age (6 months or 5 years) of the animal or the duration of exposure to treatments. Octylphenol concentrations were generally undetectable. There was no consistent cumulative outcome of prolonged exposure on the tissue concentrations of either class of pollutant in any ewe tissue. Mean tissue concentrations of phthalate were higher (p < 0.001) in the liver and kidney fat of male compared with female lambs. We suggest that the addition of sewage sludge to pasture is unlikely to cause large increases in tissue concentrations of NP and phthalates in sheep and other animals with broadly similar diets and digestive systems (i.e., domestic ruminants) grazing such pasture.
doi:10.1289/ehp.7469
PMCID: PMC1278485  PMID: 15811823
alkylphenol; bioaccumulation; diethylhexyl phthalate; pasture; sewage sludge; sheep; tissue
12.  Protein-energy malnutrition during early gestation in sheep blunts fetal renal vascular and nephron development and compromises adult renal function 
The Journal of Physiology  2011;590(2):377-393.
Non-technical summary
A poor diet during pregnancy has been linked to long-term health outcomes for the baby, such as an increased risk of diseases of the heart and kidney. We show in an experimental model that recreates a poor diet during pregnancy, i.e. a diet low in protein with adequate energy, that kidney development in the baby is affected in such a way as to reduce the potential for new blood vessels to form. This results in a greater number of important, functional kidney cells spontaneously dying. Later in life, these effects in the kidney manifest as permanently reduced kidney function, especially if the baby subsequently becomes overweight as an adult. The research reinforces advice to pregnant mothers about the importance of eating a nutritionally balanced diet during pregnancy.
Abstract
A nutritionally poor maternal diet can reduce nephron endowment and pre-empt premature expression of markers for chronic renal disease in the offspring. A mechanistic pathway from variation in maternal diet through altered fetal renal development to compromised adult kidney structure and function with adult-onset obesity has not been described. We show that maternal protein-energy malnutrition in sheep blunts nephrogenic potential in the 0.44 gestation (65 days gestation, term ∼147 days) fetus by increasing apoptosis and decreasing angiogenesis in the nephrogenic zone, effects that were more marked in male fetuses. As adults, the low-protein-exposed sheep had reduced glomerular number and microvascular rarefaction in their kidneys compensated for, respectively, by glomerular hypertrophy and increased angiogenic support. In this study, the long-term mild anatomical deficits in the kidney would have remained asymptomatic in the lean state, but when superimposed on the broad metabolic challenge that obesity represents then microalbuminuria and blunted bilateral renal function revealed a long-term physiological compromise, that is only predicted to worsen with age. In conclusion, maternal protein-energy malnutrition specifically impacts fetal kidney vascular development and prevents full functionality of the adult kidney being achieved; these residual deficits are predicted to significantly increase the expected incidence of chronic kidney disease in prenatally undernourished individuals especially when coupled with a Western obesogenic environment.
doi:10.1113/jphysiol.2011.220186
PMCID: PMC3276846  PMID: 22106177
13.  Impact of Sublethal Levels of Environmental Pollutants Found in Sewage Sludge on a Novel Caenorhabditis elegans Model Biosensor 
PLoS ONE  2012;7(10):e46503.
A transgenic strain of the model nematode Caenorhabditis elegans in which bioluminescence reports on relative, whole-organism ATP levels was used to test an environmentally-relevant mixture of pollutants extracted from processed sewage sludge. Changes in bioluminescence, following exposure to sewage sludge extract, were used to assess relative ATP levels and overall metabolic health. Reproductive function and longevity were also monitored. A short (up to 8 h) sublethal exposure of L4 larval stage worms to sewage sludge extract had a concentration-dependent, detrimental effect on energy status, with bioluminescence decreasing to 50–60% of the solvent control (1% DMSO). Following longer exposure (22–24 h), the energy status of the nematodes showed recovery as assessed by bioluminescence. Continuous exposure to sewage sludge extract from the L4 stage resulted in a shorter median lifespan relative to that of solvent or medium control animals, but only in the presence of 400–600 µM 5-fluoro-2′-deoxyuridine (FUdR), which was incorporated to inhibit reproduction. This indicated that FUdR increased lifespan, and that the effect was counteracted by SSE. Exposure to sewage sludge extract from the L1 stage led to slower growth and a delayed onset of egg laying. When L1 exposed nematodes reached the reproductive stage, no effect on egg laying rate or egg number in the uterus was observed. DMSO itself (1%) had a significant inhibitory effect on growth and development of C. elegans exposed from the L1 stage and on reproduction when exposed from the L4 stage. Results demonstrate subtle adverse effects on C. elegans of a complex mixture of environmental pollutants that are present, individually, in very low concentrations and indicate that our biosensor of energy status is a novel, sensitive, rapid, quantitative, whole-organism test system which is suitable for high throughput risk assessment of complex pollutant mixtures.
doi:10.1371/journal.pone.0046503
PMCID: PMC3463613  PMID: 23056324
14.  Maternal undernutrition and the ovine acute phase response to vaccination 
Background
The acute phase response is the immediate host response to infection, inflammation and trauma and can be monitored by measuring the acute phase proteins (APP) such as haptoglobin (Hp) or serum amyloid A (SAA). The plane of nutrition during pregnancy is known to affect many mechanisms including the neuroendocrine and neuroimmune systems in neonatal animals but effects on the APP are unknown. To investigate this phenomenon the serum concentration of Hp and SAA was initially determined in non-stimulated lambs from 3 groups (n = 10/group). The dams of the lambs of the respective groups were fed 100% of requirements throughout gestation (High/High; HH); 100% of requirements for the first 65 d of gestation followed by 70% of requirements until 125 d from when they were fed 100% of requirements (High/Low; HL); 65% of liveweight maintenance requirements for the first 65 d gestation followed by 100% of requirements for the remainder of pregnancy (Low/High; LH). The dynamic APP response in the lambs was estimated by measuring the concentration of Hp and SAA following routine vaccination with a multivalent clostridial vaccine with a Pasteurella component, Heptavac P™ following primary and secondary vaccination.
Results
The Hp and SAA concentrations were significantly lower at the time of vaccination (day 8–14) than on the day of birth. Vaccination stimulated the acute phase response in lambs with increases found in both Hp and SAA. Maternal undernutrition led to the SAA response to vaccination being significantly lower in the HL group than in the HH group. The LH group did not differ significantly from either the HH or HL groups. No significant effects of maternal undernutrition were found on the Hp concentrations. A significant reduction was found in all groups in the response of SAA following the second vaccination compared to the response after the primary vaccination but no change occurred in the Hp response.
Conclusion
Decreased SAA concentrations, post-vaccination, in lambs born to ewes on the HL diet shows that maternal undernutrition prior to parturition affects the innate immune system of the offspring. The differences in response of Hp and SAA to primary and secondary vaccinations indicate that the cytokine driven APP response mechanisms vary with individual APP.
doi:10.1186/1746-6148-4-1
PMCID: PMC2233616  PMID: 18197966

Results 1-14 (14)