PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Distribution of segmental duplications in the context of higher order chromatin organisation of human chromosome 7 
BMC Genomics  2014;15(1):537.
Background
Segmental duplications (SDs) are not evenly distributed along chromosomes. The reasons for this biased susceptibility to SD insertion are poorly understood. Accumulation of SDs is associated with increased genomic instability, which can lead to structural variants and genomic disorders such as the Williams-Beuren syndrome. Despite these adverse effects, SDs have become fixed in the human genome. Focusing on chromosome 7, which is particularly rich in interstitial SDs, we have investigated the distribution of SDs in the context of evolution and the three dimensional organisation of the chromosome in order to gain insights into the mutual relationship of SDs and chromatin topology.
Results
Intrachromosomal SDs preferentially accumulate in those segments of chromosome 7 that are homologous to marmoset chromosome 2. Although this formerly compact segment has been re-distributed to three different sites during primate evolution, we can show by means of public data on long distance chromatin interactions that these three intervals, and consequently the paralogous SDs mapping to them, have retained their spatial proximity in the nucleus. Focusing on SD clusters implicated in the aetiology of the Williams-Beuren syndrome locus we demonstrate by cross-species comparison that these SDs have inserted at the borders of a topological domain and that they flank regions with distinct DNA conformation.
Conclusions
Our study suggests a link of nuclear architecture and the propagation of SDs across chromosome 7, either by promoting regional SD insertion or by contributing to the establishment of higher order chromatin organisation themselves. The latter could compensate for the high risk of structural rearrangements and thus may have contributed to their evolutionary fixation in the human genome.
Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-15-537) contains supplementary material, which is available to authorized users.
doi:10.1186/1471-2164-15-537
PMCID: PMC4092221  PMID: 24973960
Higher order chromatin organisation; Segmental duplication; Williams-Beuren syndrome; Chromosome evolution; Hi-C
2.  The role of rs2237781 within GRM8 in eating behavior 
Brain and Behavior  2013;3(5):495-502.
Introduction:The glutamate receptor, metabotropic 8 gene (GRM8) encodes a G-protein-coupled glutamate receptor and has been associated with smoking behavior and liability to alcoholism implying a role in addiction vulnerability. Data from animal studies suggest that GRM8 may be involved in the regulation of the neuropeptide Y and melanocortin pathways and might influence food intake and metabolism. This study aimed to investigate the effects of the genetic variant rs2237781 within GRM8 on human eating behavior. Methods:The initial analysis included 548 Sorbs from Germany who have been extensively phenotyped for metabolic traits and who completed the German version of the three-factor eating questionnaire. In addition, we analyzed two independent sample sets comprising 293 subjects from another German cohort and 430 Old Order Amish individuals. Genetic associations with restraint, disinhibition, and hunger were assessed in an additive linear regression model. Results:Among the Sorbs the major G allele of rs2237781 was significantly associated with increased restraint scores in eating behavior (P = 1.9 × 10−4; β = +1.936). The German cohort and the Old Order Amish population revealed a trend in the same direction for restraint (P = 0.242; β = +0.874; P = 0.908; β = +0.096; respectively). A meta-analysis resulted in a combined P = 3.1 × 10−3 (Z-score 2.948). Conclusion:Our data suggest that rs2237781 within GRM8 may influence human eating behavior factors probably via pathways involved in addictive behavior.
doi:10.1002/brb3.151
PMCID: PMC3869977  PMID: 24392270
Addiction; alcohol intake; food intake; human eating behavior; smoking behavior
3.  Spread of a Distinct Stx2-Encoding Phage Prototype among Escherichia coli O104:H4 Strains from Outbreaks in Germany, Norway, and Georgia 
Journal of Virology  2012;86(19):10444-10455.
Shiga toxin 2 (Stx2)-producing Escherichia coli (STEC) O104:H4 caused one of the world's largest outbreaks of hemorrhagic colitis and hemolytic uremic syndrome in Germany in 2011. These strains have evolved from enteroaggregative E. coli (EAEC) by the acquisition of the Stx2 genes and have been designated enteroaggregative hemorrhagic E. coli. Nucleotide sequencing has shown that the Stx2 gene is carried by prophages integrated into the chromosome of STEC O104:H4. We studied the properties of Stx2-encoding bacteriophages which are responsible for the emergence of this new type of E. coli pathogen. For this, we analyzed Stx bacteriophages from STEC O104:H4 strains from Germany (in 2001 and 2011), Norway (2006), and the Republic of Georgia (2009). Viable Stx2-encoding bacteriophages could be isolated from all STEC strains except for the Norwegian strain. The Stx2 phages formed lysogens on E. coli K-12 by integration into the wrbA locus, resulting in Stx2 production. The nucleotide sequence of the Stx2 phage P13374 of a German STEC O104:H4 outbreak was determined. From the bioinformatic analyses of the prophage sequence of 60,894 bp, 79 open reading frames were inferred. Interestingly, the Stx2 phages from the German 2001 and 2011 outbreak strains were found to be identical and closely related to the Stx2 phages from the Georgian 2009 isolates. Major proteins of the virion particles were analyzed by mass spectrometry. Stx2 production in STEC O104:H4 strains was inducible by mitomycin C and was compared to Stx2 production of E. coli K-12 lysogens.
doi:10.1128/JVI.00986-12
PMCID: PMC3457275  PMID: 22811533
4.  Differential Regulation by Organic Compounds and Heavy Metals of Multiple Laccase Genes in the Aquatic Hyphomycete Clavariopsis aquatica 
Applied and Environmental Microbiology  2012;78(13):4732-4739.
To advance the understanding of the molecular mechanisms controlling microbial activities involved in carbon cycling and mitigation of environmental pollution in freshwaters, the influence of heavy metals and natural as well as xenobiotic organic compounds on laccase gene expression was quantified using quantitative real-time PCR (qRT-PCR) in an exclusively aquatic fungus (the aquatic hyphomycete Clavariopsis aquatica) for the first time. Five putative laccase genes (lcc1 to lcc5) identified in C. aquatica were differentially expressed in response to the fungal growth stage and potential laccase inducers, with certain genes being upregulated by, e.g., the lignocellulose breakdown product vanillic acid, the endocrine disruptor technical nonylphenol, manganese, and zinc. lcc4 is inducible by vanillic acid and most likely encodes an extracellular laccase already excreted during the trophophase of the organism, suggesting a function during fungal substrate colonization. Surprisingly, unlike many laccases of terrestrial fungi, none of the C. aquatica laccase genes was found to be upregulated by copper. However, copper strongly increases extracellular laccase activity in C. aquatica, possibly due to stabilization of the copper-containing catalytic center of the enzyme. Copper was found to half-saturate laccase activity already at about 1.8 μM, in favor of a fungal adaptation to low copper concentrations of aquatic habitats.
doi:10.1128/AEM.00635-12
PMCID: PMC3370489  PMID: 22544244
5.  Chromosome aberrations involving 10q22: report of three overlapping interstitial deletions and a balanced translocation disrupting C10orf11 
Interstitial deletions of chromosome band 10q22 are rare. We report on the characterization of three overlapping de novo 10q22 deletions by high-resolution array comparative genomic hybridization in three unrelated patients. Patient 1 had a 7.9 Mb deletion in 10q21.3–q22.2 and suffered from severe feeding problems, facial dysmorphisms and profound mental retardation. Patients 2 and 3 had nearly identical deletions of 3.2 and 3.6 Mb, the proximal breakpoints of which were located at an identical low-copy repeat. Both patients were mentally retarded; patient 3 also suffered from growth retardation and hypotonia. We also report on the results of breakpoint analysis by array painting in a mentally retarded patient with a balanced chromosome translocation 46,XY,t(10;13)(q22;p13)dn. The breakpoint in 10q22 was found to disrupt C10orf11, a brain-expressed gene in the common deleted interval of patients 1–3. This finding suggests that haploinsufficiency of C10orf11 contributes to the cognitive defects in 10q22 deletion patients.
doi:10.1038/ejhg.2009.163
PMCID: PMC2987210  PMID: 19844253
deletion 10q22; array CGH; C10orf11; mental retardation; balanced chromosome translocation
6.  The DNA sequence of the human X chromosome 
Ross, Mark T. | Grafham, Darren V. | Coffey, Alison J. | Scherer, Steven | McLay, Kirsten | Muzny, Donna | Platzer, Matthias | Howell, Gareth R. | Burrows, Christine | Bird, Christine P. | Frankish, Adam | Lovell, Frances L. | Howe, Kevin L. | Ashurst, Jennifer L. | Fulton, Robert S. | Sudbrak, Ralf | Wen, Gaiping | Jones, Matthew C. | Hurles, Matthew E. | Andrews, T. Daniel | Scott, Carol E. | Searle, Stephen | Ramser, Juliane | Whittaker, Adam | Deadman, Rebecca | Carter, Nigel P. | Hunt, Sarah E. | Chen, Rui | Cree, Andrew | Gunaratne, Preethi | Havlak, Paul | Hodgson, Anne | Metzker, Michael L. | Richards, Stephen | Scott, Graham | Steffen, David | Sodergren, Erica | Wheeler, David A. | Worley, Kim C. | Ainscough, Rachael | Ambrose, Kerrie D. | Ansari-Lari, M. Ali | Aradhya, Swaroop | Ashwell, Robert I. S. | Babbage, Anne K. | Bagguley, Claire L. | Ballabio, Andrea | Banerjee, Ruby | Barker, Gary E. | Barlow, Karen F. | Barrett, Ian P. | Bates, Karen N. | Beare, David M. | Beasley, Helen | Beasley, Oliver | Beck, Alfred | Bethel, Graeme | Blechschmidt, Karin | Brady, Nicola | Bray-Allen, Sarah | Bridgeman, Anne M. | Brown, Andrew J. | Brown, Mary J. | Bonnin, David | Bruford, Elspeth A. | Buhay, Christian | Burch, Paula | Burford, Deborah | Burgess, Joanne | Burrill, Wayne | Burton, John | Bye, Jackie M. | Carder, Carol | Carrel, Laura | Chako, Joseph | Chapman, Joanne C. | Chavez, Dean | Chen, Ellson | Chen, Guan | Chen, Yuan | Chen, Zhijian | Chinault, Craig | Ciccodicola, Alfredo | Clark, Sue Y. | Clarke, Graham | Clee, Chris M. | Clegg, Sheila | Clerc-Blankenburg, Kerstin | Clifford, Karen | Cobley, Vicky | Cole, Charlotte G. | Conquer, Jen S. | Corby, Nicole | Connor, Richard E. | David, Robert | Davies, Joy | Davis, Clay | Davis, John | Delgado, Oliver | DeShazo, Denise | Dhami, Pawandeep | Ding, Yan | Dinh, Huyen | Dodsworth, Steve | Draper, Heather | Dugan-Rocha, Shannon | Dunham, Andrew | Dunn, Matthew | Durbin, K. James | Dutta, Ireena | Eades, Tamsin | Ellwood, Matthew | Emery-Cohen, Alexandra | Errington, Helen | Evans, Kathryn L. | Faulkner, Louisa | Francis, Fiona | Frankland, John | Fraser, Audrey E. | Galgoczy, Petra | Gilbert, James | Gill, Rachel | Glöckner, Gernot | Gregory, Simon G. | Gribble, Susan | Griffiths, Coline | Grocock, Russell | Gu, Yanghong | Gwilliam, Rhian | Hamilton, Cerissa | Hart, Elizabeth A. | Hawes, Alicia | Heath, Paul D. | Heitmann, Katja | Hennig, Steffen | Hernandez, Judith | Hinzmann, Bernd | Ho, Sarah | Hoffs, Michael | Howden, Phillip J. | Huckle, Elizabeth J. | Hume, Jennifer | Hunt, Paul J. | Hunt, Adrienne R. | Isherwood, Judith | Jacob, Leni | Johnson, David | Jones, Sally | de Jong, Pieter J. | Joseph, Shirin S. | Keenan, Stephen | Kelly, Susan | Kershaw, Joanne K. | Khan, Ziad | Kioschis, Petra | Klages, Sven | Knights, Andrew J. | Kosiura, Anna | Kovar-Smith, Christie | Laird, Gavin K. | Langford, Cordelia | Lawlor, Stephanie | Leversha, Margaret | Lewis, Lora | Liu, Wen | Lloyd, Christine | Lloyd, David M. | Loulseged, Hermela | Loveland, Jane E. | Lovell, Jamieson D. | Lozado, Ryan | Lu, Jing | Lyne, Rachael | Ma, Jie | Maheshwari, Manjula | Matthews, Lucy H. | McDowall, Jennifer | McLaren, Stuart | McMurray, Amanda | Meidl, Patrick | Meitinger, Thomas | Milne, Sarah | Miner, George | Mistry, Shailesh L. | Morgan, Margaret | Morris, Sidney | Müller, Ines | Mullikin, James C. | Nguyen, Ngoc | Nordsiek, Gabriele | Nyakatura, Gerald | O’Dell, Christopher N. | Okwuonu, Geoffery | Palmer, Sophie | Pandian, Richard | Parker, David | Parrish, Julia | Pasternak, Shiran | Patel, Dina | Pearce, Alex V. | Pearson, Danita M. | Pelan, Sarah E. | Perez, Lesette | Porter, Keith M. | Ramsey, Yvonne | Reichwald, Kathrin | Rhodes, Susan | Ridler, Kerry A. | Schlessinger, David | Schueler, Mary G. | Sehra, Harminder K. | Shaw-Smith, Charles | Shen, Hua | Sheridan, Elizabeth M. | Shownkeen, Ratna | Skuce, Carl D. | Smith, Michelle L. | Sotheran, Elizabeth C. | Steingruber, Helen E. | Steward, Charles A. | Storey, Roy | Swann, R. Mark | Swarbreck, David | Tabor, Paul E. | Taudien, Stefan | Taylor, Tineace | Teague, Brian | Thomas, Karen | Thorpe, Andrea | Timms, Kirsten | Tracey, Alan | Trevanion, Steve | Tromans, Anthony C. | d’Urso, Michele | Verduzco, Daniel | Villasana, Donna | Waldron, Lenee | Wall, Melanie | Wang, Qiaoyan | Warren, James | Warry, Georgina L. | Wei, Xuehong | West, Anthony | Whitehead, Siobhan L. | Whiteley, Mathew N. | Wilkinson, Jane E. | Willey, David L. | Williams, Gabrielle | Williams, Leanne | Williamson, Angela | Williamson, Helen | Wilming, Laurens | Woodmansey, Rebecca L. | Wray, Paul W. | Yen, Jennifer | Zhang, Jingkun | Zhou, Jianling | Zoghbi, Huda | Zorilla, Sara | Buck, David | Reinhardt, Richard | Poustka, Annemarie | Rosenthal, André | Lehrach, Hans | Meindl, Alfons | Minx, Patrick J. | Hillier, LaDeana W. | Willard, Huntington F. | Wilson, Richard K. | Waterston, Robert H. | Rice, Catherine M. | Vaudin, Mark | Coulson, Alan | Nelson, David L. | Weinstock, George | Sulston, John E. | Durbin, Richard | Hubbard, Tim | Gibbs, Richard A. | Beck, Stephan | Rogers, Jane | Bentley, David R.
Nature  2005;434(7031):325-337.
The human X chromosome has a unique biology that was shaped by its evolution as the sex chromosome shared by males and females. We have determined 99.3% of the euchromatic sequence of the X chromosome. Our analysis illustrates the autosomal origin of the mammalian sex chromosomes, the stepwise process that led to the progressive loss of recombination between X and Y, and the extent of subsequent degradation of the Y chromosome. LINE1 repeat elements cover one-third of the X chromosome, with a distribution that is consistent with their proposed role as way stations in the process of X-chromosome inactivation. We found 1,098 genes in the sequence, of which 99 encode proteins expressed in testis and in various tumour types. A disproportionately high number of mendelian diseases are documented for the X chromosome. Of this number, 168 have been explained by mutations in 113 X-linked genes, which in many cases were characterized with the aid of the DNA sequence.
doi:10.1038/nature03440
PMCID: PMC2665286  PMID: 15772651

Results 1-6 (6)